A novel reinforcement learning algorithm for virtual network embedding

Network virtualization enables the share of a physical network among multiple virtual networks. Virtual network embedding determines the effectiveness of utilization of network resources. Traditional heuristic mapping algorithms follow static procedures, thus cannot be optimized automatically, leadi...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Neurocomputing (Amsterdam) Ročník 284; s. 1 - 9
Hlavní autoři: Yao, Haipeng, Chen, Xu, Li, Maozhen, Zhang, Peiying, Wang, Luyao
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 05.04.2018
Témata:
ISSN:0925-2312, 1872-8286
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Network virtualization enables the share of a physical network among multiple virtual networks. Virtual network embedding determines the effectiveness of utilization of network resources. Traditional heuristic mapping algorithms follow static procedures, thus cannot be optimized automatically, leading to sub-optimal ranking and embedding decisions. To solve this problem, we introduce a reinforcement learning method to virtual network embedding. In this paper, we design and implement a policy network based on reinforcement learning to make node mapping decisions. We use policy gradient to achieve optimization automatically by training the policy network with the historical data based on virtual network requests. To the best of our knowledge, this work is the first to utilize historical requests data to optimize network embedding automatically. The performance of the proposed embedding algorithm is evaluated in comparison with two other algorithms which use artificial rules based on node ranking. Simulation results show that our reinforcement learning is able to learn from historical requests and outperforms the other two embedding algorithms.
AbstractList Network virtualization enables the share of a physical network among multiple virtual networks. Virtual network embedding determines the effectiveness of utilization of network resources. Traditional heuristic mapping algorithms follow static procedures, thus cannot be optimized automatically, leading to sub-optimal ranking and embedding decisions. To solve this problem, we introduce a reinforcement learning method to virtual network embedding. In this paper, we design and implement a policy network based on reinforcement learning to make node mapping decisions. We use policy gradient to achieve optimization automatically by training the policy network with the historical data based on virtual network requests. To the best of our knowledge, this work is the first to utilize historical requests data to optimize network embedding automatically. The performance of the proposed embedding algorithm is evaluated in comparison with two other algorithms which use artificial rules based on node ranking. Simulation results show that our reinforcement learning is able to learn from historical requests and outperforms the other two embedding algorithms.
Author Li, Maozhen
Zhang, Peiying
Chen, Xu
Yao, Haipeng
Wang, Luyao
Author_xml – sequence: 1
  givenname: Haipeng
  orcidid: 0000-0003-1391-7363
  surname: Yao
  fullname: Yao, Haipeng
  email: yaohaipeng@bupt.edu.cn
  organization: State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecom, Beijing, P.R. China
– sequence: 2
  givenname: Xu
  surname: Chen
  fullname: Chen, Xu
  organization: State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecom, Beijing, P.R. China
– sequence: 3
  givenname: Maozhen
  surname: Li
  fullname: Li, Maozhen
  organization: Department of Electronic and Computer Engineering, Brunel University London, Uxbridge UB8 3PH, UK
– sequence: 4
  givenname: Peiying
  surname: Zhang
  fullname: Zhang, Peiying
  organization: State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecom, Beijing, P.R. China
– sequence: 5
  givenname: Luyao
  surname: Wang
  fullname: Wang, Luyao
  organization: Beijing Advanced Innovation Center for Future Internet Technology, Beijing University of Technology, Beijing, P.R. China
BookMark eNqFkMFKAzEURYNUsK3-gYv8wIx5SSeTuhBKsSoU3Og6pMmbmjqTSCat-PdOqSsXunqL-86FeyZkFGJAQq6BlcBA3uzKgHsbu5IzUCWDkvHqjIxB1bxQXMkRGbM5rwougF-QSd_vGIMa-HxMVgsa4gFbmtCHJiaLHYZMWzQp-LClpt3G5PNbR4eQHnzKe9PSgPkzpneK3QadG_4uyXlj2h6vfu6UvK7uX5aPxfr54Wm5WBdWMJkLsFwpMBV3ygFvFK8rKbi1wJyVuJkZmAlpJROuGYYB3zAra5wbMIYhVEJMyezUa1Ps-4SN_ki-M-lLA9NHF3qnTy700YVmoAcXA3b7C7M-m-xjyMn49j_47gTjMOzgMeneegwWnU9os3bR_13wDSCUf9g
CitedBy_id crossref_primary_10_1002_ett_3692
crossref_primary_10_1109_JSAC_2020_2986662
crossref_primary_10_1109_TNSM_2019_2947905
crossref_primary_10_1007_s11276_023_03293_w
crossref_primary_10_1016_j_comnet_2022_109366
crossref_primary_10_1109_JLT_2023_3261068
crossref_primary_10_1109_TNSM_2024_3438438
crossref_primary_10_1016_j_adhoc_2024_103575
crossref_primary_10_1109_MCOMSTD_001_2000026
crossref_primary_10_1093_comjnl_bxab040
crossref_primary_10_1109_TVT_2020_3035341
crossref_primary_10_1109_ACCESS_2020_3027432
crossref_primary_10_1038_s41598_023_47195_5
crossref_primary_10_1109_JSTSP_2021_3136027
crossref_primary_10_1109_JIOT_2024_3356750
crossref_primary_10_1016_j_comnet_2021_108191
crossref_primary_10_1049_trit_2019_0036
crossref_primary_10_1109_JIOT_2023_3319542
crossref_primary_10_1016_j_future_2022_05_008
crossref_primary_10_1109_ACCESS_2020_2983264
crossref_primary_10_1109_TETC_2018_2871549
crossref_primary_10_1109_TNSM_2020_3012588
crossref_primary_10_1109_JIOT_2022_3222200
crossref_primary_10_1109_TNSE_2020_2972602
crossref_primary_10_1016_j_future_2023_05_025
crossref_primary_10_1109_ACCESS_2023_3251698
crossref_primary_10_1109_TNSM_2022_3181517
crossref_primary_10_1007_s10922_022_09657_5
crossref_primary_10_1007_s11107_025_01033_y
crossref_primary_10_1007_s12243_020_00772_5
crossref_primary_10_1109_JIOT_2022_3229270
crossref_primary_10_1007_s11036_020_01714_0
crossref_primary_10_1007_s00521_020_05372_x
crossref_primary_10_1016_j_ins_2024_121664
crossref_primary_10_1109_TVT_2024_3440385
crossref_primary_10_1016_j_comnet_2023_110139
crossref_primary_10_1016_j_icte_2023_03_007
crossref_primary_10_1109_TII_2019_2936074
crossref_primary_10_1109_TSC_2024_3417241
crossref_primary_10_1109_JIOT_2023_3293497
crossref_primary_10_3390_electronics12153330
crossref_primary_10_1016_j_future_2023_09_018
crossref_primary_10_4018_IJCAC_2018100103
crossref_primary_10_1109_JSAC_2019_2906744
crossref_primary_10_1109_TNSM_2022_3199471
crossref_primary_10_1155_2019_8416592
crossref_primary_10_1109_ACCESS_2021_3100283
crossref_primary_10_1109_TNSM_2020_2971543
crossref_primary_10_1109_TNSE_2022_3189546
crossref_primary_10_1007_s10922_022_09673_5
crossref_primary_10_1109_TNSM_2021_3120297
crossref_primary_10_1109_JIOT_2019_2950393
crossref_primary_10_1109_TNSM_2021_3132103
crossref_primary_10_3390_electronics13193843
crossref_primary_10_1109_JIOT_2022_3222911
crossref_primary_10_1109_TITS_2022_3209899
crossref_primary_10_1109_TVT_2020_2986769
crossref_primary_10_1109_TPDS_2021_3075296
crossref_primary_10_1109_TNSE_2020_2995863
crossref_primary_10_1016_j_csi_2019_04_010
crossref_primary_10_1109_COMST_2024_3424533
crossref_primary_10_1002_nem_2212
crossref_primary_10_1016_j_jnca_2019_06_003
crossref_primary_10_1109_ACCESS_2024_3424474
crossref_primary_10_1002_cpe_6020
crossref_primary_10_1007_s10922_022_09654_8
crossref_primary_10_1016_j_jnca_2023_103736
crossref_primary_10_1109_JIOT_2021_3095094
crossref_primary_10_1016_j_jnca_2022_103437
crossref_primary_10_1364_JOCN_478944
crossref_primary_10_1016_j_comcom_2022_05_015
crossref_primary_10_1007_s10922_019_09500_4
crossref_primary_10_1109_MCI_2019_2937609
crossref_primary_10_1016_j_neucom_2019_03_036
crossref_primary_10_1093_comjnl_bxad050
crossref_primary_10_1016_j_comnet_2025_111529
crossref_primary_10_1109_JSAC_2020_2986663
crossref_primary_10_1109_TSC_2023_3237244
crossref_primary_10_1109_ACCESS_2022_3221740
crossref_primary_10_1109_TSC_2024_3357707
Cites_doi 10.1145/1971162.1971168
10.1109/JLT.2014.2380777
10.1016/j.comnet.2009.10.017
10.1038/nature14236
10.1109/MCOM.2013.6658648
10.1016/j.comnet.2015.08.011
10.1109/INFCOM.2009.5061987
10.1109/COMST.2014.2352118
10.1109/SURV.2013.013013.00155
10.1038/nature16961
10.1109/MIC.2012.144
10.1016/j.comnet.2014.12.006
10.1016/j.eswa.2014.08.058
10.1109/MCOM.2009.5183468
10.1145/1355734.1355737
10.1016/j.ipl.2010.02.001
ContentType Journal Article
Copyright 2018 Elsevier B.V.
Copyright_xml – notice: 2018 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.neucom.2018.01.025
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-8286
EndPage 9
ExternalDocumentID 10_1016_j_neucom_2018_01_025
S0925231218300420
GroupedDBID ---
--K
--M
.DC
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AADPK
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXLA
AAXUO
AAYFN
ABBOA
ABCQJ
ABFNM
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGWIK
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
KOM
LG9
M41
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSN
SSV
SSZ
T5K
ZMT
~G-
29N
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FEDTE
FGOYB
HLZ
HVGLF
HZ~
R2-
SBC
SEW
WUQ
XPP
~HD
ID FETCH-LOGICAL-c306t-1c2881a52d8d12f8275632cc10dc6eb4a1436c603df10112b0c67e9a1aa0e1533
ISICitedReferencesCount 113
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000425883300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0925-2312
IngestDate Sat Nov 29 03:02:54 EST 2025
Tue Nov 18 21:49:46 EST 2025
Fri Feb 23 02:30:26 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Policy gradient
Policy network
Reinforcement learning
Virtual network embedding
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c306t-1c2881a52d8d12f8275632cc10dc6eb4a1436c603df10112b0c67e9a1aa0e1533
ORCID 0000-0003-1391-7363
PageCount 9
ParticipantIDs crossref_primary_10_1016_j_neucom_2018_01_025
crossref_citationtrail_10_1016_j_neucom_2018_01_025
elsevier_sciencedirect_doi_10_1016_j_neucom_2018_01_025
PublicationCentury 2000
PublicationDate 2018-04-05
PublicationDateYYYYMMDD 2018-04-05
PublicationDate_xml – month: 04
  year: 2018
  text: 2018-04-05
  day: 05
PublicationDecade 2010
PublicationTitle Neurocomputing (Amsterdam)
PublicationYear 2018
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Houidi, Louati, Zeghlache (bib0017) 2008
Cheng, Su, Zhang, Wang, Yang, Luo, Wang (bib0009) 2011; 41
Razzaq, Rathore (bib0015) 2010
Chowdhury, Rahman, Boutaba (bib0010) 2009; vol. 20
Liang, Yu (bib0004) 2015; 17
Chowdhury, Boutaba (bib0005) 2009; 47
Mozer, Collins, Hasselmo (bib0014) 1992; 8
Hougardy (bib0024) 2010; 110
Thomas, Zegura (bib0025) 1994; 63
Chowdhury, Boutaba (bib0006) 2010; 54
Bottou (bib0027) 1998
Page (bib0016) 1998; vol. 9
Fischer, Botero, Beck, Meer, Hesselbach (bib0003) 2013; 15
Haeri, Trajkovic (bib0020) 2017; 48
Jain, Paul (bib0002) 2013; 51
Silver, Huang, Maddison, Guez, Sifre, Van Den Driessche, Schrittwieser, Antonoglou, Panneershelvam, Lanctot (bib0012) 2016; 529
Shanbhag, Kandoor, Wang, Mettu, Wolf (bib0011) 2015; 77
Melo, Sargento, Killat, Timm-Giel, Carapinha (bib0019) 2015; 91
M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G.S. Corrado, A. Davis, J. Dean, M. Devin, et al., Tensorflow: large-scale machine learning on heterogeneous distributed systems, arXiv preprint
Mijumbi, Gorricho, Serrat, Shen, Xu, Yang (bib0022) 2015; 42
Drutskoy, Keller, Rexford (bib0001) 2013; 17
Yu, Yi, Rexford, Chiang (bib0008) 2008; 38
Zhu, Ammar (bib0007) 2007
Elmirghani, Nonde, Elgorashi (bib0018) 2015; 33
Mijumbi, Gorricho, Serrat, Claeys, Turck, Latre (bib0021) 2014
Mijumbi, Gorricho, Serrat, Claeys, Famaey, Turck (bib0023) 2014
(2016).
Mnih, Kavukcuoglu, Silver, Rusu, Veness, Bellemare, Graves, Riedmiller, Fidjeland, Ostrovski (bib0013) 2015; 518
Mozer (10.1016/j.neucom.2018.01.025_bib0014) 1992; 8
Haeri (10.1016/j.neucom.2018.01.025_bib0020) 2017; 48
Zhu (10.1016/j.neucom.2018.01.025_bib0007) 2007
Cheng (10.1016/j.neucom.2018.01.025_bib0009) 2011; 41
Chowdhury (10.1016/j.neucom.2018.01.025_bib0010) 2009; vol. 20
Drutskoy (10.1016/j.neucom.2018.01.025_bib0001) 2013; 17
Bottou (10.1016/j.neucom.2018.01.025_sbref0026) 1998
Liang (10.1016/j.neucom.2018.01.025_bib0004) 2015; 17
Fischer (10.1016/j.neucom.2018.01.025_bib0003) 2013; 15
Page (10.1016/j.neucom.2018.01.025_bib0016) 1998; vol. 9
Chowdhury (10.1016/j.neucom.2018.01.025_bib0006) 2010; 54
Elmirghani (10.1016/j.neucom.2018.01.025_bib0018) 2015; 33
Mijumbi (10.1016/j.neucom.2018.01.025_bib0022) 2015; 42
Silver (10.1016/j.neucom.2018.01.025_bib0012) 2016; 529
Hougardy (10.1016/j.neucom.2018.01.025_bib0024) 2010; 110
Mnih (10.1016/j.neucom.2018.01.025_bib0013) 2015; 518
Thomas (10.1016/j.neucom.2018.01.025_sbref0025) 1994; 63
10.1016/j.neucom.2018.01.025_bib0026
Razzaq (10.1016/j.neucom.2018.01.025_bib0015) 2010
Chowdhury (10.1016/j.neucom.2018.01.025_bib0005) 2009; 47
Shanbhag (10.1016/j.neucom.2018.01.025_bib0011) 2015; 77
Jain (10.1016/j.neucom.2018.01.025_bib0002) 2013; 51
Mijumbi (10.1016/j.neucom.2018.01.025_bib0023) 2014
Melo (10.1016/j.neucom.2018.01.025_bib0019) 2015; 91
Yu (10.1016/j.neucom.2018.01.025_bib0008) 2008; 38
Mijumbi (10.1016/j.neucom.2018.01.025_bib0021) 2014
Houidi (10.1016/j.neucom.2018.01.025_bib0017) 2008
References_xml – volume: 54
  start-page: 862
  year: 2010
  end-page: 876
  ident: bib0006
  article-title: A survey of network virtualization
  publication-title: Comput. Netw.
– volume: 42
  start-page: 1376
  year: 2015
  end-page: 1390
  ident: bib0022
  article-title: A neuro-fuzzy approach to self-management of virtual network resources
  publication-title: Expert Syst. Appl.
– start-page: 1
  year: 2014
  end-page: 6
  ident: bib0023
  article-title: Neural network-based autonomous allocation of resources in virtual networks
  publication-title: European Conference on Networks and Communications
– volume: 15
  start-page: 1888
  year: 2013
  end-page: 1906
  ident: bib0003
  article-title: Virtual network embedding: a survey
  publication-title: IEEE Commun. Surv. Tutorials
– volume: 17
  start-page: 358
  year: 2015
  end-page: 380
  ident: bib0004
  article-title: Wireless network virtualization: a survey, some research issues and challenges
  publication-title: IEEE Commun. Surv. Tutorials
– year: 1998
  ident: bib0027
  article-title: Online algorithms and stochastic approximations
  publication-title: Online Learning and Neural Networks
– volume: 8
  start-page: 225
  year: 1992
  end-page: 227
  ident: bib0014
  article-title: Reinforcement learning: an introduction
  publication-title: Mach. Learn.
– volume: 529
  start-page: 484
  year: 2016
  end-page: 489
  ident: bib0012
  article-title: Mastering the game of go with deep neural networks and tree search
  publication-title: Nature
– reference: (2016).
– volume: 518
  start-page: 529
  year: 2015
  ident: bib0013
  article-title: Human-level control through deep reinforcement learning
  publication-title: Nature
– volume: 48
  start-page: 1
  year: 2017
  end-page: 12
  ident: bib0020
  article-title: Virtual network embedding via montecarlo tree search
  publication-title: IEEE Trans. Cybern.
– start-page: 5634
  year: 2008
  end-page: 5640
  ident: bib0017
  article-title: A distributed virtual network mapping algorithm
  publication-title: IEEE International Conference on Communications
– volume: 63
  start-page: 413
  year: 1994
  end-page: 442
  ident: bib0025
  article-title: Generation and analysis of random graphs to model internetworks
  publication-title: Coll. Comput.
– start-page: 1
  year: 2007
  end-page: 12
  ident: bib0007
  article-title: Algorithms for assigning substrate network resources to virtual network components
  publication-title: INFOCOM 2006. IEEE International Conference on Computer Communications. Proceedings
– volume: vol. 20
  start-page: 783
  year: 2009
  end-page: 791
  ident: bib0010
  article-title: Virtual network embedding with coordinated node and link mapping
  publication-title: Proceedings - IEEE INFOCOM
– volume: 91
  start-page: 184
  year: 2015
  end-page: 195
  ident: bib0019
  article-title: Optimal virtual network embedding: energy aware formulation
  publication-title: Comput. Netw.
– volume: 38
  start-page: 17
  year: 2008
  end-page: 29
  ident: bib0008
  article-title: Rethinking virtual network embedding: substrate support for path splitting and migration
  publication-title: ACM Sigcomm Comput. Commun. Rev.
– start-page: 1
  year: 2014
  end-page: 9
  ident: bib0021
  article-title: Design and evaluation of learning algorithms for dynamic resource management in virtual networks
  publication-title: Network Operations and Management Symposium
– volume: 41
  start-page: 38
  year: 2011
  end-page: 47
  ident: bib0009
  article-title: Virtual network embedding through topology-aware node ranking
  publication-title: Acm Sigcomm Comput. Commun. Rev.
– volume: vol. 9
  start-page: 1
  year: 1998
  end-page: 14
  ident: bib0016
  article-title: The pagerank citation ranking: bringing order to the web
  publication-title: Stanford Digital Libraries Working Paper
– volume: 17
  start-page: 20
  year: 2013
  end-page: 27
  ident: bib0001
  article-title: Scalable network virtualization in software-defined networks
  publication-title: IEEE Internet Comput.
– reference: M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G.S. Corrado, A. Davis, J. Dean, M. Devin, et al., Tensorflow: large-scale machine learning on heterogeneous distributed systems, arXiv preprint,
– volume: 47
  start-page: 20
  year: 2009
  end-page: 26
  ident: bib0005
  article-title: Network virtualization: state of the art and research challenges
  publication-title: IEEE Commun. Mag.
– volume: 51
  start-page: 24
  year: 2013
  end-page: 31
  ident: bib0002
  article-title: Network virtualization and software defined networking for cloud computing: a survey
  publication-title: Commun. Mag. IEEE
– volume: 77
  start-page: 169
  year: 2015
  end-page: 180
  ident: bib0011
  article-title: Vhub: Single-stage virtual network mapping through hub location
  publication-title: Comput. Netw.
– volume: 110
  start-page: 279
  year: 2010
  end-page: 281
  ident: bib0024
  article-title: The FloydWarshall algorithm on graphs with negative cycles
  publication-title: Inf. Process. Lett.
– start-page: 68
  year: 2010
  end-page: 73
  ident: bib0015
  article-title: An approach towards resource efficient virtual network embedding
  publication-title: International Conference on Evolving Internet
– volume: 33
  start-page: 1828
  year: 2015
  end-page: 1849
  ident: bib0018
  article-title: Energy efficient virtual network embedding for cloud networks
  publication-title: J. Lightwave Technol.
– volume: 48
  start-page: 1
  issue: 99
  year: 2017
  ident: 10.1016/j.neucom.2018.01.025_bib0020
  article-title: Virtual network embedding via montecarlo tree search
  publication-title: IEEE Trans. Cybern.
– volume: 63
  start-page: 413
  issue: 4
  year: 1994
  ident: 10.1016/j.neucom.2018.01.025_sbref0025
  article-title: Generation and analysis of random graphs to model internetworks
  publication-title: Coll. Comput.
– volume: 41
  start-page: 38
  issue: 2
  year: 2011
  ident: 10.1016/j.neucom.2018.01.025_bib0009
  article-title: Virtual network embedding through topology-aware node ranking
  publication-title: Acm Sigcomm Comput. Commun. Rev.
  doi: 10.1145/1971162.1971168
– volume: 33
  start-page: 1828
  issue: 9
  year: 2015
  ident: 10.1016/j.neucom.2018.01.025_bib0018
  article-title: Energy efficient virtual network embedding for cloud networks
  publication-title: J. Lightwave Technol.
  doi: 10.1109/JLT.2014.2380777
– start-page: 68
  year: 2010
  ident: 10.1016/j.neucom.2018.01.025_bib0015
  article-title: An approach towards resource efficient virtual network embedding
– start-page: 5634
  year: 2008
  ident: 10.1016/j.neucom.2018.01.025_bib0017
  article-title: A distributed virtual network mapping algorithm
– volume: vol. 9
  start-page: 1
  issue: 1
  year: 1998
  ident: 10.1016/j.neucom.2018.01.025_bib0016
  article-title: The pagerank citation ranking: bringing order to the web
  publication-title: Stanford Digital Libraries Working Paper
– volume: 54
  start-page: 862
  issue: 5
  year: 2010
  ident: 10.1016/j.neucom.2018.01.025_bib0006
  article-title: A survey of network virtualization
  publication-title: Comput. Netw.
  doi: 10.1016/j.comnet.2009.10.017
– start-page: 1
  year: 2007
  ident: 10.1016/j.neucom.2018.01.025_bib0007
  article-title: Algorithms for assigning substrate network resources to virtual network components
– volume: 518
  start-page: 529
  issue: 7540
  year: 2015
  ident: 10.1016/j.neucom.2018.01.025_bib0013
  article-title: Human-level control through deep reinforcement learning
  publication-title: Nature
  doi: 10.1038/nature14236
– volume: 51
  start-page: 24
  issue: 11
  year: 2013
  ident: 10.1016/j.neucom.2018.01.025_bib0002
  article-title: Network virtualization and software defined networking for cloud computing: a survey
  publication-title: Commun. Mag. IEEE
  doi: 10.1109/MCOM.2013.6658648
– volume: 91
  start-page: 184
  issue: C
  year: 2015
  ident: 10.1016/j.neucom.2018.01.025_bib0019
  article-title: Optimal virtual network embedding: energy aware formulation
  publication-title: Comput. Netw.
  doi: 10.1016/j.comnet.2015.08.011
– volume: vol. 20
  start-page: 783
  issue: 1
  year: 2009
  ident: 10.1016/j.neucom.2018.01.025_bib0010
  article-title: Virtual network embedding with coordinated node and link mapping
  publication-title: Proceedings - IEEE INFOCOM
  doi: 10.1109/INFCOM.2009.5061987
– volume: 17
  start-page: 358
  issue: 1
  year: 2015
  ident: 10.1016/j.neucom.2018.01.025_bib0004
  article-title: Wireless network virtualization: a survey, some research issues and challenges
  publication-title: IEEE Commun. Surv. Tutorials
  doi: 10.1109/COMST.2014.2352118
– volume: 8
  start-page: 225
  issue: 3–4
  year: 1992
  ident: 10.1016/j.neucom.2018.01.025_bib0014
  article-title: Reinforcement learning: an introduction
  publication-title: Mach. Learn.
– volume: 15
  start-page: 1888
  issue: 4
  year: 2013
  ident: 10.1016/j.neucom.2018.01.025_bib0003
  article-title: Virtual network embedding: a survey
  publication-title: IEEE Commun. Surv. Tutorials
  doi: 10.1109/SURV.2013.013013.00155
– volume: 529
  start-page: 484
  issue: 7587
  year: 2016
  ident: 10.1016/j.neucom.2018.01.025_bib0012
  article-title: Mastering the game of go with deep neural networks and tree search
  publication-title: Nature
  doi: 10.1038/nature16961
– volume: 17
  start-page: 20
  issue: 2
  year: 2013
  ident: 10.1016/j.neucom.2018.01.025_bib0001
  article-title: Scalable network virtualization in software-defined networks
  publication-title: IEEE Internet Comput.
  doi: 10.1109/MIC.2012.144
– volume: 77
  start-page: 169
  year: 2015
  ident: 10.1016/j.neucom.2018.01.025_bib0011
  article-title: Vhub: Single-stage virtual network mapping through hub location
  publication-title: Comput. Netw.
  doi: 10.1016/j.comnet.2014.12.006
– volume: 42
  start-page: 1376
  issue: 3
  year: 2015
  ident: 10.1016/j.neucom.2018.01.025_bib0022
  article-title: A neuro-fuzzy approach to self-management of virtual network resources
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2014.08.058
– volume: 47
  start-page: 20
  issue: 7
  year: 2009
  ident: 10.1016/j.neucom.2018.01.025_bib0005
  article-title: Network virtualization: state of the art and research challenges
  publication-title: IEEE Commun. Mag.
  doi: 10.1109/MCOM.2009.5183468
– start-page: 1
  year: 2014
  ident: 10.1016/j.neucom.2018.01.025_bib0023
  article-title: Neural network-based autonomous allocation of resources in virtual networks
– volume: 38
  start-page: 17
  issue: 2
  year: 2008
  ident: 10.1016/j.neucom.2018.01.025_bib0008
  article-title: Rethinking virtual network embedding: substrate support for path splitting and migration
  publication-title: ACM Sigcomm Comput. Commun. Rev.
  doi: 10.1145/1355734.1355737
– volume: 110
  start-page: 279
  issue: 8
  year: 2010
  ident: 10.1016/j.neucom.2018.01.025_bib0024
  article-title: The FloydWarshall algorithm on graphs with negative cycles
  publication-title: Inf. Process. Lett.
  doi: 10.1016/j.ipl.2010.02.001
– ident: 10.1016/j.neucom.2018.01.025_bib0026
– start-page: 1
  year: 2014
  ident: 10.1016/j.neucom.2018.01.025_bib0021
  article-title: Design and evaluation of learning algorithms for dynamic resource management in virtual networks
– year: 1998
  ident: 10.1016/j.neucom.2018.01.025_sbref0026
  article-title: Online algorithms and stochastic approximations
SSID ssj0017129
Score 2.57206
Snippet Network virtualization enables the share of a physical network among multiple virtual networks. Virtual network embedding determines the effectiveness of...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Policy gradient
Policy network
Reinforcement learning
Virtual network embedding
Title A novel reinforcement learning algorithm for virtual network embedding
URI https://dx.doi.org/10.1016/j.neucom.2018.01.025
Volume 284
WOSCitedRecordID wos000425883300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection - Elsevier
  customDbUrl:
  eissn: 1872-8286
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017129
  issn: 0925-2312
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Ja9tAFB5ap4de2nSj6cYcejMqmvFIMzqKkpDmEAJJwT2J2ZLIxLJxbJP21_fNorFDQjfowcJIGmn83sebN5_fgtBHUCmlRqusZNpkzJhRprQUmVKVLk0lGZPSN5vgx8diPK5OIqt07dsJ8K4TNzfV_L-qGs6Bsl3q7F-oOz0UTsB3UDocQe1w_CPF18NutrauXL8viqo9_9d3h7gYyquL2aJdXk59gOG6XfgEki5Egw_tVFmTlrNJX9ppBcucb_8QiYV66uorGAemRCR8k551PZTt3MbxPmwg2LXxKoX-tCFHaPbjcpOGlnjrE9t-718fyQgifAxLsWHI7mTJBKqRFhn4kcHq2mBoBac-hX3bElPBtmwp2VqUq3utfSAeJp86u3KhP25CoQZrsVndUszhqZuGmwUYMWeq8odoh_KiEgO0U3_ZHx-lP584oaFEY5x2n3HpwwLvvut-j2bLSznbRU_i9gLXARbP0APbPUdP-9YdOFryF-igxh4l-BZKcI8SnFCC4SKOKMERJTih5CX6erB_9vkwiy01Mg17w2VGNBWCyIIaYQg9F674_4hqTXKjS6uYBPe51GU-MufwewlVuS65rSSRMrdua_AKDbpZZ18jLAoG3p0i8GEM3F6VUy65kkxyC35gsYdGvVgaHevNu7YnV00fWDhpgjAbJ8wmJw0Icw9ladQ81Fv5zf28l3gTfcbgCzYAkl-OfPPPI9-ixxvsv0OD5WJl36NHer1srxcfIpp-AsA7kwU
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+reinforcement+learning+algorithm+for+virtual+network+embedding&rft.jtitle=Neurocomputing+%28Amsterdam%29&rft.au=Yao%2C+Haipeng&rft.au=Chen%2C+Xu&rft.au=Li%2C+Maozhen&rft.au=Zhang%2C+Peiying&rft.date=2018-04-05&rft.pub=Elsevier+B.V&rft.issn=0925-2312&rft.eissn=1872-8286&rft.volume=284&rft.spage=1&rft.epage=9&rft_id=info:doi/10.1016%2Fj.neucom.2018.01.025&rft.externalDocID=S0925231218300420
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-2312&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-2312&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-2312&client=summon