Grade prediction of zinc tailings using an encoder-decoder model in froth flotation
•An encoder-decoder-based network predicts the zinc tailings grade in advance.•The feature time series of the first rougher is extracted automatically.•The proposed grade prediction model considers previously measured grades.•The dynamic consistency between the input and output time series is utiliz...
Uloženo v:
| Vydáno v: | Minerals engineering Ročník 172; s. 107173 |
|---|---|
| Hlavní autoři: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Ltd
01.10.2021
|
| Témata: | |
| ISSN: | 0892-6875, 1872-9444 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | •An encoder-decoder-based network predicts the zinc tailings grade in advance.•The feature time series of the first rougher is extracted automatically.•The proposed grade prediction model considers previously measured grades.•The dynamic consistency between the input and output time series is utilized.•The proposed grade prediction model was validated in a zinc flotation process.
Accurate grade prediction is conducive to proper flotation operation or control. Different from grade monitoring, grade prediction needs to obtain the target grade in advance. However, there is usually a time delay between the flotation cell and the predicted grade in froth flotation. This time delay makes it difficult to match the features of the observed flotation cell with the predicted grade. To solve this problem, this article studies the method of zinc tailings grade prediction using encoder-decoder models. The proposed model considers the feature time series of the first rougher and the previously measured tailings grades. First, according to the sample ratio between froth video and X-ray fluorescence (XRF) analyser, the feature time series of the first rougher can be automatically extracted by finding the nearest available feature vectors. Next, the feature time series of the first rougher is fed into the encoder to generate a context vector, and then the context vector and previously measured grades are sent into the decoder to predict the current tailings grade. The proposed model effectively captures the dynamic consistency between the feature time series and previously measured grades. The effectiveness of the proposed model in the froth flotation has been verified by experiments. Compared with the traditional recurrent neural network (RNN)-based models, the root mean squared error (RMSE) and mean absolute percentage error (MAPE) of the proposed model decrease by about 17.8% and 1.9%. respectively, and the R-squared (R2) score of the proposed model increases by about 13.8%. |
|---|---|
| AbstractList | •An encoder-decoder-based network predicts the zinc tailings grade in advance.•The feature time series of the first rougher is extracted automatically.•The proposed grade prediction model considers previously measured grades.•The dynamic consistency between the input and output time series is utilized.•The proposed grade prediction model was validated in a zinc flotation process.
Accurate grade prediction is conducive to proper flotation operation or control. Different from grade monitoring, grade prediction needs to obtain the target grade in advance. However, there is usually a time delay between the flotation cell and the predicted grade in froth flotation. This time delay makes it difficult to match the features of the observed flotation cell with the predicted grade. To solve this problem, this article studies the method of zinc tailings grade prediction using encoder-decoder models. The proposed model considers the feature time series of the first rougher and the previously measured tailings grades. First, according to the sample ratio between froth video and X-ray fluorescence (XRF) analyser, the feature time series of the first rougher can be automatically extracted by finding the nearest available feature vectors. Next, the feature time series of the first rougher is fed into the encoder to generate a context vector, and then the context vector and previously measured grades are sent into the decoder to predict the current tailings grade. The proposed model effectively captures the dynamic consistency between the feature time series and previously measured grades. The effectiveness of the proposed model in the froth flotation has been verified by experiments. Compared with the traditional recurrent neural network (RNN)-based models, the root mean squared error (RMSE) and mean absolute percentage error (MAPE) of the proposed model decrease by about 17.8% and 1.9%. respectively, and the R-squared (R2) score of the proposed model increases by about 13.8%. |
| ArticleNumber | 107173 |
| Author | Xie, Yongfang Gui, Weihua Chen, Qing Tang, Zhaohui Luo, Jin Zhang, Hu |
| Author_xml | – sequence: 1 givenname: Hu surname: Zhang fullname: Zhang, Hu organization: School of Automation, Central South University, Changsha 410083, China – sequence: 2 givenname: Zhaohui surname: Tang fullname: Tang, Zhaohui organization: School of Automation, Central South University, Changsha 410083, China – sequence: 3 givenname: Yongfang surname: Xie fullname: Xie, Yongfang organization: School of Automation, Central South University, Changsha 410083, China – sequence: 4 givenname: Jin surname: Luo fullname: Luo, Jin organization: School of Automation, Central South University, Changsha 410083, China – sequence: 5 givenname: Qing surname: Chen fullname: Chen, Qing email: QingChen_CSU@hotmail.com organization: School of Computer Science, Hunan University of Technology, Zhuzhou 412007, China – sequence: 6 givenname: Weihua surname: Gui fullname: Gui, Weihua organization: School of Automation, Central South University, Changsha 410083, China |
| BookMark | eNqFkMFKAzEQhoNUsK2-gYe8wNZks7vZeBCkaBUKHtRzyE6SmrJNSrIK-vSmXU8e9DI_DHw_M98MTXzwBqFLShaU0OZqu9g5b_xmUZKS5hWnnJ2gKW15WYiqqiZoSlpRFk3L6zM0S2lLCKl5K6boeRWVNngfjXYwuOBxsPjLecCDcr3zm4TfUw6sPDYegjax0OaYeJdnj53HNobhDds-DOpQcY5OreqTufjJOXq9v3tZPhTrp9Xj8nZdACPNUFDgvGKa11QoQjsGwoquMUyDMEwoBR21otUctGactcpS3taNKmlntQbQbI6qsRdiSCkaK_fR7VT8lJTIgxi5laMYeRAjRzEZu_6FgRsPH2L--T_4ZoRNfuzDmSgTuCwm64sGBqmD-7vgG1dThUg |
| CitedBy_id | crossref_primary_10_3390_min14030230 crossref_primary_10_1016_j_inffus_2025_103496 crossref_primary_10_1016_j_mineng_2024_109093 crossref_primary_10_1515_revce_2024_0023 crossref_primary_10_1080_19392699_2025_2532746 crossref_primary_10_1016_j_compeleceng_2025_110251 crossref_primary_10_1016_j_mineng_2023_108457 crossref_primary_10_1007_s00170_024_13384_3 crossref_primary_10_1007_s12666_023_03093_y crossref_primary_10_1016_j_mineng_2023_108179 crossref_primary_10_1109_TCYB_2025_3554475 crossref_primary_10_1016_j_mineng_2023_108000 crossref_primary_10_1016_j_mineng_2025_109424 crossref_primary_10_1016_j_cherd_2024_07_041 crossref_primary_10_1016_j_mineng_2025_109403 crossref_primary_10_1016_j_engappai_2025_110283 crossref_primary_10_1016_j_mineng_2024_108867 crossref_primary_10_1109_TII_2023_3342458 crossref_primary_10_1016_j_aei_2024_102780 crossref_primary_10_1109_TIM_2022_3201935 crossref_primary_10_1016_j_jprocont_2023_103004 crossref_primary_10_1016_j_jprocont_2024_103198 crossref_primary_10_1007_s12613_022_2448_x |
| Cites_doi | 10.1162/neco.1997.9.8.1735 10.1016/j.ifacol.2017.08.1772 10.1016/j.mineng.2014.08.003 10.1016/j.mineng.2018.12.011 10.1016/j.minpro.2014.09.018 10.1016/j.mineng.2016.02.006 10.1016/j.mineng.2012.02.010 10.1016/j.mineng.2020.106332 10.1109/TIE.2016.2613499 10.1016/j.measurement.2019.02.005 10.1016/j.measurement.2017.07.023 10.1016/j.minpro.2017.07.011 10.1016/j.powtec.2018.11.056 10.1016/j.mineng.2020.106677 10.1016/j.mineng.2018.12.004 10.1109/TII.2017.2761852 10.1016/j.mineng.2013.05.022 10.1109/TII.2019.2960051 10.1109/TII.2020.3046278 10.1016/j.mineng.2015.09.020 10.1016/j.mineng.2017.10.005 10.1109/TCYB.2020.2977537 10.1016/j.mineng.2010.12.006 |
| ContentType | Journal Article |
| Copyright | 2021 Elsevier Ltd |
| Copyright_xml | – notice: 2021 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.mineng.2021.107173 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1872-9444 |
| ExternalDocumentID | 10_1016_j_mineng_2021_107173 S0892687521004027 |
| GroupedDBID | --K --M .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABJNI ABMAC ABNUV ABQEM ABQYD ABYKQ ACDAQ ACGFS ACLVX ACRLP ACSBN ADBBV ADEWK ADEZE AEBSH AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHPOS AIEXJ AIKHN AITUG AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ATOGT AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG ENUVR EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE IMUCA J1W KOM LY3 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SES SPC SPCBC SSE SSG SSZ T5K ~02 ~G- 29M 9DU AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABWVN ABXDB ACLOT ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB G-2 HMA HVGLF HZ~ R2- SEP SET SEW WUQ XPP ZMT ~HD |
| ID | FETCH-LOGICAL-c306t-1c7743d7519a01b3c9f9b6e3dc9e39aacb1f98d7cdd3738af17856a21bfddccd3 |
| ISICitedReferencesCount | 25 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000702743900005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0892-6875 |
| IngestDate | Tue Nov 18 22:28:00 EST 2025 Sat Nov 29 07:20:09 EST 2025 Fri Feb 23 02:43:55 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Encoder-decoder model Machine vision Recurrent neural network Grade prediction Froth video Time series |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c306t-1c7743d7519a01b3c9f9b6e3dc9e39aacb1f98d7cdd3738af17856a21bfddccd3 |
| ParticipantIDs | crossref_primary_10_1016_j_mineng_2021_107173 crossref_citationtrail_10_1016_j_mineng_2021_107173 elsevier_sciencedirect_doi_10_1016_j_mineng_2021_107173 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-10-01 2021-10-00 |
| PublicationDateYYYYMMDD | 2021-10-01 |
| PublicationDate_xml | – month: 10 year: 2021 text: 2021-10-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Minerals engineering |
| PublicationYear | 2021 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Huang, Liu, van der Maaten, Weinberger (b0035) 2017 Mehrabi, Mehrshad, Massinaei (b0100) 2014; 133 Zhang, Tang, Xie, Gao, Chen, Gui (b0140) 2020; 16 McCoy, Auret (b0095) 2019; 132 Zhang, Tang, Xie, Gao, Chen (b0135) 2019; 138 Tan, Liang, Peng, Xie (b0120) 2016; 92 Jahedsaravani, Marhaban, Massinaei (b0040) 2014; 69 Hochreiter, Schmidhuber (b0030) 1997; 9 Xie, Wu, Xu, Yang, Gui (b0125) 2017; 64 He, Zhang, Ren, Sun (b0025) 2016 Sutskever, I., Vinyals, O., Le, Q.V., 2014. Sequence to sequence learning with neural networks. arXiv preprint arXiv:1409.3215. Morar, Harris, Bradshaw (b0105) 2012; 36-38 Chung, J., Gulcehre, C., Cho, K., Bengio, Y., 2014. Empirical evaluation of gated recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555. Massinaei, Jahedsaravani, Taheri, Khalilpour (b0090) 2019; 343 Fu, Aldrich (b0015) 2018; 115 Fu, Aldrich (b0020) 2019; 132 Jiang, Fan, Chai, Li, Lewis (b0055) 2018; 14 Jahedsaravani, Massinaei, Marhaban (b0050) 2017; 111 Zhang, Tang, Xie, Gao, Chen, Gui (b0145) 2021; 160 Krizhevsky, Sutskever, Hinton (b0070) 2012; 25 Liu, He, Xie, Gui, Tang, Ma, He, Niyoyita (b0080) 2021; 51 Pal (b0110) 2017 Zhang, Tang, Xie, Ai, Gui (b0150) 2020; 151 Brooks, Koorts (b0005) 2017; 50 Zhang, H., Tang, Z., Xie, Y., Chen, Q., Gao, X., Gui, W., 2020a. FR-R net: A Light-weight deep neural network for performance monitoring in the froth flotation. IEEE Trans. Ind. Inform. 10.1109/TII.2020.3046278. Liu, Gui, Tang (b0075) 2013; 21 Jahedsaravani, Massinaei, Marhaban (b0045) 2017; 167 Kistner, Jemwa, Aldrich (b0065) 2013; 52 Marais, Aldrich (b0085) 2011; 24 Jovanović, Miljanović, Jovanović (b0060) 2015; 84 Pal (10.1016/j.mineng.2021.107173_b0110) 2017 10.1016/j.mineng.2021.107173_b0115 Hochreiter (10.1016/j.mineng.2021.107173_b0030) 1997; 9 Zhang (10.1016/j.mineng.2021.107173_b0135) 2019; 138 He (10.1016/j.mineng.2021.107173_b0025) 2016 Jahedsaravani (10.1016/j.mineng.2021.107173_b0050) 2017; 111 Xie (10.1016/j.mineng.2021.107173_b0125) 2017; 64 10.1016/j.mineng.2021.107173_b0130 10.1016/j.mineng.2021.107173_b0010 Massinaei (10.1016/j.mineng.2021.107173_b0090) 2019; 343 Zhang (10.1016/j.mineng.2021.107173_b0140) 2020; 16 Kistner (10.1016/j.mineng.2021.107173_b0065) 2013; 52 Liu (10.1016/j.mineng.2021.107173_b0075) 2013; 21 Mehrabi (10.1016/j.mineng.2021.107173_b0100) 2014; 133 Zhang (10.1016/j.mineng.2021.107173_b0145) 2021; 160 Jiang (10.1016/j.mineng.2021.107173_b0055) 2018; 14 Jahedsaravani (10.1016/j.mineng.2021.107173_b0045) 2017; 167 Marais (10.1016/j.mineng.2021.107173_b0085) 2011; 24 Jovanović (10.1016/j.mineng.2021.107173_b0060) 2015; 84 Jahedsaravani (10.1016/j.mineng.2021.107173_b0040) 2014; 69 Zhang (10.1016/j.mineng.2021.107173_b0150) 2020; 151 Krizhevsky (10.1016/j.mineng.2021.107173_b0070) 2012; 25 McCoy (10.1016/j.mineng.2021.107173_b0095) 2019; 132 Morar (10.1016/j.mineng.2021.107173_b0105) 2012; 36-38 Liu (10.1016/j.mineng.2021.107173_b0080) 2021; 51 Fu (10.1016/j.mineng.2021.107173_b0020) 2019; 132 Tan (10.1016/j.mineng.2021.107173_b0120) 2016; 92 Fu (10.1016/j.mineng.2021.107173_b0015) 2018; 115 Brooks (10.1016/j.mineng.2021.107173_b0005) 2017; 50 Huang (10.1016/j.mineng.2021.107173_b0035) 2017 |
| References_xml | – volume: 343 start-page: 330 year: 2019 end-page: 341 ident: b0090 article-title: Machine vision based monitoring and analysis of a coal column flotation circuit publication-title: Powder Technol. – volume: 132 start-page: 95 year: 2019 end-page: 109 ident: b0095 article-title: Machine learning applications in minerals processing: A review publication-title: Miner. Eng. – volume: 14 start-page: 1974 year: 2018 end-page: 1989 ident: b0055 article-title: Data-Driven Flotation Industrial Process Operational Optimal Control Based on Reinforcement Learning publication-title: IEEE Trans. Ind. Inform. – volume: 16 start-page: 4077 year: 2020 end-page: 4089 ident: b0140 article-title: A Similarity-Based Burst Bubble Recognition Using Weighted Normalized Cross Correlation and Chamfer Distance publication-title: IEEE Trans. Ind. Inform. – reference: Sutskever, I., Vinyals, O., Le, Q.V., 2014. Sequence to sequence learning with neural networks. arXiv preprint arXiv:1409.3215. – volume: 64 start-page: 4199 year: 2017 end-page: 4206 ident: b0125 article-title: Reagent Addition Control for Stibium Rougher Flotation Based on Sensitive Froth Image Features publication-title: IEEE Trans. Ind. Electron. – volume: 138 start-page: 182 year: 2019 end-page: 193 ident: b0135 article-title: A watershed segmentation algorithm based on an optimal marker for bubble size measurement publication-title: Measurement – volume: 84 start-page: 34 year: 2015 end-page: 63 ident: b0060 article-title: Soft computing-based modeling of flotation processes - A review publication-title: Miner. Eng. – start-page: 83 year: 2017 end-page: 103 ident: b0110 article-title: Predictive modeling of drug sensitivity – volume: 92 start-page: 9 year: 2016 end-page: 20 ident: b0120 article-title: The concentrate ash content analysis of coal flotation based on froth images publication-title: Miner. Eng. – volume: 21 start-page: 2378 year: 2013 end-page: 2396 ident: b0075 article-title: Flow velocity measurement and analysis based on froth image SIFT features and Kalman filter for froth flotation publication-title: Turk. J. Electr. Eng. Co. – volume: 24 start-page: 433 year: 2011 end-page: 441 ident: b0085 article-title: Estimation of platinum flotation grades from froth image data publication-title: Miner. Eng. – volume: 151 start-page: 106332 year: 2020 ident: b0150 article-title: Convolutional memory network-based flotation performance monitoring publication-title: Miner. Eng. – volume: 36-38 start-page: 31 year: 2012 end-page: 36 ident: b0105 article-title: The use of machine vision to predict flotation performance publication-title: Miner. Eng. – volume: 132 start-page: 183 year: 2019 end-page: 190 ident: b0020 article-title: Flotation froth image recognition with convolutional neural networks publication-title: Miner. Eng. – volume: 9 start-page: 1735 year: 1997 end-page: 1780 ident: b0030 article-title: Long Short-Term Memory publication-title: Neural Comput. – reference: Zhang, H., Tang, Z., Xie, Y., Chen, Q., Gao, X., Gui, W., 2020a. FR-R net: A Light-weight deep neural network for performance monitoring in the froth flotation. IEEE Trans. Ind. Inform. 10.1109/TII.2020.3046278. – volume: 115 start-page: 68 year: 2018 end-page: 78 ident: b0015 article-title: Froth image analysis by use of transfer learning and convolutional neural networks publication-title: Miner. Eng. – reference: Chung, J., Gulcehre, C., Cho, K., Bengio, Y., 2014. Empirical evaluation of gated recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555. – volume: 52 start-page: 169 year: 2013 end-page: 177 ident: b0065 article-title: Monitoring of mineral processing systems by using textural image analysis publication-title: Miner. Eng. – volume: 69 start-page: 137 year: 2014 end-page: 145 ident: b0040 article-title: Prediction of the metallurgical performances of a batch flotation system by image analysis and neural networks publication-title: Miner. Eng. – volume: 51 start-page: 839 year: 2021 end-page: 852 ident: b0080 article-title: Illumination-invariant Flotation Froth Color Measuring via Wasserstein Distance-based CycleGAN with Structure-preserving Constraint publication-title: IEEE Trans Cybernet. – start-page: 770 year: 2016 end-page: 778 ident: b0025 article-title: Deep Residual Learning for Image Recognition publication-title: In 2016 IEEE Conference on Computer Vision and Pattern Recognition – volume: 167 start-page: 16 year: 2017 end-page: 26 ident: b0045 article-title: Development of a machine vision system for real-time monitoring and control of batch flotation process publication-title: Int. J. Miner. Process. – volume: 25 year: 2012 ident: b0070 article-title: ImageNet Classification with Deep Convolutional Neural Networks publication-title: Adv. Neural Info. Process. Syst. – volume: 160 start-page: 106677 year: 2021 ident: b0145 article-title: Long short-term memory-based grade monitoring in froth flotation using a froth video sequence publication-title: Miner. Eng. – volume: 111 start-page: 29 year: 2017 end-page: 37 ident: b0050 article-title: An image segmentation algorithm for measurement of flotation froth bubble size distributions publication-title: Measurement. – volume: 133 start-page: 60 year: 2014 end-page: 66 ident: b0100 article-title: Machine vision based monitoring of an industrial flotation cell in an iron flotation plant publication-title: Int. J. Miner. Process. – volume: 50 start-page: 10214 year: 2017 end-page: 10219 ident: b0005 article-title: Model Predictive Control of a Zinc Flotation Bank Using Online X-ray Fluorescence Analysers publication-title: Ifac-PapersonLine – start-page: 2261 year: 2017 end-page: 2269 ident: b0035 article-title: Densely Connected Convolutional Networks publication-title: In 30th IEEE Conference on Computer Vision and Pattern Recognition – ident: 10.1016/j.mineng.2021.107173_b0115 – volume: 9 start-page: 1735 issue: 8 year: 1997 ident: 10.1016/j.mineng.2021.107173_b0030 article-title: Long Short-Term Memory publication-title: Neural Comput. doi: 10.1162/neco.1997.9.8.1735 – volume: 50 start-page: 10214 issue: 1 year: 2017 ident: 10.1016/j.mineng.2021.107173_b0005 article-title: Model Predictive Control of a Zinc Flotation Bank Using Online X-ray Fluorescence Analysers publication-title: Ifac-PapersonLine doi: 10.1016/j.ifacol.2017.08.1772 – volume: 69 start-page: 137 year: 2014 ident: 10.1016/j.mineng.2021.107173_b0040 article-title: Prediction of the metallurgical performances of a batch flotation system by image analysis and neural networks publication-title: Miner. Eng. doi: 10.1016/j.mineng.2014.08.003 – volume: 132 start-page: 183 year: 2019 ident: 10.1016/j.mineng.2021.107173_b0020 article-title: Flotation froth image recognition with convolutional neural networks publication-title: Miner. Eng. doi: 10.1016/j.mineng.2018.12.011 – volume: 133 start-page: 60 year: 2014 ident: 10.1016/j.mineng.2021.107173_b0100 article-title: Machine vision based monitoring of an industrial flotation cell in an iron flotation plant publication-title: Int. J. Miner. Process. doi: 10.1016/j.minpro.2014.09.018 – ident: 10.1016/j.mineng.2021.107173_b0010 – volume: 92 start-page: 9 year: 2016 ident: 10.1016/j.mineng.2021.107173_b0120 article-title: The concentrate ash content analysis of coal flotation based on froth images publication-title: Miner. Eng. doi: 10.1016/j.mineng.2016.02.006 – volume: 36-38 start-page: 31 year: 2012 ident: 10.1016/j.mineng.2021.107173_b0105 article-title: The use of machine vision to predict flotation performance publication-title: Miner. Eng. doi: 10.1016/j.mineng.2012.02.010 – volume: 151 start-page: 106332 year: 2020 ident: 10.1016/j.mineng.2021.107173_b0150 article-title: Convolutional memory network-based flotation performance monitoring publication-title: Miner. Eng. doi: 10.1016/j.mineng.2020.106332 – volume: 64 start-page: 4199 issue: 5 year: 2017 ident: 10.1016/j.mineng.2021.107173_b0125 article-title: Reagent Addition Control for Stibium Rougher Flotation Based on Sensitive Froth Image Features publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2016.2613499 – volume: 138 start-page: 182 year: 2019 ident: 10.1016/j.mineng.2021.107173_b0135 article-title: A watershed segmentation algorithm based on an optimal marker for bubble size measurement publication-title: Measurement doi: 10.1016/j.measurement.2019.02.005 – start-page: 770 year: 2016 ident: 10.1016/j.mineng.2021.107173_b0025 article-title: Deep Residual Learning for Image Recognition – volume: 21 start-page: 2378 year: 2013 ident: 10.1016/j.mineng.2021.107173_b0075 article-title: Flow velocity measurement and analysis based on froth image SIFT features and Kalman filter for froth flotation publication-title: Turk. J. Electr. Eng. Co. – volume: 111 start-page: 29 year: 2017 ident: 10.1016/j.mineng.2021.107173_b0050 article-title: An image segmentation algorithm for measurement of flotation froth bubble size distributions publication-title: Measurement. doi: 10.1016/j.measurement.2017.07.023 – volume: 25 issue: 2 year: 2012 ident: 10.1016/j.mineng.2021.107173_b0070 article-title: ImageNet Classification with Deep Convolutional Neural Networks publication-title: Adv. Neural Info. Process. Syst. – volume: 167 start-page: 16 year: 2017 ident: 10.1016/j.mineng.2021.107173_b0045 article-title: Development of a machine vision system for real-time monitoring and control of batch flotation process publication-title: Int. J. Miner. Process. doi: 10.1016/j.minpro.2017.07.011 – volume: 343 start-page: 330 year: 2019 ident: 10.1016/j.mineng.2021.107173_b0090 article-title: Machine vision based monitoring and analysis of a coal column flotation circuit publication-title: Powder Technol. doi: 10.1016/j.powtec.2018.11.056 – start-page: 83 year: 2017 ident: 10.1016/j.mineng.2021.107173_b0110 – volume: 160 start-page: 106677 year: 2021 ident: 10.1016/j.mineng.2021.107173_b0145 article-title: Long short-term memory-based grade monitoring in froth flotation using a froth video sequence publication-title: Miner. Eng. doi: 10.1016/j.mineng.2020.106677 – volume: 132 start-page: 95 year: 2019 ident: 10.1016/j.mineng.2021.107173_b0095 article-title: Machine learning applications in minerals processing: A review publication-title: Miner. Eng. doi: 10.1016/j.mineng.2018.12.004 – volume: 14 start-page: 1974 issue: 5 year: 2018 ident: 10.1016/j.mineng.2021.107173_b0055 article-title: Data-Driven Flotation Industrial Process Operational Optimal Control Based on Reinforcement Learning publication-title: IEEE Trans. Ind. Inform. doi: 10.1109/TII.2017.2761852 – volume: 52 start-page: 169 year: 2013 ident: 10.1016/j.mineng.2021.107173_b0065 article-title: Monitoring of mineral processing systems by using textural image analysis publication-title: Miner. Eng. doi: 10.1016/j.mineng.2013.05.022 – volume: 16 start-page: 4077 issue: 6 year: 2020 ident: 10.1016/j.mineng.2021.107173_b0140 article-title: A Similarity-Based Burst Bubble Recognition Using Weighted Normalized Cross Correlation and Chamfer Distance publication-title: IEEE Trans. Ind. Inform. doi: 10.1109/TII.2019.2960051 – start-page: 2261 year: 2017 ident: 10.1016/j.mineng.2021.107173_b0035 article-title: Densely Connected Convolutional Networks – ident: 10.1016/j.mineng.2021.107173_b0130 doi: 10.1109/TII.2020.3046278 – volume: 84 start-page: 34 year: 2015 ident: 10.1016/j.mineng.2021.107173_b0060 article-title: Soft computing-based modeling of flotation processes - A review publication-title: Miner. Eng. doi: 10.1016/j.mineng.2015.09.020 – volume: 115 start-page: 68 year: 2018 ident: 10.1016/j.mineng.2021.107173_b0015 article-title: Froth image analysis by use of transfer learning and convolutional neural networks publication-title: Miner. Eng. doi: 10.1016/j.mineng.2017.10.005 – volume: 51 start-page: 839 issue: 2 year: 2021 ident: 10.1016/j.mineng.2021.107173_b0080 article-title: Illumination-invariant Flotation Froth Color Measuring via Wasserstein Distance-based CycleGAN with Structure-preserving Constraint publication-title: IEEE Trans Cybernet. doi: 10.1109/TCYB.2020.2977537 – volume: 24 start-page: 433 issue: 5 year: 2011 ident: 10.1016/j.mineng.2021.107173_b0085 article-title: Estimation of platinum flotation grades from froth image data publication-title: Miner. Eng. doi: 10.1016/j.mineng.2010.12.006 |
| SSID | ssj0005789 |
| Score | 2.4473443 |
| Snippet | •An encoder-decoder-based network predicts the zinc tailings grade in advance.•The feature time series of the first rougher is extracted automatically.•The... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 107173 |
| SubjectTerms | Encoder-decoder model Froth video Grade prediction Machine vision Recurrent neural network Time series |
| Title | Grade prediction of zinc tailings using an encoder-decoder model in froth flotation |
| URI | https://dx.doi.org/10.1016/j.mineng.2021.107173 |
| Volume | 172 |
| WOSCitedRecordID | wos000702743900005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1872-9444 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005789 issn: 0892-6875 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaWLQc4IJ6ivOQDt1VWdbwb28cKFQqqKiQKWk6R40dJtThVdlNV_fUd23ksbVXogUs28sYTy_PFmYxnvkHoPdXzTHvKWZrtqATeeDLhM14kTFtfYMSyIjDe_Dhgh4d8sRBfRyPb5cKcLZlz_PxcnP5XVUMbKNunzt5B3b1QaIBzUDocQe1w_CfFf6ql9tlPfgemMwcvSqcmPlY0FOlsVjEzceJJLLWpE23CbyyL4z0gtgYFTuyy2tio78o-lYGnegWdeybDa97n_WbwCMQW-Kv61ZRd8yJui_ys3LGVg4CDJm4EtXTgrTciJX1cW79oiTTJeKyG0q-wsTpPu0aSsPN_4_IdPQkn098wfnc89TeYDpf_yZZ95S3WxxZ2YWsneZSSeyl5lHIPbaVsLvgYbe1-3lt8GYKBWCiW2I--S7IMkYDXR3OzEbNhmBw9Ro_aLwq8G5HwBI2Me4oebvBMPkPfAibwgAlcWewxgTtM4IAJLB2-ggkcMIFLhwMmcI-J5-j7x72jD_tJW00jUfBZuE6IAkufagYmu9whBVXCiiIzVCth4BGVqiBWcM2U1p7tSlrC-DyTKSms1kpp-gKNXeXMS4Rnc2oYg4kkhZkxYQomuCwEoYxQkmZ8G9FuenLVUs37iifL_DblbKOk73UaqVb-cj3rZj5vzcVoBuYAp1t7vrrjnV6jBwPW36Dxum7MW3Rfna3LVf2uxdIlaeGNng |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Grade+prediction+of+zinc+tailings+using+an+encoder-decoder+model+in+froth+flotation&rft.jtitle=Minerals+engineering&rft.au=Zhang%2C+Hu&rft.au=Tang%2C+Zhaohui&rft.au=Xie%2C+Yongfang&rft.au=Luo%2C+Jin&rft.date=2021-10-01&rft.issn=0892-6875&rft.volume=172&rft.spage=107173&rft_id=info:doi/10.1016%2Fj.mineng.2021.107173&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_mineng_2021_107173 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0892-6875&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0892-6875&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0892-6875&client=summon |