A novel reinforcement learning algorithm for virtual network embedding
Network virtualization enables the share of a physical network among multiple virtual networks. Virtual network embedding determines the effectiveness of utilization of network resources. Traditional heuristic mapping algorithms follow static procedures, thus cannot be optimized automatically, leadi...
Uloženo v:
| Vydáno v: | Neurocomputing (Amsterdam) Ročník 284; s. 1 - 9 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier B.V
05.04.2018
|
| Témata: | |
| ISSN: | 0925-2312, 1872-8286 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Network virtualization enables the share of a physical network among multiple virtual networks. Virtual network embedding determines the effectiveness of utilization of network resources. Traditional heuristic mapping algorithms follow static procedures, thus cannot be optimized automatically, leading to sub-optimal ranking and embedding decisions. To solve this problem, we introduce a reinforcement learning method to virtual network embedding. In this paper, we design and implement a policy network based on reinforcement learning to make node mapping decisions. We use policy gradient to achieve optimization automatically by training the policy network with the historical data based on virtual network requests. To the best of our knowledge, this work is the first to utilize historical requests data to optimize network embedding automatically. The performance of the proposed embedding algorithm is evaluated in comparison with two other algorithms which use artificial rules based on node ranking. Simulation results show that our reinforcement learning is able to learn from historical requests and outperforms the other two embedding algorithms. |
|---|---|
| AbstractList | Network virtualization enables the share of a physical network among multiple virtual networks. Virtual network embedding determines the effectiveness of utilization of network resources. Traditional heuristic mapping algorithms follow static procedures, thus cannot be optimized automatically, leading to sub-optimal ranking and embedding decisions. To solve this problem, we introduce a reinforcement learning method to virtual network embedding. In this paper, we design and implement a policy network based on reinforcement learning to make node mapping decisions. We use policy gradient to achieve optimization automatically by training the policy network with the historical data based on virtual network requests. To the best of our knowledge, this work is the first to utilize historical requests data to optimize network embedding automatically. The performance of the proposed embedding algorithm is evaluated in comparison with two other algorithms which use artificial rules based on node ranking. Simulation results show that our reinforcement learning is able to learn from historical requests and outperforms the other two embedding algorithms. |
| Author | Li, Maozhen Zhang, Peiying Chen, Xu Yao, Haipeng Wang, Luyao |
| Author_xml | – sequence: 1 givenname: Haipeng orcidid: 0000-0003-1391-7363 surname: Yao fullname: Yao, Haipeng email: yaohaipeng@bupt.edu.cn organization: State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecom, Beijing, P.R. China – sequence: 2 givenname: Xu surname: Chen fullname: Chen, Xu organization: State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecom, Beijing, P.R. China – sequence: 3 givenname: Maozhen surname: Li fullname: Li, Maozhen organization: Department of Electronic and Computer Engineering, Brunel University London, Uxbridge UB8 3PH, UK – sequence: 4 givenname: Peiying surname: Zhang fullname: Zhang, Peiying organization: State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecom, Beijing, P.R. China – sequence: 5 givenname: Luyao surname: Wang fullname: Wang, Luyao organization: Beijing Advanced Innovation Center for Future Internet Technology, Beijing University of Technology, Beijing, P.R. China |
| BookMark | eNqFkMFKAzEURYNUsK3-gYv8wIx5SSeTuhBKsSoU3Og6pMmbmjqTSCat-PdOqSsXunqL-86FeyZkFGJAQq6BlcBA3uzKgHsbu5IzUCWDkvHqjIxB1bxQXMkRGbM5rwougF-QSd_vGIMa-HxMVgsa4gFbmtCHJiaLHYZMWzQp-LClpt3G5PNbR4eQHnzKe9PSgPkzpneK3QadG_4uyXlj2h6vfu6UvK7uX5aPxfr54Wm5WBdWMJkLsFwpMBV3ygFvFK8rKbi1wJyVuJkZmAlpJROuGYYB3zAra5wbMIYhVEJMyezUa1Ps-4SN_ki-M-lLA9NHF3qnTy700YVmoAcXA3b7C7M-m-xjyMn49j_47gTjMOzgMeneegwWnU9os3bR_13wDSCUf9g |
| CitedBy_id | crossref_primary_10_1002_ett_3692 crossref_primary_10_1109_JSAC_2020_2986662 crossref_primary_10_1109_TNSM_2019_2947905 crossref_primary_10_1007_s11276_023_03293_w crossref_primary_10_1016_j_comnet_2022_109366 crossref_primary_10_1109_JLT_2023_3261068 crossref_primary_10_1109_TNSM_2024_3438438 crossref_primary_10_1016_j_adhoc_2024_103575 crossref_primary_10_1109_MCOMSTD_001_2000026 crossref_primary_10_1093_comjnl_bxab040 crossref_primary_10_1109_TVT_2020_3035341 crossref_primary_10_1109_ACCESS_2020_3027432 crossref_primary_10_1038_s41598_023_47195_5 crossref_primary_10_1109_JSTSP_2021_3136027 crossref_primary_10_1109_JIOT_2024_3356750 crossref_primary_10_1016_j_comnet_2021_108191 crossref_primary_10_1049_trit_2019_0036 crossref_primary_10_1109_JIOT_2023_3319542 crossref_primary_10_1016_j_future_2022_05_008 crossref_primary_10_1109_ACCESS_2020_2983264 crossref_primary_10_1109_TETC_2018_2871549 crossref_primary_10_1109_TNSM_2020_3012588 crossref_primary_10_1109_JIOT_2022_3222200 crossref_primary_10_1109_TNSE_2020_2972602 crossref_primary_10_1016_j_future_2023_05_025 crossref_primary_10_1109_ACCESS_2023_3251698 crossref_primary_10_1109_TNSM_2022_3181517 crossref_primary_10_1007_s10922_022_09657_5 crossref_primary_10_1007_s11107_025_01033_y crossref_primary_10_1007_s12243_020_00772_5 crossref_primary_10_1109_JIOT_2022_3229270 crossref_primary_10_1007_s11036_020_01714_0 crossref_primary_10_1007_s00521_020_05372_x crossref_primary_10_1016_j_ins_2024_121664 crossref_primary_10_1109_TVT_2024_3440385 crossref_primary_10_1016_j_comnet_2023_110139 crossref_primary_10_1016_j_icte_2023_03_007 crossref_primary_10_1109_TII_2019_2936074 crossref_primary_10_1109_TSC_2024_3417241 crossref_primary_10_1109_JIOT_2023_3293497 crossref_primary_10_3390_electronics12153330 crossref_primary_10_1016_j_future_2023_09_018 crossref_primary_10_4018_IJCAC_2018100103 crossref_primary_10_1109_JSAC_2019_2906744 crossref_primary_10_1109_TNSM_2022_3199471 crossref_primary_10_1155_2019_8416592 crossref_primary_10_1109_ACCESS_2021_3100283 crossref_primary_10_1109_TNSM_2020_2971543 crossref_primary_10_1109_TNSE_2022_3189546 crossref_primary_10_1007_s10922_022_09673_5 crossref_primary_10_1109_TNSM_2021_3120297 crossref_primary_10_1109_JIOT_2019_2950393 crossref_primary_10_1109_TNSM_2021_3132103 crossref_primary_10_3390_electronics13193843 crossref_primary_10_1109_JIOT_2022_3222911 crossref_primary_10_1109_TITS_2022_3209899 crossref_primary_10_1109_TVT_2020_2986769 crossref_primary_10_1109_TPDS_2021_3075296 crossref_primary_10_1109_TNSE_2020_2995863 crossref_primary_10_1016_j_csi_2019_04_010 crossref_primary_10_1109_COMST_2024_3424533 crossref_primary_10_1002_nem_2212 crossref_primary_10_1016_j_jnca_2019_06_003 crossref_primary_10_1109_ACCESS_2024_3424474 crossref_primary_10_1002_cpe_6020 crossref_primary_10_1007_s10922_022_09654_8 crossref_primary_10_1016_j_jnca_2023_103736 crossref_primary_10_1109_JIOT_2021_3095094 crossref_primary_10_1016_j_jnca_2022_103437 crossref_primary_10_1364_JOCN_478944 crossref_primary_10_1016_j_comcom_2022_05_015 crossref_primary_10_1007_s10922_019_09500_4 crossref_primary_10_1109_MCI_2019_2937609 crossref_primary_10_1016_j_neucom_2019_03_036 crossref_primary_10_1093_comjnl_bxad050 crossref_primary_10_1016_j_comnet_2025_111529 crossref_primary_10_1109_JSAC_2020_2986663 crossref_primary_10_1109_TSC_2023_3237244 crossref_primary_10_1109_ACCESS_2022_3221740 crossref_primary_10_1109_TSC_2024_3357707 |
| Cites_doi | 10.1145/1971162.1971168 10.1109/JLT.2014.2380777 10.1016/j.comnet.2009.10.017 10.1038/nature14236 10.1109/MCOM.2013.6658648 10.1016/j.comnet.2015.08.011 10.1109/INFCOM.2009.5061987 10.1109/COMST.2014.2352118 10.1109/SURV.2013.013013.00155 10.1038/nature16961 10.1109/MIC.2012.144 10.1016/j.comnet.2014.12.006 10.1016/j.eswa.2014.08.058 10.1109/MCOM.2009.5183468 10.1145/1355734.1355737 10.1016/j.ipl.2010.02.001 |
| ContentType | Journal Article |
| Copyright | 2018 Elsevier B.V. |
| Copyright_xml | – notice: 2018 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.neucom.2018.01.025 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1872-8286 |
| EndPage | 9 |
| ExternalDocumentID | 10_1016_j_neucom_2018_01_025 S0925231218300420 |
| GroupedDBID | --- --K --M .DC .~1 0R~ 123 1B1 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JM 9JN AABNK AACTN AADPK AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXLA AAXUO AAYFN ABBOA ABCQJ ABFNM ABJNI ABMAC ABYKQ ACDAQ ACGFS ACRLP ACZNC ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGWIK AGYEJ AHHHB AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ IHE J1W KOM LG9 M41 MO0 MOBAO N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SDP SES SPC SPCBC SSN SSV SSZ T5K ZMT ~G- 29N 9DU AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS FEDTE FGOYB HLZ HVGLF HZ~ R2- SBC SEW WUQ XPP ~HD |
| ID | FETCH-LOGICAL-c306t-1c2881a52d8d12f8275632cc10dc6eb4a1436c603df10112b0c67e9a1aa0e1533 |
| ISICitedReferencesCount | 113 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000425883300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0925-2312 |
| IngestDate | Sat Nov 29 03:02:54 EST 2025 Tue Nov 18 21:49:46 EST 2025 Fri Feb 23 02:30:26 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Policy gradient Policy network Reinforcement learning Virtual network embedding |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c306t-1c2881a52d8d12f8275632cc10dc6eb4a1436c603df10112b0c67e9a1aa0e1533 |
| ORCID | 0000-0003-1391-7363 |
| PageCount | 9 |
| ParticipantIDs | crossref_primary_10_1016_j_neucom_2018_01_025 crossref_citationtrail_10_1016_j_neucom_2018_01_025 elsevier_sciencedirect_doi_10_1016_j_neucom_2018_01_025 |
| PublicationCentury | 2000 |
| PublicationDate | 2018-04-05 |
| PublicationDateYYYYMMDD | 2018-04-05 |
| PublicationDate_xml | – month: 04 year: 2018 text: 2018-04-05 day: 05 |
| PublicationDecade | 2010 |
| PublicationTitle | Neurocomputing (Amsterdam) |
| PublicationYear | 2018 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Houidi, Louati, Zeghlache (bib0017) 2008 Cheng, Su, Zhang, Wang, Yang, Luo, Wang (bib0009) 2011; 41 Razzaq, Rathore (bib0015) 2010 Chowdhury, Rahman, Boutaba (bib0010) 2009; vol. 20 Liang, Yu (bib0004) 2015; 17 Chowdhury, Boutaba (bib0005) 2009; 47 Mozer, Collins, Hasselmo (bib0014) 1992; 8 Hougardy (bib0024) 2010; 110 Thomas, Zegura (bib0025) 1994; 63 Chowdhury, Boutaba (bib0006) 2010; 54 Bottou (bib0027) 1998 Page (bib0016) 1998; vol. 9 Fischer, Botero, Beck, Meer, Hesselbach (bib0003) 2013; 15 Haeri, Trajkovic (bib0020) 2017; 48 Jain, Paul (bib0002) 2013; 51 Silver, Huang, Maddison, Guez, Sifre, Van Den Driessche, Schrittwieser, Antonoglou, Panneershelvam, Lanctot (bib0012) 2016; 529 Shanbhag, Kandoor, Wang, Mettu, Wolf (bib0011) 2015; 77 Melo, Sargento, Killat, Timm-Giel, Carapinha (bib0019) 2015; 91 M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G.S. Corrado, A. Davis, J. Dean, M. Devin, et al., Tensorflow: large-scale machine learning on heterogeneous distributed systems, arXiv preprint Mijumbi, Gorricho, Serrat, Shen, Xu, Yang (bib0022) 2015; 42 Drutskoy, Keller, Rexford (bib0001) 2013; 17 Yu, Yi, Rexford, Chiang (bib0008) 2008; 38 Zhu, Ammar (bib0007) 2007 Elmirghani, Nonde, Elgorashi (bib0018) 2015; 33 Mijumbi, Gorricho, Serrat, Claeys, Turck, Latre (bib0021) 2014 Mijumbi, Gorricho, Serrat, Claeys, Famaey, Turck (bib0023) 2014 (2016). Mnih, Kavukcuoglu, Silver, Rusu, Veness, Bellemare, Graves, Riedmiller, Fidjeland, Ostrovski (bib0013) 2015; 518 Mozer (10.1016/j.neucom.2018.01.025_bib0014) 1992; 8 Haeri (10.1016/j.neucom.2018.01.025_bib0020) 2017; 48 Zhu (10.1016/j.neucom.2018.01.025_bib0007) 2007 Cheng (10.1016/j.neucom.2018.01.025_bib0009) 2011; 41 Chowdhury (10.1016/j.neucom.2018.01.025_bib0010) 2009; vol. 20 Drutskoy (10.1016/j.neucom.2018.01.025_bib0001) 2013; 17 Bottou (10.1016/j.neucom.2018.01.025_sbref0026) 1998 Liang (10.1016/j.neucom.2018.01.025_bib0004) 2015; 17 Fischer (10.1016/j.neucom.2018.01.025_bib0003) 2013; 15 Page (10.1016/j.neucom.2018.01.025_bib0016) 1998; vol. 9 Chowdhury (10.1016/j.neucom.2018.01.025_bib0006) 2010; 54 Elmirghani (10.1016/j.neucom.2018.01.025_bib0018) 2015; 33 Mijumbi (10.1016/j.neucom.2018.01.025_bib0022) 2015; 42 Silver (10.1016/j.neucom.2018.01.025_bib0012) 2016; 529 Hougardy (10.1016/j.neucom.2018.01.025_bib0024) 2010; 110 Mnih (10.1016/j.neucom.2018.01.025_bib0013) 2015; 518 Thomas (10.1016/j.neucom.2018.01.025_sbref0025) 1994; 63 10.1016/j.neucom.2018.01.025_bib0026 Razzaq (10.1016/j.neucom.2018.01.025_bib0015) 2010 Chowdhury (10.1016/j.neucom.2018.01.025_bib0005) 2009; 47 Shanbhag (10.1016/j.neucom.2018.01.025_bib0011) 2015; 77 Jain (10.1016/j.neucom.2018.01.025_bib0002) 2013; 51 Mijumbi (10.1016/j.neucom.2018.01.025_bib0023) 2014 Melo (10.1016/j.neucom.2018.01.025_bib0019) 2015; 91 Yu (10.1016/j.neucom.2018.01.025_bib0008) 2008; 38 Mijumbi (10.1016/j.neucom.2018.01.025_bib0021) 2014 Houidi (10.1016/j.neucom.2018.01.025_bib0017) 2008 |
| References_xml | – volume: 54 start-page: 862 year: 2010 end-page: 876 ident: bib0006 article-title: A survey of network virtualization publication-title: Comput. Netw. – volume: 42 start-page: 1376 year: 2015 end-page: 1390 ident: bib0022 article-title: A neuro-fuzzy approach to self-management of virtual network resources publication-title: Expert Syst. Appl. – start-page: 1 year: 2014 end-page: 6 ident: bib0023 article-title: Neural network-based autonomous allocation of resources in virtual networks publication-title: European Conference on Networks and Communications – volume: 15 start-page: 1888 year: 2013 end-page: 1906 ident: bib0003 article-title: Virtual network embedding: a survey publication-title: IEEE Commun. Surv. Tutorials – volume: 17 start-page: 358 year: 2015 end-page: 380 ident: bib0004 article-title: Wireless network virtualization: a survey, some research issues and challenges publication-title: IEEE Commun. Surv. Tutorials – year: 1998 ident: bib0027 article-title: Online algorithms and stochastic approximations publication-title: Online Learning and Neural Networks – volume: 8 start-page: 225 year: 1992 end-page: 227 ident: bib0014 article-title: Reinforcement learning: an introduction publication-title: Mach. Learn. – volume: 529 start-page: 484 year: 2016 end-page: 489 ident: bib0012 article-title: Mastering the game of go with deep neural networks and tree search publication-title: Nature – reference: (2016). – volume: 518 start-page: 529 year: 2015 ident: bib0013 article-title: Human-level control through deep reinforcement learning publication-title: Nature – volume: 48 start-page: 1 year: 2017 end-page: 12 ident: bib0020 article-title: Virtual network embedding via montecarlo tree search publication-title: IEEE Trans. Cybern. – start-page: 5634 year: 2008 end-page: 5640 ident: bib0017 article-title: A distributed virtual network mapping algorithm publication-title: IEEE International Conference on Communications – volume: 63 start-page: 413 year: 1994 end-page: 442 ident: bib0025 article-title: Generation and analysis of random graphs to model internetworks publication-title: Coll. Comput. – start-page: 1 year: 2007 end-page: 12 ident: bib0007 article-title: Algorithms for assigning substrate network resources to virtual network components publication-title: INFOCOM 2006. IEEE International Conference on Computer Communications. Proceedings – volume: vol. 20 start-page: 783 year: 2009 end-page: 791 ident: bib0010 article-title: Virtual network embedding with coordinated node and link mapping publication-title: Proceedings - IEEE INFOCOM – volume: 91 start-page: 184 year: 2015 end-page: 195 ident: bib0019 article-title: Optimal virtual network embedding: energy aware formulation publication-title: Comput. Netw. – volume: 38 start-page: 17 year: 2008 end-page: 29 ident: bib0008 article-title: Rethinking virtual network embedding: substrate support for path splitting and migration publication-title: ACM Sigcomm Comput. Commun. Rev. – start-page: 1 year: 2014 end-page: 9 ident: bib0021 article-title: Design and evaluation of learning algorithms for dynamic resource management in virtual networks publication-title: Network Operations and Management Symposium – volume: 41 start-page: 38 year: 2011 end-page: 47 ident: bib0009 article-title: Virtual network embedding through topology-aware node ranking publication-title: Acm Sigcomm Comput. Commun. Rev. – volume: vol. 9 start-page: 1 year: 1998 end-page: 14 ident: bib0016 article-title: The pagerank citation ranking: bringing order to the web publication-title: Stanford Digital Libraries Working Paper – volume: 17 start-page: 20 year: 2013 end-page: 27 ident: bib0001 article-title: Scalable network virtualization in software-defined networks publication-title: IEEE Internet Comput. – reference: M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G.S. Corrado, A. Davis, J. Dean, M. Devin, et al., Tensorflow: large-scale machine learning on heterogeneous distributed systems, arXiv preprint, – volume: 47 start-page: 20 year: 2009 end-page: 26 ident: bib0005 article-title: Network virtualization: state of the art and research challenges publication-title: IEEE Commun. Mag. – volume: 51 start-page: 24 year: 2013 end-page: 31 ident: bib0002 article-title: Network virtualization and software defined networking for cloud computing: a survey publication-title: Commun. Mag. IEEE – volume: 77 start-page: 169 year: 2015 end-page: 180 ident: bib0011 article-title: Vhub: Single-stage virtual network mapping through hub location publication-title: Comput. Netw. – volume: 110 start-page: 279 year: 2010 end-page: 281 ident: bib0024 article-title: The FloydWarshall algorithm on graphs with negative cycles publication-title: Inf. Process. Lett. – start-page: 68 year: 2010 end-page: 73 ident: bib0015 article-title: An approach towards resource efficient virtual network embedding publication-title: International Conference on Evolving Internet – volume: 33 start-page: 1828 year: 2015 end-page: 1849 ident: bib0018 article-title: Energy efficient virtual network embedding for cloud networks publication-title: J. Lightwave Technol. – volume: 48 start-page: 1 issue: 99 year: 2017 ident: 10.1016/j.neucom.2018.01.025_bib0020 article-title: Virtual network embedding via montecarlo tree search publication-title: IEEE Trans. Cybern. – volume: 63 start-page: 413 issue: 4 year: 1994 ident: 10.1016/j.neucom.2018.01.025_sbref0025 article-title: Generation and analysis of random graphs to model internetworks publication-title: Coll. Comput. – volume: 41 start-page: 38 issue: 2 year: 2011 ident: 10.1016/j.neucom.2018.01.025_bib0009 article-title: Virtual network embedding through topology-aware node ranking publication-title: Acm Sigcomm Comput. Commun. Rev. doi: 10.1145/1971162.1971168 – volume: 33 start-page: 1828 issue: 9 year: 2015 ident: 10.1016/j.neucom.2018.01.025_bib0018 article-title: Energy efficient virtual network embedding for cloud networks publication-title: J. Lightwave Technol. doi: 10.1109/JLT.2014.2380777 – start-page: 68 year: 2010 ident: 10.1016/j.neucom.2018.01.025_bib0015 article-title: An approach towards resource efficient virtual network embedding – start-page: 5634 year: 2008 ident: 10.1016/j.neucom.2018.01.025_bib0017 article-title: A distributed virtual network mapping algorithm – volume: vol. 9 start-page: 1 issue: 1 year: 1998 ident: 10.1016/j.neucom.2018.01.025_bib0016 article-title: The pagerank citation ranking: bringing order to the web publication-title: Stanford Digital Libraries Working Paper – volume: 54 start-page: 862 issue: 5 year: 2010 ident: 10.1016/j.neucom.2018.01.025_bib0006 article-title: A survey of network virtualization publication-title: Comput. Netw. doi: 10.1016/j.comnet.2009.10.017 – start-page: 1 year: 2007 ident: 10.1016/j.neucom.2018.01.025_bib0007 article-title: Algorithms for assigning substrate network resources to virtual network components – volume: 518 start-page: 529 issue: 7540 year: 2015 ident: 10.1016/j.neucom.2018.01.025_bib0013 article-title: Human-level control through deep reinforcement learning publication-title: Nature doi: 10.1038/nature14236 – volume: 51 start-page: 24 issue: 11 year: 2013 ident: 10.1016/j.neucom.2018.01.025_bib0002 article-title: Network virtualization and software defined networking for cloud computing: a survey publication-title: Commun. Mag. IEEE doi: 10.1109/MCOM.2013.6658648 – volume: 91 start-page: 184 issue: C year: 2015 ident: 10.1016/j.neucom.2018.01.025_bib0019 article-title: Optimal virtual network embedding: energy aware formulation publication-title: Comput. Netw. doi: 10.1016/j.comnet.2015.08.011 – volume: vol. 20 start-page: 783 issue: 1 year: 2009 ident: 10.1016/j.neucom.2018.01.025_bib0010 article-title: Virtual network embedding with coordinated node and link mapping publication-title: Proceedings - IEEE INFOCOM doi: 10.1109/INFCOM.2009.5061987 – volume: 17 start-page: 358 issue: 1 year: 2015 ident: 10.1016/j.neucom.2018.01.025_bib0004 article-title: Wireless network virtualization: a survey, some research issues and challenges publication-title: IEEE Commun. Surv. Tutorials doi: 10.1109/COMST.2014.2352118 – volume: 8 start-page: 225 issue: 3–4 year: 1992 ident: 10.1016/j.neucom.2018.01.025_bib0014 article-title: Reinforcement learning: an introduction publication-title: Mach. Learn. – volume: 15 start-page: 1888 issue: 4 year: 2013 ident: 10.1016/j.neucom.2018.01.025_bib0003 article-title: Virtual network embedding: a survey publication-title: IEEE Commun. Surv. Tutorials doi: 10.1109/SURV.2013.013013.00155 – volume: 529 start-page: 484 issue: 7587 year: 2016 ident: 10.1016/j.neucom.2018.01.025_bib0012 article-title: Mastering the game of go with deep neural networks and tree search publication-title: Nature doi: 10.1038/nature16961 – volume: 17 start-page: 20 issue: 2 year: 2013 ident: 10.1016/j.neucom.2018.01.025_bib0001 article-title: Scalable network virtualization in software-defined networks publication-title: IEEE Internet Comput. doi: 10.1109/MIC.2012.144 – volume: 77 start-page: 169 year: 2015 ident: 10.1016/j.neucom.2018.01.025_bib0011 article-title: Vhub: Single-stage virtual network mapping through hub location publication-title: Comput. Netw. doi: 10.1016/j.comnet.2014.12.006 – volume: 42 start-page: 1376 issue: 3 year: 2015 ident: 10.1016/j.neucom.2018.01.025_bib0022 article-title: A neuro-fuzzy approach to self-management of virtual network resources publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2014.08.058 – volume: 47 start-page: 20 issue: 7 year: 2009 ident: 10.1016/j.neucom.2018.01.025_bib0005 article-title: Network virtualization: state of the art and research challenges publication-title: IEEE Commun. Mag. doi: 10.1109/MCOM.2009.5183468 – start-page: 1 year: 2014 ident: 10.1016/j.neucom.2018.01.025_bib0023 article-title: Neural network-based autonomous allocation of resources in virtual networks – volume: 38 start-page: 17 issue: 2 year: 2008 ident: 10.1016/j.neucom.2018.01.025_bib0008 article-title: Rethinking virtual network embedding: substrate support for path splitting and migration publication-title: ACM Sigcomm Comput. Commun. Rev. doi: 10.1145/1355734.1355737 – volume: 110 start-page: 279 issue: 8 year: 2010 ident: 10.1016/j.neucom.2018.01.025_bib0024 article-title: The FloydWarshall algorithm on graphs with negative cycles publication-title: Inf. Process. Lett. doi: 10.1016/j.ipl.2010.02.001 – ident: 10.1016/j.neucom.2018.01.025_bib0026 – start-page: 1 year: 2014 ident: 10.1016/j.neucom.2018.01.025_bib0021 article-title: Design and evaluation of learning algorithms for dynamic resource management in virtual networks – year: 1998 ident: 10.1016/j.neucom.2018.01.025_sbref0026 article-title: Online algorithms and stochastic approximations |
| SSID | ssj0017129 |
| Score | 2.57206 |
| Snippet | Network virtualization enables the share of a physical network among multiple virtual networks. Virtual network embedding determines the effectiveness of... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Policy gradient Policy network Reinforcement learning Virtual network embedding |
| Title | A novel reinforcement learning algorithm for virtual network embedding |
| URI | https://dx.doi.org/10.1016/j.neucom.2018.01.025 |
| Volume | 284 |
| WOSCitedRecordID | wos000425883300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1872-8286 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017129 issn: 0925-2312 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LaxsxEBat00MvfZcmbYoOvZktK-1D0nEpCUkPIdAU3NMiS7PJmnhtHNsk-fXRa2WXhL6gl8XsWpY88zEafTsPhD41RGvRpDrJcglJLqVORFnIhI8zzpjgKqeNazbBTk74aCROA6t05doJsK7j19di_l9Vbe4ZZdvU2b9Qd_xRc8N8Nko3V6N2c_0jxVfDbrYGW67fFUVVjv_ru0OcD-Xl-WzRLi-mLsBw3S5cAknno8GHMB2DjtvZpC_ttDLbnGv_EIiFamrrK2gLpkgk_JCOdT2S7RzCeBc24O3aaBVDf1qfIzS7vdikoUXe-hTam376QEYQ7mJYig1Ddi9LxlONtEiMH-mtLnhDyxl1KezblpjyfMuWkq1NWTxo7T3xMPncwcqG_tgF-RqsxWZ3izGH3-wy7CqMEbOmKn2MdigrBB-gner4YPQ1vnxihPoSjWHZfcalCwu8P9fDHs2Wl3L2Aj0LxwtceVi8RI-ge4We9607cLDkr9FhhR1K8E8owT1KcEQJNg9xQAkOKMERJW_Q98ODsy9HSWipkShzNlwmRFHOiSyo5prQhtvi_xlViqRalTDOpXGfS1WmmW7M_yV0nKqSgZBEyhTs0eAtGnSzDt4hDEoq0A2InEHeaM61AAocZKYsucl2UdaLpVah3rxte3JZ94GFk9oLs7bCrFNSG2HuoiSOmvt6K7_5PuslXgef0fuCtQHJL0fu_fPI9-jpBvsf0GC5WME-eqLWy_Zq8TGg6Q5spJRU |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+reinforcement+learning+algorithm+for+virtual+network+embedding&rft.jtitle=Neurocomputing+%28Amsterdam%29&rft.au=Yao%2C+Haipeng&rft.au=Chen%2C+Xu&rft.au=Li%2C+Maozhen&rft.au=Zhang%2C+Peiying&rft.date=2018-04-05&rft.pub=Elsevier+B.V&rft.issn=0925-2312&rft.eissn=1872-8286&rft.volume=284&rft.spage=1&rft.epage=9&rft_id=info:doi/10.1016%2Fj.neucom.2018.01.025&rft.externalDocID=S0925231218300420 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-2312&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-2312&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-2312&client=summon |