Grade prediction of zinc tailings using an encoder-decoder model in froth flotation

•An encoder-decoder-based network predicts the zinc tailings grade in advance.•The feature time series of the first rougher is extracted automatically.•The proposed grade prediction model considers previously measured grades.•The dynamic consistency between the input and output time series is utiliz...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Minerals engineering Ročník 172; s. 107173
Hlavní autoři: Zhang, Hu, Tang, Zhaohui, Xie, Yongfang, Luo, Jin, Chen, Qing, Gui, Weihua
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Ltd 01.10.2021
Témata:
ISSN:0892-6875, 1872-9444
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract •An encoder-decoder-based network predicts the zinc tailings grade in advance.•The feature time series of the first rougher is extracted automatically.•The proposed grade prediction model considers previously measured grades.•The dynamic consistency between the input and output time series is utilized.•The proposed grade prediction model was validated in a zinc flotation process. Accurate grade prediction is conducive to proper flotation operation or control. Different from grade monitoring, grade prediction needs to obtain the target grade in advance. However, there is usually a time delay between the flotation cell and the predicted grade in froth flotation. This time delay makes it difficult to match the features of the observed flotation cell with the predicted grade. To solve this problem, this article studies the method of zinc tailings grade prediction using encoder-decoder models. The proposed model considers the feature time series of the first rougher and the previously measured tailings grades. First, according to the sample ratio between froth video and X-ray fluorescence (XRF) analyser, the feature time series of the first rougher can be automatically extracted by finding the nearest available feature vectors. Next, the feature time series of the first rougher is fed into the encoder to generate a context vector, and then the context vector and previously measured grades are sent into the decoder to predict the current tailings grade. The proposed model effectively captures the dynamic consistency between the feature time series and previously measured grades. The effectiveness of the proposed model in the froth flotation has been verified by experiments. Compared with the traditional recurrent neural network (RNN)-based models, the root mean squared error (RMSE) and mean absolute percentage error (MAPE) of the proposed model decrease by about 17.8% and 1.9%. respectively, and the R-squared (R2) score of the proposed model increases by about 13.8%.
AbstractList •An encoder-decoder-based network predicts the zinc tailings grade in advance.•The feature time series of the first rougher is extracted automatically.•The proposed grade prediction model considers previously measured grades.•The dynamic consistency between the input and output time series is utilized.•The proposed grade prediction model was validated in a zinc flotation process. Accurate grade prediction is conducive to proper flotation operation or control. Different from grade monitoring, grade prediction needs to obtain the target grade in advance. However, there is usually a time delay between the flotation cell and the predicted grade in froth flotation. This time delay makes it difficult to match the features of the observed flotation cell with the predicted grade. To solve this problem, this article studies the method of zinc tailings grade prediction using encoder-decoder models. The proposed model considers the feature time series of the first rougher and the previously measured tailings grades. First, according to the sample ratio between froth video and X-ray fluorescence (XRF) analyser, the feature time series of the first rougher can be automatically extracted by finding the nearest available feature vectors. Next, the feature time series of the first rougher is fed into the encoder to generate a context vector, and then the context vector and previously measured grades are sent into the decoder to predict the current tailings grade. The proposed model effectively captures the dynamic consistency between the feature time series and previously measured grades. The effectiveness of the proposed model in the froth flotation has been verified by experiments. Compared with the traditional recurrent neural network (RNN)-based models, the root mean squared error (RMSE) and mean absolute percentage error (MAPE) of the proposed model decrease by about 17.8% and 1.9%. respectively, and the R-squared (R2) score of the proposed model increases by about 13.8%.
ArticleNumber 107173
Author Xie, Yongfang
Gui, Weihua
Chen, Qing
Tang, Zhaohui
Luo, Jin
Zhang, Hu
Author_xml – sequence: 1
  givenname: Hu
  surname: Zhang
  fullname: Zhang, Hu
  organization: School of Automation, Central South University, Changsha 410083, China
– sequence: 2
  givenname: Zhaohui
  surname: Tang
  fullname: Tang, Zhaohui
  organization: School of Automation, Central South University, Changsha 410083, China
– sequence: 3
  givenname: Yongfang
  surname: Xie
  fullname: Xie, Yongfang
  organization: School of Automation, Central South University, Changsha 410083, China
– sequence: 4
  givenname: Jin
  surname: Luo
  fullname: Luo, Jin
  organization: School of Automation, Central South University, Changsha 410083, China
– sequence: 5
  givenname: Qing
  surname: Chen
  fullname: Chen, Qing
  email: QingChen_CSU@hotmail.com
  organization: School of Computer Science, Hunan University of Technology, Zhuzhou 412007, China
– sequence: 6
  givenname: Weihua
  surname: Gui
  fullname: Gui, Weihua
  organization: School of Automation, Central South University, Changsha 410083, China
BookMark eNqFkMFKAzEQhoNUsK2-gYe8wNZks7vZeBCkaBUKHtRzyE6SmrJNSrIK-vSmXU8e9DI_DHw_M98MTXzwBqFLShaU0OZqu9g5b_xmUZKS5hWnnJ2gKW15WYiqqiZoSlpRFk3L6zM0S2lLCKl5K6boeRWVNngfjXYwuOBxsPjLecCDcr3zm4TfUw6sPDYegjax0OaYeJdnj53HNobhDds-DOpQcY5OreqTufjJOXq9v3tZPhTrp9Xj8nZdACPNUFDgvGKa11QoQjsGwoquMUyDMEwoBR21otUctGactcpS3taNKmlntQbQbI6qsRdiSCkaK_fR7VT8lJTIgxi5laMYeRAjRzEZu_6FgRsPH2L--T_4ZoRNfuzDmSgTuCwm64sGBqmD-7vgG1dThUg
CitedBy_id crossref_primary_10_3390_min14030230
crossref_primary_10_1016_j_inffus_2025_103496
crossref_primary_10_1016_j_mineng_2024_109093
crossref_primary_10_1515_revce_2024_0023
crossref_primary_10_1080_19392699_2025_2532746
crossref_primary_10_1016_j_compeleceng_2025_110251
crossref_primary_10_1016_j_mineng_2023_108457
crossref_primary_10_1007_s00170_024_13384_3
crossref_primary_10_1007_s12666_023_03093_y
crossref_primary_10_1016_j_mineng_2023_108179
crossref_primary_10_1109_TCYB_2025_3554475
crossref_primary_10_1016_j_mineng_2023_108000
crossref_primary_10_1016_j_mineng_2025_109424
crossref_primary_10_1016_j_cherd_2024_07_041
crossref_primary_10_1016_j_mineng_2025_109403
crossref_primary_10_1016_j_engappai_2025_110283
crossref_primary_10_1016_j_mineng_2024_108867
crossref_primary_10_1109_TII_2023_3342458
crossref_primary_10_1016_j_aei_2024_102780
crossref_primary_10_1109_TIM_2022_3201935
crossref_primary_10_1016_j_jprocont_2023_103004
crossref_primary_10_1016_j_jprocont_2024_103198
crossref_primary_10_1007_s12613_022_2448_x
Cites_doi 10.1162/neco.1997.9.8.1735
10.1016/j.ifacol.2017.08.1772
10.1016/j.mineng.2014.08.003
10.1016/j.mineng.2018.12.011
10.1016/j.minpro.2014.09.018
10.1016/j.mineng.2016.02.006
10.1016/j.mineng.2012.02.010
10.1016/j.mineng.2020.106332
10.1109/TIE.2016.2613499
10.1016/j.measurement.2019.02.005
10.1016/j.measurement.2017.07.023
10.1016/j.minpro.2017.07.011
10.1016/j.powtec.2018.11.056
10.1016/j.mineng.2020.106677
10.1016/j.mineng.2018.12.004
10.1109/TII.2017.2761852
10.1016/j.mineng.2013.05.022
10.1109/TII.2019.2960051
10.1109/TII.2020.3046278
10.1016/j.mineng.2015.09.020
10.1016/j.mineng.2017.10.005
10.1109/TCYB.2020.2977537
10.1016/j.mineng.2010.12.006
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Copyright_xml – notice: 2021 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.mineng.2021.107173
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1872-9444
ExternalDocumentID 10_1016_j_mineng_2021_107173
S0892687521004027
GroupedDBID --K
--M
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABJNI
ABMAC
ABNUV
ABQEM
ABQYD
ABYKQ
ACDAQ
ACGFS
ACLVX
ACRLP
ACSBN
ADBBV
ADEWK
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHPOS
AIEXJ
AIKHN
AITUG
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ATOGT
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
ENUVR
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
IMUCA
J1W
KOM
LY3
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSE
SSG
SSZ
T5K
~02
~G-
29M
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACLOT
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HMA
HVGLF
HZ~
R2-
SEP
SET
SEW
WUQ
XPP
ZMT
~HD
ID FETCH-LOGICAL-c306t-1c7743d7519a01b3c9f9b6e3dc9e39aacb1f98d7cdd3738af17856a21bfddccd3
ISICitedReferencesCount 25
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000702743900005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0892-6875
IngestDate Tue Nov 18 22:28:00 EST 2025
Sat Nov 29 07:20:09 EST 2025
Fri Feb 23 02:43:55 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Encoder-decoder model
Machine vision
Recurrent neural network
Grade prediction
Froth video
Time series
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c306t-1c7743d7519a01b3c9f9b6e3dc9e39aacb1f98d7cdd3738af17856a21bfddccd3
ParticipantIDs crossref_primary_10_1016_j_mineng_2021_107173
crossref_citationtrail_10_1016_j_mineng_2021_107173
elsevier_sciencedirect_doi_10_1016_j_mineng_2021_107173
PublicationCentury 2000
PublicationDate 2021-10-01
2021-10-00
PublicationDateYYYYMMDD 2021-10-01
PublicationDate_xml – month: 10
  year: 2021
  text: 2021-10-01
  day: 01
PublicationDecade 2020
PublicationTitle Minerals engineering
PublicationYear 2021
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Huang, Liu, van der Maaten, Weinberger (b0035) 2017
Mehrabi, Mehrshad, Massinaei (b0100) 2014; 133
Zhang, Tang, Xie, Gao, Chen, Gui (b0140) 2020; 16
McCoy, Auret (b0095) 2019; 132
Zhang, Tang, Xie, Gao, Chen (b0135) 2019; 138
Tan, Liang, Peng, Xie (b0120) 2016; 92
Jahedsaravani, Marhaban, Massinaei (b0040) 2014; 69
Hochreiter, Schmidhuber (b0030) 1997; 9
Xie, Wu, Xu, Yang, Gui (b0125) 2017; 64
He, Zhang, Ren, Sun (b0025) 2016
Sutskever, I., Vinyals, O., Le, Q.V., 2014. Sequence to sequence learning with neural networks. arXiv preprint arXiv:1409.3215.
Morar, Harris, Bradshaw (b0105) 2012; 36-38
Chung, J., Gulcehre, C., Cho, K., Bengio, Y., 2014. Empirical evaluation of gated recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555.
Massinaei, Jahedsaravani, Taheri, Khalilpour (b0090) 2019; 343
Fu, Aldrich (b0015) 2018; 115
Fu, Aldrich (b0020) 2019; 132
Jiang, Fan, Chai, Li, Lewis (b0055) 2018; 14
Jahedsaravani, Massinaei, Marhaban (b0050) 2017; 111
Zhang, Tang, Xie, Gao, Chen, Gui (b0145) 2021; 160
Krizhevsky, Sutskever, Hinton (b0070) 2012; 25
Liu, He, Xie, Gui, Tang, Ma, He, Niyoyita (b0080) 2021; 51
Pal (b0110) 2017
Zhang, Tang, Xie, Ai, Gui (b0150) 2020; 151
Brooks, Koorts (b0005) 2017; 50
Zhang, H., Tang, Z., Xie, Y., Chen, Q., Gao, X., Gui, W., 2020a. FR-R net: A Light-weight deep neural network for performance monitoring in the froth flotation. IEEE Trans. Ind. Inform. 10.1109/TII.2020.3046278.
Liu, Gui, Tang (b0075) 2013; 21
Jahedsaravani, Massinaei, Marhaban (b0045) 2017; 167
Kistner, Jemwa, Aldrich (b0065) 2013; 52
Marais, Aldrich (b0085) 2011; 24
Jovanović, Miljanović, Jovanović (b0060) 2015; 84
Pal (10.1016/j.mineng.2021.107173_b0110) 2017
10.1016/j.mineng.2021.107173_b0115
Hochreiter (10.1016/j.mineng.2021.107173_b0030) 1997; 9
Zhang (10.1016/j.mineng.2021.107173_b0135) 2019; 138
He (10.1016/j.mineng.2021.107173_b0025) 2016
Jahedsaravani (10.1016/j.mineng.2021.107173_b0050) 2017; 111
Xie (10.1016/j.mineng.2021.107173_b0125) 2017; 64
10.1016/j.mineng.2021.107173_b0130
10.1016/j.mineng.2021.107173_b0010
Massinaei (10.1016/j.mineng.2021.107173_b0090) 2019; 343
Zhang (10.1016/j.mineng.2021.107173_b0140) 2020; 16
Kistner (10.1016/j.mineng.2021.107173_b0065) 2013; 52
Liu (10.1016/j.mineng.2021.107173_b0075) 2013; 21
Mehrabi (10.1016/j.mineng.2021.107173_b0100) 2014; 133
Zhang (10.1016/j.mineng.2021.107173_b0145) 2021; 160
Jiang (10.1016/j.mineng.2021.107173_b0055) 2018; 14
Jahedsaravani (10.1016/j.mineng.2021.107173_b0045) 2017; 167
Marais (10.1016/j.mineng.2021.107173_b0085) 2011; 24
Jovanović (10.1016/j.mineng.2021.107173_b0060) 2015; 84
Jahedsaravani (10.1016/j.mineng.2021.107173_b0040) 2014; 69
Zhang (10.1016/j.mineng.2021.107173_b0150) 2020; 151
Krizhevsky (10.1016/j.mineng.2021.107173_b0070) 2012; 25
McCoy (10.1016/j.mineng.2021.107173_b0095) 2019; 132
Morar (10.1016/j.mineng.2021.107173_b0105) 2012; 36-38
Liu (10.1016/j.mineng.2021.107173_b0080) 2021; 51
Fu (10.1016/j.mineng.2021.107173_b0020) 2019; 132
Tan (10.1016/j.mineng.2021.107173_b0120) 2016; 92
Fu (10.1016/j.mineng.2021.107173_b0015) 2018; 115
Brooks (10.1016/j.mineng.2021.107173_b0005) 2017; 50
Huang (10.1016/j.mineng.2021.107173_b0035) 2017
References_xml – volume: 343
  start-page: 330
  year: 2019
  end-page: 341
  ident: b0090
  article-title: Machine vision based monitoring and analysis of a coal column flotation circuit
  publication-title: Powder Technol.
– volume: 132
  start-page: 95
  year: 2019
  end-page: 109
  ident: b0095
  article-title: Machine learning applications in minerals processing: A review
  publication-title: Miner. Eng.
– volume: 14
  start-page: 1974
  year: 2018
  end-page: 1989
  ident: b0055
  article-title: Data-Driven Flotation Industrial Process Operational Optimal Control Based on Reinforcement Learning
  publication-title: IEEE Trans. Ind. Inform.
– volume: 16
  start-page: 4077
  year: 2020
  end-page: 4089
  ident: b0140
  article-title: A Similarity-Based Burst Bubble Recognition Using Weighted Normalized Cross Correlation and Chamfer Distance
  publication-title: IEEE Trans. Ind. Inform.
– reference: Sutskever, I., Vinyals, O., Le, Q.V., 2014. Sequence to sequence learning with neural networks. arXiv preprint arXiv:1409.3215.
– volume: 64
  start-page: 4199
  year: 2017
  end-page: 4206
  ident: b0125
  article-title: Reagent Addition Control for Stibium Rougher Flotation Based on Sensitive Froth Image Features
  publication-title: IEEE Trans. Ind. Electron.
– volume: 138
  start-page: 182
  year: 2019
  end-page: 193
  ident: b0135
  article-title: A watershed segmentation algorithm based on an optimal marker for bubble size measurement
  publication-title: Measurement
– volume: 84
  start-page: 34
  year: 2015
  end-page: 63
  ident: b0060
  article-title: Soft computing-based modeling of flotation processes - A review
  publication-title: Miner. Eng.
– start-page: 83
  year: 2017
  end-page: 103
  ident: b0110
  article-title: Predictive modeling of drug sensitivity
– volume: 92
  start-page: 9
  year: 2016
  end-page: 20
  ident: b0120
  article-title: The concentrate ash content analysis of coal flotation based on froth images
  publication-title: Miner. Eng.
– volume: 21
  start-page: 2378
  year: 2013
  end-page: 2396
  ident: b0075
  article-title: Flow velocity measurement and analysis based on froth image SIFT features and Kalman filter for froth flotation
  publication-title: Turk. J. Electr. Eng. Co.
– volume: 24
  start-page: 433
  year: 2011
  end-page: 441
  ident: b0085
  article-title: Estimation of platinum flotation grades from froth image data
  publication-title: Miner. Eng.
– volume: 151
  start-page: 106332
  year: 2020
  ident: b0150
  article-title: Convolutional memory network-based flotation performance monitoring
  publication-title: Miner. Eng.
– volume: 36-38
  start-page: 31
  year: 2012
  end-page: 36
  ident: b0105
  article-title: The use of machine vision to predict flotation performance
  publication-title: Miner. Eng.
– volume: 132
  start-page: 183
  year: 2019
  end-page: 190
  ident: b0020
  article-title: Flotation froth image recognition with convolutional neural networks
  publication-title: Miner. Eng.
– volume: 9
  start-page: 1735
  year: 1997
  end-page: 1780
  ident: b0030
  article-title: Long Short-Term Memory
  publication-title: Neural Comput.
– reference: Zhang, H., Tang, Z., Xie, Y., Chen, Q., Gao, X., Gui, W., 2020a. FR-R net: A Light-weight deep neural network for performance monitoring in the froth flotation. IEEE Trans. Ind. Inform. 10.1109/TII.2020.3046278.
– volume: 115
  start-page: 68
  year: 2018
  end-page: 78
  ident: b0015
  article-title: Froth image analysis by use of transfer learning and convolutional neural networks
  publication-title: Miner. Eng.
– reference: Chung, J., Gulcehre, C., Cho, K., Bengio, Y., 2014. Empirical evaluation of gated recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555.
– volume: 52
  start-page: 169
  year: 2013
  end-page: 177
  ident: b0065
  article-title: Monitoring of mineral processing systems by using textural image analysis
  publication-title: Miner. Eng.
– volume: 69
  start-page: 137
  year: 2014
  end-page: 145
  ident: b0040
  article-title: Prediction of the metallurgical performances of a batch flotation system by image analysis and neural networks
  publication-title: Miner. Eng.
– volume: 51
  start-page: 839
  year: 2021
  end-page: 852
  ident: b0080
  article-title: Illumination-invariant Flotation Froth Color Measuring via Wasserstein Distance-based CycleGAN with Structure-preserving Constraint
  publication-title: IEEE Trans Cybernet.
– start-page: 770
  year: 2016
  end-page: 778
  ident: b0025
  article-title: Deep Residual Learning for Image Recognition
  publication-title: In 2016 IEEE Conference on Computer Vision and Pattern Recognition
– volume: 167
  start-page: 16
  year: 2017
  end-page: 26
  ident: b0045
  article-title: Development of a machine vision system for real-time monitoring and control of batch flotation process
  publication-title: Int. J. Miner. Process.
– volume: 25
  year: 2012
  ident: b0070
  article-title: ImageNet Classification with Deep Convolutional Neural Networks
  publication-title: Adv. Neural Info. Process. Syst.
– volume: 160
  start-page: 106677
  year: 2021
  ident: b0145
  article-title: Long short-term memory-based grade monitoring in froth flotation using a froth video sequence
  publication-title: Miner. Eng.
– volume: 111
  start-page: 29
  year: 2017
  end-page: 37
  ident: b0050
  article-title: An image segmentation algorithm for measurement of flotation froth bubble size distributions
  publication-title: Measurement.
– volume: 133
  start-page: 60
  year: 2014
  end-page: 66
  ident: b0100
  article-title: Machine vision based monitoring of an industrial flotation cell in an iron flotation plant
  publication-title: Int. J. Miner. Process.
– volume: 50
  start-page: 10214
  year: 2017
  end-page: 10219
  ident: b0005
  article-title: Model Predictive Control of a Zinc Flotation Bank Using Online X-ray Fluorescence Analysers
  publication-title: Ifac-PapersonLine
– start-page: 2261
  year: 2017
  end-page: 2269
  ident: b0035
  article-title: Densely Connected Convolutional Networks
  publication-title: In 30th IEEE Conference on Computer Vision and Pattern Recognition
– ident: 10.1016/j.mineng.2021.107173_b0115
– volume: 9
  start-page: 1735
  issue: 8
  year: 1997
  ident: 10.1016/j.mineng.2021.107173_b0030
  article-title: Long Short-Term Memory
  publication-title: Neural Comput.
  doi: 10.1162/neco.1997.9.8.1735
– volume: 50
  start-page: 10214
  issue: 1
  year: 2017
  ident: 10.1016/j.mineng.2021.107173_b0005
  article-title: Model Predictive Control of a Zinc Flotation Bank Using Online X-ray Fluorescence Analysers
  publication-title: Ifac-PapersonLine
  doi: 10.1016/j.ifacol.2017.08.1772
– volume: 69
  start-page: 137
  year: 2014
  ident: 10.1016/j.mineng.2021.107173_b0040
  article-title: Prediction of the metallurgical performances of a batch flotation system by image analysis and neural networks
  publication-title: Miner. Eng.
  doi: 10.1016/j.mineng.2014.08.003
– volume: 132
  start-page: 183
  year: 2019
  ident: 10.1016/j.mineng.2021.107173_b0020
  article-title: Flotation froth image recognition with convolutional neural networks
  publication-title: Miner. Eng.
  doi: 10.1016/j.mineng.2018.12.011
– volume: 133
  start-page: 60
  year: 2014
  ident: 10.1016/j.mineng.2021.107173_b0100
  article-title: Machine vision based monitoring of an industrial flotation cell in an iron flotation plant
  publication-title: Int. J. Miner. Process.
  doi: 10.1016/j.minpro.2014.09.018
– ident: 10.1016/j.mineng.2021.107173_b0010
– volume: 92
  start-page: 9
  year: 2016
  ident: 10.1016/j.mineng.2021.107173_b0120
  article-title: The concentrate ash content analysis of coal flotation based on froth images
  publication-title: Miner. Eng.
  doi: 10.1016/j.mineng.2016.02.006
– volume: 36-38
  start-page: 31
  year: 2012
  ident: 10.1016/j.mineng.2021.107173_b0105
  article-title: The use of machine vision to predict flotation performance
  publication-title: Miner. Eng.
  doi: 10.1016/j.mineng.2012.02.010
– volume: 151
  start-page: 106332
  year: 2020
  ident: 10.1016/j.mineng.2021.107173_b0150
  article-title: Convolutional memory network-based flotation performance monitoring
  publication-title: Miner. Eng.
  doi: 10.1016/j.mineng.2020.106332
– volume: 64
  start-page: 4199
  issue: 5
  year: 2017
  ident: 10.1016/j.mineng.2021.107173_b0125
  article-title: Reagent Addition Control for Stibium Rougher Flotation Based on Sensitive Froth Image Features
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2016.2613499
– volume: 138
  start-page: 182
  year: 2019
  ident: 10.1016/j.mineng.2021.107173_b0135
  article-title: A watershed segmentation algorithm based on an optimal marker for bubble size measurement
  publication-title: Measurement
  doi: 10.1016/j.measurement.2019.02.005
– start-page: 770
  year: 2016
  ident: 10.1016/j.mineng.2021.107173_b0025
  article-title: Deep Residual Learning for Image Recognition
– volume: 21
  start-page: 2378
  year: 2013
  ident: 10.1016/j.mineng.2021.107173_b0075
  article-title: Flow velocity measurement and analysis based on froth image SIFT features and Kalman filter for froth flotation
  publication-title: Turk. J. Electr. Eng. Co.
– volume: 111
  start-page: 29
  year: 2017
  ident: 10.1016/j.mineng.2021.107173_b0050
  article-title: An image segmentation algorithm for measurement of flotation froth bubble size distributions
  publication-title: Measurement.
  doi: 10.1016/j.measurement.2017.07.023
– volume: 25
  issue: 2
  year: 2012
  ident: 10.1016/j.mineng.2021.107173_b0070
  article-title: ImageNet Classification with Deep Convolutional Neural Networks
  publication-title: Adv. Neural Info. Process. Syst.
– volume: 167
  start-page: 16
  year: 2017
  ident: 10.1016/j.mineng.2021.107173_b0045
  article-title: Development of a machine vision system for real-time monitoring and control of batch flotation process
  publication-title: Int. J. Miner. Process.
  doi: 10.1016/j.minpro.2017.07.011
– volume: 343
  start-page: 330
  year: 2019
  ident: 10.1016/j.mineng.2021.107173_b0090
  article-title: Machine vision based monitoring and analysis of a coal column flotation circuit
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2018.11.056
– start-page: 83
  year: 2017
  ident: 10.1016/j.mineng.2021.107173_b0110
– volume: 160
  start-page: 106677
  year: 2021
  ident: 10.1016/j.mineng.2021.107173_b0145
  article-title: Long short-term memory-based grade monitoring in froth flotation using a froth video sequence
  publication-title: Miner. Eng.
  doi: 10.1016/j.mineng.2020.106677
– volume: 132
  start-page: 95
  year: 2019
  ident: 10.1016/j.mineng.2021.107173_b0095
  article-title: Machine learning applications in minerals processing: A review
  publication-title: Miner. Eng.
  doi: 10.1016/j.mineng.2018.12.004
– volume: 14
  start-page: 1974
  issue: 5
  year: 2018
  ident: 10.1016/j.mineng.2021.107173_b0055
  article-title: Data-Driven Flotation Industrial Process Operational Optimal Control Based on Reinforcement Learning
  publication-title: IEEE Trans. Ind. Inform.
  doi: 10.1109/TII.2017.2761852
– volume: 52
  start-page: 169
  year: 2013
  ident: 10.1016/j.mineng.2021.107173_b0065
  article-title: Monitoring of mineral processing systems by using textural image analysis
  publication-title: Miner. Eng.
  doi: 10.1016/j.mineng.2013.05.022
– volume: 16
  start-page: 4077
  issue: 6
  year: 2020
  ident: 10.1016/j.mineng.2021.107173_b0140
  article-title: A Similarity-Based Burst Bubble Recognition Using Weighted Normalized Cross Correlation and Chamfer Distance
  publication-title: IEEE Trans. Ind. Inform.
  doi: 10.1109/TII.2019.2960051
– start-page: 2261
  year: 2017
  ident: 10.1016/j.mineng.2021.107173_b0035
  article-title: Densely Connected Convolutional Networks
– ident: 10.1016/j.mineng.2021.107173_b0130
  doi: 10.1109/TII.2020.3046278
– volume: 84
  start-page: 34
  year: 2015
  ident: 10.1016/j.mineng.2021.107173_b0060
  article-title: Soft computing-based modeling of flotation processes - A review
  publication-title: Miner. Eng.
  doi: 10.1016/j.mineng.2015.09.020
– volume: 115
  start-page: 68
  year: 2018
  ident: 10.1016/j.mineng.2021.107173_b0015
  article-title: Froth image analysis by use of transfer learning and convolutional neural networks
  publication-title: Miner. Eng.
  doi: 10.1016/j.mineng.2017.10.005
– volume: 51
  start-page: 839
  issue: 2
  year: 2021
  ident: 10.1016/j.mineng.2021.107173_b0080
  article-title: Illumination-invariant Flotation Froth Color Measuring via Wasserstein Distance-based CycleGAN with Structure-preserving Constraint
  publication-title: IEEE Trans Cybernet.
  doi: 10.1109/TCYB.2020.2977537
– volume: 24
  start-page: 433
  issue: 5
  year: 2011
  ident: 10.1016/j.mineng.2021.107173_b0085
  article-title: Estimation of platinum flotation grades from froth image data
  publication-title: Miner. Eng.
  doi: 10.1016/j.mineng.2010.12.006
SSID ssj0005789
Score 2.4473443
Snippet •An encoder-decoder-based network predicts the zinc tailings grade in advance.•The feature time series of the first rougher is extracted automatically.•The...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 107173
SubjectTerms Encoder-decoder model
Froth video
Grade prediction
Machine vision
Recurrent neural network
Time series
Title Grade prediction of zinc tailings using an encoder-decoder model in froth flotation
URI https://dx.doi.org/10.1016/j.mineng.2021.107173
Volume 172
WOSCitedRecordID wos000702743900005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-9444
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005789
  issn: 0892-6875
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaWLQc4IJ6ivOQDt1VWdbwb28cKFQqqKiQKWk6R40dJtThVdlNV_fUd23ksbVXogUs28sYTy_PFmYxnvkHoPdXzTHvKWZrtqATeeDLhM14kTFtfYMSyIjDe_Dhgh4d8sRBfRyPb5cKcLZlz_PxcnP5XVUMbKNunzt5B3b1QaIBzUDocQe1w_CfFf6ql9tlPfgemMwcvSqcmPlY0FOlsVjEzceJJLLWpE23CbyyL4z0gtgYFTuyy2tio78o-lYGnegWdeybDa97n_WbwCMQW-Kv61ZRd8yJui_ys3LGVg4CDJm4EtXTgrTciJX1cW79oiTTJeKyG0q-wsTpPu0aSsPN_4_IdPQkn098wfnc89TeYDpf_yZZ95S3WxxZ2YWsneZSSeyl5lHIPbaVsLvgYbe1-3lt8GYKBWCiW2I--S7IMkYDXR3OzEbNhmBw9Ro_aLwq8G5HwBI2Me4oebvBMPkPfAibwgAlcWewxgTtM4IAJLB2-ggkcMIFLhwMmcI-J5-j7x72jD_tJW00jUfBZuE6IAkufagYmu9whBVXCiiIzVCth4BGVqiBWcM2U1p7tSlrC-DyTKSms1kpp-gKNXeXMS4Rnc2oYg4kkhZkxYQomuCwEoYxQkmZ8G9FuenLVUs37iifL_DblbKOk73UaqVb-cj3rZj5vzcVoBuYAp1t7vrrjnV6jBwPW36Dxum7MW3Rfna3LVf2uxdIlaeGNng
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Grade+prediction+of+zinc+tailings+using+an+encoder-decoder+model+in+froth+flotation&rft.jtitle=Minerals+engineering&rft.au=Zhang%2C+Hu&rft.au=Tang%2C+Zhaohui&rft.au=Xie%2C+Yongfang&rft.au=Luo%2C+Jin&rft.date=2021-10-01&rft.issn=0892-6875&rft.volume=172&rft.spage=107173&rft_id=info:doi/10.1016%2Fj.mineng.2021.107173&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_mineng_2021_107173
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0892-6875&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0892-6875&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0892-6875&client=summon