Multi-task multi-objective evolutionary network for hyperspectral image classification and pansharpening

•A multi-task multi-objective evolutionary network is proposed.•The framework combines two tasks by effective high-frequency information sharing.•Multi-task learning is modeled as a deep MOEAD to obtain trade-off solutions.•The method provides diverse and sufficient samples for multi-task. Multi-tas...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Information fusion Ročník 108; s. 102383
Hlavní autori: Wu, Xiande, Feng, Jie, Shang, Ronghua, Wu, JinJian, Zhang, Xiangrong, Jiao, Licheng, Gamba, Paolo
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier B.V 01.08.2024
Predmet:
ISSN:1566-2535, 1872-6305
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract •A multi-task multi-objective evolutionary network is proposed.•The framework combines two tasks by effective high-frequency information sharing.•Multi-task learning is modeled as a deep MOEAD to obtain trade-off solutions.•The method provides diverse and sufficient samples for multi-task. Multi-task learning has commonly been used and performed well at joint visual perception tasks. Hyperspectral pansharpening (HP) and hyperspectral classification (HC) tasks extract high-frequency information to enhance edges and classify samples, offering potential for performance improvements in multi-task learning. However, differences between tasks can make it challenging to balance their performances. To address this challenge, this paper proposes a multi-task multi-objective evolutionary network (DMOEAD) for joint learning of HC and HP. A multi-task sufficiency-and-diversity sampling method is designed to unify the heterogeneity of sample construction between two types of tasks. Two types of task-specific networks are constructed to decompose high-frequency information. Further, a collaborative learning module is designed to dynamically learn complementary high-frequency information from another task in different layers. To be compatible with the optimization direction of two types of tasks, multi-task optimization is realized using a deep multi-objective evolutionary algorithm (DMEO). In the DMEO, the set of parameters of the DMOEAD is regarded as an individual. A deep mutation operator is designed and used for network optimization, which accelerates large-scale network parameter searching. The DMEO can coordinate the differences between multiple tasks and provide a set of Pareto network parameter solutions. Finally, the experimental results demonstrate that the proposed method can significantly enhance the performance of both pansharpening and classification tasks.
AbstractList •A multi-task multi-objective evolutionary network is proposed.•The framework combines two tasks by effective high-frequency information sharing.•Multi-task learning is modeled as a deep MOEAD to obtain trade-off solutions.•The method provides diverse and sufficient samples for multi-task. Multi-task learning has commonly been used and performed well at joint visual perception tasks. Hyperspectral pansharpening (HP) and hyperspectral classification (HC) tasks extract high-frequency information to enhance edges and classify samples, offering potential for performance improvements in multi-task learning. However, differences between tasks can make it challenging to balance their performances. To address this challenge, this paper proposes a multi-task multi-objective evolutionary network (DMOEAD) for joint learning of HC and HP. A multi-task sufficiency-and-diversity sampling method is designed to unify the heterogeneity of sample construction between two types of tasks. Two types of task-specific networks are constructed to decompose high-frequency information. Further, a collaborative learning module is designed to dynamically learn complementary high-frequency information from another task in different layers. To be compatible with the optimization direction of two types of tasks, multi-task optimization is realized using a deep multi-objective evolutionary algorithm (DMEO). In the DMEO, the set of parameters of the DMOEAD is regarded as an individual. A deep mutation operator is designed and used for network optimization, which accelerates large-scale network parameter searching. The DMEO can coordinate the differences between multiple tasks and provide a set of Pareto network parameter solutions. Finally, the experimental results demonstrate that the proposed method can significantly enhance the performance of both pansharpening and classification tasks.
ArticleNumber 102383
Author Shang, Ronghua
Feng, Jie
Gamba, Paolo
Wu, JinJian
Zhang, Xiangrong
Jiao, Licheng
Wu, Xiande
Author_xml – sequence: 1
  givenname: Xiande
  surname: Wu
  fullname: Wu, Xiande
  organization: School of Artificial Intelligence, Xidian University, Xi'an 710071, Shaanxi, China
– sequence: 2
  givenname: Jie
  orcidid: 0000-0002-8032-7542
  surname: Feng
  fullname: Feng, Jie
  email: jiefeng0109@163.com
  organization: School of Artificial Intelligence, Xidian University, Xi'an 710071, Shaanxi, China
– sequence: 3
  givenname: Ronghua
  surname: Shang
  fullname: Shang, Ronghua
  organization: School of Artificial Intelligence, Xidian University, Xi'an 710071, Shaanxi, China
– sequence: 4
  givenname: JinJian
  surname: Wu
  fullname: Wu, JinJian
  organization: School of Artificial Intelligence, Xidian University, Xi'an 710071, Shaanxi, China
– sequence: 5
  givenname: Xiangrong
  surname: Zhang
  fullname: Zhang, Xiangrong
  organization: School of Artificial Intelligence, Xidian University, Xi'an 710071, Shaanxi, China
– sequence: 6
  givenname: Licheng
  surname: Jiao
  fullname: Jiao, Licheng
  organization: School of Artificial Intelligence, Xidian University, Xi'an 710071, Shaanxi, China
– sequence: 7
  givenname: Paolo
  surname: Gamba
  fullname: Gamba, Paolo
  organization: Department of Electrical, Biomedical and Computer Engineering, University of Pavia, Pavia 27100, Italy
BookMark eNqFkE1OwzAQRi0EEm3hBix8gRTbiZ2YBRKq-JOK2MDacpxx6zR1Ijst6u1JG1YsYDWj0bzRfG-Kzn3rAaEbSuaUUHFbz523dhfnjLBsGLG0SM_QhBY5S0RK-PnQcyESxlN-iaYx1oTQnKR0gtZvu6Z3Sa_jBm9PbVvWYHq3Bwz7ttn1rvU6HLCH_qsNG2zbgNeHDkLshrWgG-y2egXYNDpGZ53RRwJrX-FO-7jWoQPv_OoKXVjdRLj-qTP0-fT4sXhJlu_Pr4uHZWJSIvqEllWWWSm5MMDyrOIkKyRlUpi8ZCUzZVaAlbqQmaxyIBUXtkgrboyQ3FJp0xm6G--a0MYYwCrj-tNPw7OuUZSoozNVq9GZOjpTo7MBzn7BXRjihcN_2P2IwRBs7yCoaBx4A5ULgyRVte7vA9_EHI3S
CitedBy_id crossref_primary_10_1016_j_inffus_2024_102871
crossref_primary_10_1080_2150704X_2025_2535743
crossref_primary_10_1109_TIP_2025_3573527
crossref_primary_10_3390_math13050745
crossref_primary_10_1016_j_eswa_2025_128427
crossref_primary_10_1109_TGRS_2025_3583877
crossref_primary_10_1109_TGRS_2024_3493096
crossref_primary_10_1016_j_jag_2024_104213
crossref_primary_10_1109_LGRS_2024_3488036
crossref_primary_10_1109_TCSVT_2025_3525734
crossref_primary_10_1109_TGRS_2025_3527138
crossref_primary_10_1109_JSTARS_2024_3397488
crossref_primary_10_1016_j_ins_2024_121572
crossref_primary_10_1109_TGRS_2024_3469384
crossref_primary_10_1016_j_procs_2025_04_633
crossref_primary_10_1016_j_swevo_2025_101875
crossref_primary_10_1109_MGRS_2024_3509139
crossref_primary_10_1109_JSTARS_2024_3465831
crossref_primary_10_3390_rs17121983
crossref_primary_10_1016_j_eswa_2024_125742
crossref_primary_10_1016_j_inffus_2025_103656
crossref_primary_10_1016_j_eswa_2024_125106
crossref_primary_10_1109_TGRS_2024_3415965
crossref_primary_10_1016_j_eswa_2024_125846
crossref_primary_10_1109_JSEN_2024_3416198
crossref_primary_10_1109_JSTARS_2024_3494258
crossref_primary_10_1109_TGRS_2025_3526927
crossref_primary_10_1109_JSTARS_2024_3456842
crossref_primary_10_1109_LGRS_2024_3506034
crossref_primary_10_1109_ACCESS_2024_3501412
crossref_primary_10_1109_JSTARS_2024_3476333
crossref_primary_10_1109_TGRS_2025_3528631
crossref_primary_10_1109_TGRS_2024_3490666
crossref_primary_10_1109_TGRS_2025_3600692
crossref_primary_10_1016_j_ins_2024_121504
crossref_primary_10_1109_TGRS_2024_3433564
crossref_primary_10_1109_TGRS_2024_3514839
Cites_doi 10.14358/PERS.74.2.193
10.1080/08839514.2020.1713454
10.1007/s00500-018-3499-9
10.1109/TIP.2018.2819501
10.1109/TGRS.2011.2161320
10.1080/17538947.2023.2246944
10.1109/JSTARS.2019.2917584
10.1109/LGRS.2023.3326204
10.1109/TGRS.2014.2381272
10.1155/2015/258619
10.1109/TGRS.2019.2899057
10.1109/TGRS.2014.2375320
10.1109/TGRS.2007.901007
10.1109/TNNLS.2017.2695223
10.1109/TGRS.2020.3015843
10.1109/TSMCB.2012.2231860
10.1109/TNNLS.2019.2920857
10.1109/TGRS.2018.2805286
10.1109/TGRS.2016.2584107
10.1109/TIP.2018.2866954
10.1109/TNNLS.2016.2582798
10.1109/TGRS.2020.2986313
10.1109/TEVC.2007.892759
10.1109/TGRS.2010.2051674
10.1016/j.engappai.2023.106017
10.1109/TGRS.2020.2999957
10.3390/rs11222691
10.1109/LGRS.2022.3227055
10.1109/TNNLS.2017.2736011
10.1080/014311600750037499
10.1109/JSTARS.2022.3187009
10.3390/rs15174328
10.1016/j.knosys.2022.109878
10.1109/TGRS.2022.3172371
10.1109/TGRS.2020.3040273
10.14358/PERS.72.5.591
10.1109/LGRS.2018.2869563
10.1109/TGRS.2020.2973363
10.1109/TGRS.2020.3011943
10.1016/j.compag.2023.108092
10.1109/TGRS.2022.3231215
10.1109/TGRS.2022.3210185
10.1080/08120090500134530
10.1109/TGRS.2020.2994238
10.1016/j.jag.2003.09.001
10.3390/rs13112216
10.1109/TGRS.2019.2906073
10.1109/TGRS.2020.2974806
10.1109/TGRS.2014.2361734
10.1109/TGRS.2004.831865
10.1109/JSTARS.2015.2406339
10.1109/TGRS.2020.2994205
10.1016/j.isprsjprs.2023.01.024
10.1016/j.inffus.2024.102325
10.1109/TGRS.2019.2949180
10.1179/174313110X12771950995716
ContentType Journal Article
Copyright 2024 Elsevier B.V.
Copyright_xml – notice: 2024 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.inffus.2024.102383
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1872-6305
ExternalDocumentID 10_1016_j_inffus_2024_102383
S1566253524001611
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
29I
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABJNI
ABMAC
ABXDB
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
UHS
ZMT
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
CITATION
EFKBS
EFLBG
~HD
ID FETCH-LOGICAL-c306t-1bd44f9956ce274d504891296c7b2b2cb48ef9a8949d7e0d56f83d5cc695f19f3
ISICitedReferencesCount 42
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001221668500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1566-2535
IngestDate Sat Nov 29 06:25:34 EST 2025
Tue Nov 18 21:19:00 EST 2025
Sat May 11 15:33:31 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Multi-objective evolution algorithm
Hyperspectral pansharpening
Multi-task learning
Hyperspectral classification
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c306t-1bd44f9956ce274d504891296c7b2b2cb48ef9a8949d7e0d56f83d5cc695f19f3
ORCID 0000-0002-8032-7542
ParticipantIDs crossref_citationtrail_10_1016_j_inffus_2024_102383
crossref_primary_10_1016_j_inffus_2024_102383
elsevier_sciencedirect_doi_10_1016_j_inffus_2024_102383
PublicationCentury 2000
PublicationDate August 2024
2024-08-00
PublicationDateYYYYMMDD 2024-08-01
PublicationDate_xml – month: 08
  year: 2024
  text: August 2024
PublicationDecade 2020
PublicationTitle Information fusion
PublicationYear 2024
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Chen, Fan, Xu, Yan, Kalantidis, Rohrbach, Yan, Feng (bib0066) 2019
Zhu, Chen, Ghamisi, Benediktsson (bib0047) 2018; 56
Sun, Zhao, Zheng, Wu (bib0057) 2022; 60
Melgani, Bruzzone (bib0072) 2004; 42
Lanaras, Baltsavias, Schindler (bib0012) 2015
Yi, Zhang, Zhang, Yueming, Wenchao, Senlin, Zhang (bib0069) 2020; 24
Zhou, Zhang, Chen, Ren, Feng (bib0033) 2023; 16
Carper, Lillesand, Kiefer (bib0005) 1990; 56
Qiu, Zhang, Ren, Suganthan, Amaratunga (bib0062) 2014
Rui, Cao, Pang, Zhu, Yue, Meng (bib0037) 2024
Gevaert, Suomalainen, Tang, Kooistra (bib0003) 2015; 8
Guarino, Ciotola, Vivone, Scarpa (bib0038) 2023
Vivone, Restaino, Chanussot (bib0022) 2018; 27
Yang, Zhang, Wang (bib0023) 2017; 29
Wan, Gong, Zhong, Pan, Li, Yang (bib0054) 2020; 59
Wei, Bioucas-Dias, Dobigeon, Tourneret (bib0014) 2015; 53
Zhang, Lim, Qin, Tan (bib0064) 2016; 28
Roy, Deria, Shah, Haut, Du, Plaza (bib0060) 2023; 61
Wang, Fang, Li, Zhang (bib0026) 2018; 28
Zou, He, Zhang (bib0061) 2022; 60
Zhang, Li (bib0016) 2007; 11
Simoes, Bioucas-Dias, Almeida, Chanussot (bib0025) 2014; 53
Qu, Hou, Dong, Xiao, Du, Li (bib0030) 2021; 60
Feng, Yu, Wang, Cao, Zhang, Jiao (bib0048) 2019; 57
Wu, Feng, Shang, Zhang, Jiao (bib0015) 2022; 256
Shen, Liu, Wu, Yang, Xiao (bib0024) 2021; 60
Guarino, Ciotola, Vivone, Poggi, Scarpa (bib0039) 2023
Yang, Fu, Hu, Huang, Ding, Paisley (bib0068) 2017
Liu (bib0008) 2000; 21
Zhang, Zou, Liangpei (bib0056) 2022; 60
Zeng, Huang, Liu, Zhang, Zou (bib0067) 2010
Wei, Dobigeon, Tourneret (bib0013) 2015; 24
Dong, Zhang, Qu, Xiao, Liang, Li (bib0029) 2021; 60
Liang, Zhang, Li (bib0046) 2022; 15
Xie, Lei, Cui, Li, Du (bib0028) 2019; 31
Yokoya, Yairi, Iwasaki (bib0011) 2011; 50
Hu, Huang, Wei, Zhang, Li (bib0041) 2015; 2015
Van Der Meer (bib0002) 2004; 5
Vivone (bib0019) 2019; 57
Wang, Zhang, Li, Zhao, Rao (bib0018) 2018; 22
C.A. Laben, B.V. Brower, Process for enhancing the spatial resolution of multispectral imagery using pan-sharpening, in, Google Patents, 2000.
Ke, Zhang, Battiti (bib0017) 2013; 43
Diao, Guo, Zhang, Yan, He, Zhao, Zhao, Zhang (bib0075) 2023; 212
Wang, Du, Zhang, Xu (bib0044) 2020; 59
He, Zhu, Li, Plaza, Chanussot, Li (bib0031) 2019; 12
Hong, Han, Yao, Gao, Zhang, Plaza, Chanussot (bib0059) 2021; 60
Liu, Han, Yang, Liu, Chen, Liu, Deng (bib0074) 2023; 15
Vivone, Marano, Chanussot (bib0021) 2020; 58
Yang, Du, Zhang (bib0076) 2023; 197
Liu, Gong, Miao, Wang, Li (bib0063) 2017; 29
He, Xi, Li, Lai, Plaza, Chanussot (bib0032) 2023; 61
Chen, Jiang, Li, Jia, Ghamisi (bib0073) 2016; 54
Nie, Xu, Pan (bib0040) 2022; 19
Qing, Liu, Feng, Gao (bib0058) 2021; 13
Chen, Jiang, Li, Jia, Ghamisi (bib0042) 2016; 54
Gautam, Singh (bib0077) 2020; 34
Feng, Wu, Shang, Sui, Li, Jiao, Zhang (bib0045) 2020; 59
Yuen, Richardson (bib0004) 2010; 58
Zheng, Li, Li, Guo, Wu, Chanussot (bib0027) 2020; 58
Mou, Lu, Li, Zhu (bib0052) 2020; 58
Yokoya, Iwasaki (bib0070) 2016; 5
Qin, Shang, Tian, Wang, Zhang, Tang (bib0051) 2018; 16
Holzwarth, Muller, Habermeyer, Richter, Hausold, Thiemann, Strobl (bib0071) 2003
Aiazzi, Baronti, Selva (bib0007) 2007; 45
Vivone, Alparone, Chanussot, Dalla Mura, Garzelli, Licciardi, Restaino, Wald (bib0010) 2014; 53
J. Zhao, L. Hu, L. Huang, C. Wang, D.J.E.A.O.A.I. Liang, MSRA-G: combination of multi-scale residual attention network and generative adversarial networks for hyperspectral image classification, 121 (2023) 106017.
Aiazzi, Alparone, Baronti, Garzelli, Selva (bib0009) 2006; 72
Xie, Cui, Li, Lei, Du, Li (bib0035) 2020; 59
Wan, Gong, Zhong, Du, Zhang, Yang (bib0053) 2019; 58
Brown, Walter, Cudahy (bib0001) 2005; 52
Dong, Yang, Qu, Li, Yang, Jia (bib0034) 2023
Yu, Han, Song, Liu, Chang (bib0043) 2021; 60
Choi, Yu, Kim (bib0020) 2010; 49
Lu, Deb, Boddeti (bib0065) 2020
He, Zhong, Lei, Li, Xie (bib0036) 2019; 11
Alparone, Aiazzi, Baronti, Garzelli, Nencini, Selva (bib0078) 2008; 74
Wang, Gao, Dong, Du (bib0049) 2020; 59
He (10.1016/j.inffus.2024.102383_bib0031) 2019; 12
Qiu (10.1016/j.inffus.2024.102383_bib0062) 2014
Zhang (10.1016/j.inffus.2024.102383_bib0064) 2016; 28
Liang (10.1016/j.inffus.2024.102383_bib0046) 2022; 15
Yang (10.1016/j.inffus.2024.102383_bib0076) 2023; 197
Xie (10.1016/j.inffus.2024.102383_bib0035) 2020; 59
Diao (10.1016/j.inffus.2024.102383_bib0075) 2023; 212
Dong (10.1016/j.inffus.2024.102383_bib0034) 2023
Roy (10.1016/j.inffus.2024.102383_bib0060) 2023; 61
Zhu (10.1016/j.inffus.2024.102383_bib0047) 2018; 56
Liu (10.1016/j.inffus.2024.102383_bib0063) 2017; 29
Yokoya (10.1016/j.inffus.2024.102383_bib0011) 2011; 50
Chen (10.1016/j.inffus.2024.102383_bib0073) 2016; 54
Qu (10.1016/j.inffus.2024.102383_bib0030) 2021; 60
Wang (10.1016/j.inffus.2024.102383_bib0044) 2020; 59
Nie (10.1016/j.inffus.2024.102383_bib0040) 2022; 19
Yuen (10.1016/j.inffus.2024.102383_bib0004) 2010; 58
10.1016/j.inffus.2024.102383_bib0006
Feng (10.1016/j.inffus.2024.102383_bib0045) 2020; 59
Zhou (10.1016/j.inffus.2024.102383_bib0033) 2023; 16
Lanaras (10.1016/j.inffus.2024.102383_bib0012) 2015
Rui (10.1016/j.inffus.2024.102383_bib0037) 2024
Melgani (10.1016/j.inffus.2024.102383_bib0072) 2004; 42
10.1016/j.inffus.2024.102383_bib0050
Wu (10.1016/j.inffus.2024.102383_bib0015) 2022; 256
Guarino (10.1016/j.inffus.2024.102383_bib0038) 2023
Chen (10.1016/j.inffus.2024.102383_bib0042) 2016; 54
Liu (10.1016/j.inffus.2024.102383_bib0008) 2000; 21
Vivone (10.1016/j.inffus.2024.102383_bib0010) 2014; 53
Zhang (10.1016/j.inffus.2024.102383_bib0016) 2007; 11
Wang (10.1016/j.inffus.2024.102383_bib0018) 2018; 22
Yang (10.1016/j.inffus.2024.102383_bib0023) 2017; 29
Lu (10.1016/j.inffus.2024.102383_bib0065) 2020
Hu (10.1016/j.inffus.2024.102383_bib0041) 2015; 2015
Yokoya (10.1016/j.inffus.2024.102383_bib0070) 2016; 5
Sun (10.1016/j.inffus.2024.102383_bib0057) 2022; 60
Zheng (10.1016/j.inffus.2024.102383_bib0027) 2020; 58
Guarino (10.1016/j.inffus.2024.102383_bib0039) 2023
Qin (10.1016/j.inffus.2024.102383_bib0051) 2018; 16
Brown (10.1016/j.inffus.2024.102383_bib0001) 2005; 52
Aiazzi (10.1016/j.inffus.2024.102383_bib0007) 2007; 45
Yang (10.1016/j.inffus.2024.102383_bib0068) 2017
Shen (10.1016/j.inffus.2024.102383_bib0024) 2021; 60
Vivone (10.1016/j.inffus.2024.102383_bib0019) 2019; 57
Ke (10.1016/j.inffus.2024.102383_bib0017) 2013; 43
Gautam (10.1016/j.inffus.2024.102383_bib0077) 2020; 34
Wang (10.1016/j.inffus.2024.102383_bib0026) 2018; 28
Carper (10.1016/j.inffus.2024.102383_bib0005) 1990; 56
Holzwarth (10.1016/j.inffus.2024.102383_bib0071) 2003
Gevaert (10.1016/j.inffus.2024.102383_bib0003) 2015; 8
Choi (10.1016/j.inffus.2024.102383_bib0020) 2010; 49
Wei (10.1016/j.inffus.2024.102383_bib0014) 2015; 53
Simoes (10.1016/j.inffus.2024.102383_bib0025) 2014; 53
Wang (10.1016/j.inffus.2024.102383_bib0049) 2020; 59
Chen (10.1016/j.inffus.2024.102383_bib0066) 2019
Mou (10.1016/j.inffus.2024.102383_bib0052) 2020; 58
Zhang (10.1016/j.inffus.2024.102383_bib0056) 2022; 60
Vivone (10.1016/j.inffus.2024.102383_bib0022) 2018; 27
Wei (10.1016/j.inffus.2024.102383_bib0013) 2015; 24
Liu (10.1016/j.inffus.2024.102383_bib0074) 2023; 15
Alparone (10.1016/j.inffus.2024.102383_bib0078) 2008; 74
Yu (10.1016/j.inffus.2024.102383_bib0043) 2021; 60
Aiazzi (10.1016/j.inffus.2024.102383_bib0009) 2006; 72
He (10.1016/j.inffus.2024.102383_bib0032) 2023; 61
Van Der Meer (10.1016/j.inffus.2024.102383_bib0002) 2004; 5
Vivone (10.1016/j.inffus.2024.102383_bib0021) 2020; 58
Feng (10.1016/j.inffus.2024.102383_bib0048) 2019; 57
Qing (10.1016/j.inffus.2024.102383_bib0058) 2021; 13
Zou (10.1016/j.inffus.2024.102383_bib0061) 2022; 60
Yi (10.1016/j.inffus.2024.102383_bib0069) 2020; 24
Dong (10.1016/j.inffus.2024.102383_bib0029) 2021; 60
Wan (10.1016/j.inffus.2024.102383_bib0053) 2019; 58
Hong (10.1016/j.inffus.2024.102383_bib0059) 2021; 60
Wan (10.1016/j.inffus.2024.102383_bib0054) 2020; 59
Xie (10.1016/j.inffus.2024.102383_bib0028) 2019; 31
He (10.1016/j.inffus.2024.102383_bib0036) 2019; 11
Zeng (10.1016/j.inffus.2024.102383_bib0067) 2010
References_xml – volume: 19
  start-page: 1
  year: 2022
  end-page: 5
  ident: bib0040
  article-title: Unsupervised hyperspectral pansharpening by ratio estimation and residual attention network
  publication-title: IEEE Geosci. Remote Sens. Lett.
– volume: 53
  start-page: 2565
  year: 2014
  end-page: 2586
  ident: bib0010
  article-title: A critical comparison among pansharpening algorithms
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 57
  start-page: 5329
  year: 2019
  end-page: 5343
  ident: bib0048
  article-title: Classification of hyperspectral images based on multiclass spatial–spectral generative adversarial networks
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 13
  start-page: 2216
  year: 2021
  ident: bib0058
  article-title: Improved transformer net for hyperspectral image classification
  publication-title: Remote Sens. (Basel)
– volume: 28
  start-page: 227
  year: 2018
  end-page: 239
  ident: bib0026
  article-title: High-quality Bayesian pansharpening
  publication-title: IEEE Trans. Image Process.
– volume: 59
  start-page: 463
  year: 2020
  end-page: 477
  ident: bib0035
  article-title: HPGAN: hyperspectral pansharpening using 3-D generative adversarial networks
  publication-title: IEEE Trans. Geosci. Remote Sens.
– start-page: 1
  year: 2010
  end-page: 4
  ident: bib0067
  article-title: Fusion of satellite images in urban area: assessing the quality of resulting images
  publication-title: 2010 18th International Conference on Geoinformatics
– volume: 45
  start-page: 3230
  year: 2007
  end-page: 3239
  ident: bib0007
  article-title: Improving component substitution pansharpening through multivariate regression of MS $+ $ Pan data
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 56
  start-page: 459
  year: 1990
  end-page: 467
  ident: bib0005
  article-title: The use of intensity-hue-saturation transformations for merging SPOT panchromatic and multispectral image data
  publication-title: J. Photogramm. Eng. Remote Sens.
– volume: 2015
  start-page: 1
  year: 2015
  end-page: 12
  ident: bib0041
  article-title: Deep convolutional neural networks for hyperspectral image classification
  publication-title: J. Sens.
– volume: 59
  start-page: 597
  year: 2020
  end-page: 612
  ident: bib0054
  article-title: Hyperspectral image classification with context-aware dynamic graph convolutional network
  publication-title: IEEE Trans. Geosci. Remote Sens.
– reference: C.A. Laben, B.V. Brower, Process for enhancing the spatial resolution of multispectral imagery using pan-sharpening, in, Google Patents, 2000.
– volume: 58
  start-page: 241
  year: 2010
  end-page: 253
  ident: bib0004
  article-title: An introduction to hyperspectral imaging and its application for security, surveillance and target acquisition
  publication-title: Imaging Sci. J.
– start-page: 1
  year: 2014
  end-page: 6
  ident: bib0062
  article-title: Ensemble deep learning for regression and time series forecasting
  publication-title: 2014 IEEE symposium on computational intelligence in ensemble learning (CIEL)
– volume: 52
  start-page: 353
  year: 2005
  end-page: 364
  ident: bib0001
  article-title: Hyperspectral imaging spectroscopy of a Mars analogue environment at the North Pole Dome, Pilbara Craton, Western Australia
  publication-title: Aust. J. Earth Sci.
– year: 2023
  ident: bib0039
  article-title: PCA-CNN Hybrid Approach for Hyperspectral Pansharpening
  publication-title: IEEE Geosci. Remote Sens. Lett.
– volume: 21
  start-page: 3461
  year: 2000
  end-page: 3472
  ident: bib0008
  article-title: Smoothing filter-based intensity modulation: a spectral preserve image fusion technique for improving spatial details
  publication-title: J. Int. J. Remote Sens.
– volume: 56
  start-page: 5046
  year: 2018
  end-page: 5063
  ident: bib0047
  article-title: Generative adversarial networks for hyperspectral image classification
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 49
  start-page: 295
  year: 2010
  end-page: 309
  ident: bib0020
  article-title: A new adaptive component-substitution-based satellite image fusion by using partial replacement
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 50
  start-page: 528
  year: 2011
  end-page: 537
  ident: bib0011
  article-title: Coupled nonnegative matrix factorization unmixing for hyperspectral and multispectral data fusion
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 24
  start-page: 4109
  year: 2015
  end-page: 4121
  ident: bib0013
  article-title: Fast fusion of multi-band images based on solving a Sylvester equation
  publication-title: IEEE J. Sel. Top. Signal Process.
– volume: 16
  start-page: 3268
  year: 2023
  end-page: 3294
  ident: bib0033
  article-title: HyperRefiner: a refined hyperspectral pansharpening network based on the autoencoder and self-attention
  publication-title: Int. J. Digit. Earth.
– volume: 15
  start-page: 5401
  year: 2022
  end-page: 5415
  ident: bib0046
  article-title: Multiscale DenseNet meets with bi-RNN for hyperspectral image classification
  publication-title: IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens.
– volume: 5
  start-page: 55
  year: 2004
  end-page: 68
  ident: bib0002
  article-title: Analysis of spectral absorption features in hyperspectral imagery
  publication-title: Int. J. Appl. Earth Observ. Geoinformation
– volume: 60
  start-page: 1
  year: 2022
  end-page: 16
  ident: bib0056
  article-title: EMS-GCN: an end-to-end mixhop superpixel-based graph convolutional network for hyperspectral image classification
  publication-title: IEEE Trans. Geosci. Remote Sens.
– start-page: 5449
  year: 2017
  end-page: 5457
  ident: bib0068
  article-title: PanNet: a deep network architecture for pan-sharpening
  publication-title: Proceedings of the IEEE international conference on computer vision
– volume: 29
  start-page: 3647
  year: 2017
  end-page: 3657
  ident: bib0023
  article-title: Learning low-rank decomposition for pan-sharpening with spatial-spectral offsets
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– start-page: 3586
  year: 2015
  end-page: 3594
  ident: bib0012
  article-title: Hyperspectral super-resolution by coupled spectral unmixing
  publication-title: Proceedings of the IEEE international conference on computer vision
– volume: 43
  start-page: 1845
  year: 2013
  end-page: 1859
  ident: bib0017
  article-title: MOEA/D-ACO: a multiobjective evolutionary algorithm using decomposition and antcolony
  publication-title: IEEE Trans. Cybern.
– volume: 60
  start-page: 1
  year: 2022
  end-page: 16
  ident: bib0061
  article-title: LESSFormer: local-enhanced spectral-spatial transformer for hyperspectral image classification
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 34
  start-page: 101
  year: 2020
  end-page: 124
  ident: bib0077
  article-title: CNN-VSR: a deep learning architecture with validation-based stopping rule for time series classication
  publication-title: Appl. Artif. Intell.
– volume: 72
  start-page: 591
  year: 2006
  end-page: 596
  ident: bib0009
  article-title: MTF-tailored multiscale fusion of high-resolution MS and Pan imagery
  publication-title: J. Photogramm. Eng. Remote Sens.
– volume: 58
  start-page: 8059
  year: 2020
  end-page: 8076
  ident: bib0027
  article-title: Hyperspectral pansharpening using deep prior and dual attention residual network
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 31
  start-page: 1529
  year: 2019
  end-page: 1543
  ident: bib0028
  article-title: Hyperspectral pansharpening with deep priors
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– start-page: 12044
  year: 2020
  end-page: 12053
  ident: bib0065
  article-title: MUXConv: information multiplexing in convolutional neural networks
  publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
– volume: 54
  start-page: 6232
  year: 2016
  end-page: 6251
  ident: bib0042
  article-title: Deep feature extraction and classification of hyperspectral images based on convolutional neural networks
  publication-title: IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens.
– volume: 24
  start-page: 1299
  year: 2020
  end-page: 1306
  ident: bib0069
  article-title: Aerial hyperspectral remote sensing classification dataset of Xiongan New Area (Matiwan Village)
  publication-title: Natl. Remote Sens. Bull.
– volume: 8
  start-page: 3140
  year: 2015
  end-page: 3146
  ident: bib0003
  article-title: Generation of spectral–temporal response surfaces by combining multispectral satellite and hyperspectral UAV imagery for precision agriculture applications
  publication-title: IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens.
– volume: 58
  start-page: 6152
  year: 2020
  end-page: 6167
  ident: bib0021
  article-title: Pansharpening: context-based generalized Laplacian pyramids by robust regression
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 61
  start-page: 1
  year: 2023
  end-page: 19
  ident: bib0032
  article-title: Dynamic hyperspectral pansharpening CNNs
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 59
  start-page: 5054
  year: 2020
  end-page: 5070
  ident: bib0045
  article-title: Attention multibranch convolutional neural network for hyperspectral image classification based on adaptive region search
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 58
  start-page: 3162
  year: 2019
  end-page: 3177
  ident: bib0053
  article-title: Multiscale dynamic graph convolutional network for hyperspectral image classification
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 11
  start-page: 712
  year: 2007
  end-page: 731
  ident: bib0016
  article-title: MOEA/D: a multiobjective evolutionary algorithm based on decomposition
  publication-title: IEEE Trans. Evol. Comput.
– volume: 59
  start-page: 5040
  year: 2020
  end-page: 5053
  ident: bib0049
  article-title: Adaptive dropblock-enhanced generative adversarial networks for hyperspectral image classification
  publication-title: IEEE Trans. Geosci. Remote Sens.
– year: 2023
  ident: bib0038
  article-title: Band-wise Hyperspectral Image Pansharpening using CNN Model Propagation
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 60
  start-page: 1
  year: 2021
  end-page: 16
  ident: bib0043
  article-title: Feedback attention-based dense CNN for hyperspectral image classification
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 59
  start-page: 2461
  year: 2020
  end-page: 2477
  ident: bib0044
  article-title: Adaptive spectral–spatial multiscale contextual feature extraction for hyperspectral image classification
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 212
  year: 2023
  ident: bib0075
  article-title: Spatial-spectral attention-enhanced Res-3D-OctConv for corn and weed identification utilizing hyperspectral imaging and deep learning
  publication-title: Comput. Electr. Agric.
– year: 2024
  ident: bib0037
  article-title: Unsupervised hyperspectral pansharpening via low-rank diffusion model
  publication-title: Inf. Fusion
– volume: 53
  start-page: 3658
  year: 2015
  end-page: 3668
  ident: bib0014
  article-title: Hyperspectral and multispectral image fusion based on a sparse representation
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 60
  start-page: 1
  year: 2021
  end-page: 15
  ident: bib0059
  article-title: SpectralFormer: rethinking hyperspectral image classification with transformers
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 53
  start-page: 3373
  year: 2014
  end-page: 3388
  ident: bib0025
  article-title: A convex formulation for hyperspectral image superresolution via subspace-based regularization
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 29
  start-page: 2450
  year: 2017
  end-page: 2463
  ident: bib0063
  article-title: Structure learning for deep neural networks based on multiobjective optimization
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– volume: 28
  start-page: 2306
  year: 2016
  end-page: 2318
  ident: bib0064
  article-title: Multiobjective deep belief networks ensemble for remaining useful life estimation in prognostics
  publication-title: IEEE transactions on neural networks learning systems
– volume: 16
  start-page: 241
  year: 2018
  end-page: 245
  ident: bib0051
  article-title: Spectral–spatial graph convolutional networks for semisupervised hyperspectral image classification
  publication-title: IEEE Geosci. Remote Sens. Lett.
– volume: 197
  start-page: 145
  year: 2023
  end-page: 166
  ident: bib0076
  article-title: From center to surrounding: an interactive learning framework for hyperspectral image classification
  publication-title: ISPRS J. Photogramm. Remote Sens.
– start-page: 3
  year: 2003
  end-page: 14
  ident: bib0071
  article-title: HySens-DAIS 7915/ROSIS imaging spectrometers at DLR
  publication-title: Proceedings of the 3rd EARSeL workshop on imaging spectroscopy
– volume: 54
  start-page: 6232
  year: 2016
  end-page: 6251
  ident: bib0073
  article-title: Deep feature extraction and classification of hyperspectral images based on convolutional neural networks
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 60
  start-page: 1
  year: 2021
  end-page: 13
  ident: bib0029
  article-title: Laplacian pyramid dense network for hyperspectral pansharpening
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 61
  start-page: 1
  year: 2023
  end-page: 15
  ident: bib0060
  article-title: Spectral–spatial morphological attention transformer for hyperspectral image classification
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 42
  start-page: 1778
  year: 2004
  end-page: 1790
  ident: bib0072
  article-title: Classification of hyperspectral remote sensing images with support vector machines
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 57
  start-page: 6421
  year: 2019
  end-page: 6433
  ident: bib0019
  article-title: Robust band-dependent spatial-detail approaches for panchromatic sharpening
  publication-title: IEEE Trans. Geosci. Remote Sens.
– start-page: 3435
  year: 2019
  end-page: 3444
  ident: bib0066
  article-title: Drop an octave: reducing spatial redundancy in convolutional neural networks with octave convolution
  publication-title: Proceedings of the IEEE/CVF international conference on computer vision
– reference: J. Zhao, L. Hu, L. Huang, C. Wang, D.J.E.A.O.A.I. Liang, MSRA-G: combination of multi-scale residual attention network and generative adversarial networks for hyperspectral image classification, 121 (2023) 106017.
– volume: 15
  start-page: 4328
  year: 2023
  ident: bib0074
  article-title: CCC-SSA-UNet: U-Shaped Pansharpening Network with Channel Cross-Concatenation and Spatial–Spectral Attention Mechanism for Hyperspectral Image Super-Resolution
  publication-title: Remote Sens. (Basel)
– volume: 74
  start-page: 193
  year: 2008
  end-page: 200
  ident: bib0078
  article-title: Multispectral and panchromatic data fusion assessment without reference
  publication-title: Photogramm. Eng. Remote Sens.
– volume: 5
  start-page: 5
  year: 2016
  ident: bib0070
  publication-title: Airborne Hyperspectral Data Over Chikusei
– volume: 11
  start-page: 2691
  year: 2019
  ident: bib0036
  article-title: Hyperspectral pansharpening based on spectral constrained adversarial autoencoder
  publication-title: Remote Sens. (Basel)
– volume: 60
  start-page: 1
  year: 2022
  end-page: 14
  ident: bib0057
  article-title: Spectral–spatial feature tokenization transformer for hyperspectral image classification
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 27
  start-page: 3418
  year: 2018
  end-page: 3431
  ident: bib0022
  article-title: Full scale regression-based injection coefficients for panchromatic sharpening
  publication-title: IEEE Trans. Image Process.
– volume: 12
  start-page: 3092
  year: 2019
  end-page: 3100
  ident: bib0031
  article-title: HyperPNN: hyperspectral pansharpening via spectrally predictive convolutional neural networks
  publication-title: IEEe J. Sel. Top. Appl. Earth. Obs. Remote Sens.
– year: 2023
  ident: bib0034
  article-title: Feature pyramid fusion network for hyperspectral pansharpening
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– volume: 58
  start-page: 8246
  year: 2020
  end-page: 8257
  ident: bib0052
  article-title: Nonlocal graph convolutional networks for hyperspectral image classification
  publication-title: IEEE Geosci. Remote Sens. Lett.
– volume: 60
  start-page: 1
  year: 2021
  end-page: 13
  ident: bib0030
  article-title: A dual-branch detail extraction network for hyperspectral pansharpening
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 22
  start-page: 7833
  year: 2018
  end-page: 7846
  ident: bib0018
  article-title: External archive matching strategy for MOEA/D
  publication-title: Soft Comput.
– volume: 60
  start-page: 1
  year: 2021
  end-page: 17
  ident: bib0024
  article-title: ADMM-HFNet: a matrix decomposition-based deep approach for hyperspectral image fusion
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 256
  year: 2022
  ident: bib0015
  article-title: CMNet: classification-oriented multi-task network for hyperspectral pansharpening
  publication-title: Knowl. Based Syst.
– volume: 74
  start-page: 193
  year: 2008
  ident: 10.1016/j.inffus.2024.102383_bib0078
  article-title: Multispectral and panchromatic data fusion assessment without reference
  publication-title: Photogramm. Eng. Remote Sens.
  doi: 10.14358/PERS.74.2.193
– year: 2023
  ident: 10.1016/j.inffus.2024.102383_bib0034
  article-title: Feature pyramid fusion network for hyperspectral pansharpening
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– volume: 34
  start-page: 101
  year: 2020
  ident: 10.1016/j.inffus.2024.102383_bib0077
  article-title: CNN-VSR: a deep learning architecture with validation-based stopping rule for time series classication
  publication-title: Appl. Artif. Intell.
  doi: 10.1080/08839514.2020.1713454
– volume: 56
  start-page: 459
  year: 1990
  ident: 10.1016/j.inffus.2024.102383_bib0005
  article-title: The use of intensity-hue-saturation transformations for merging SPOT panchromatic and multispectral image data
  publication-title: J. Photogramm. Eng. Remote Sens.
– volume: 24
  start-page: 1299
  year: 2020
  ident: 10.1016/j.inffus.2024.102383_bib0069
  article-title: Aerial hyperspectral remote sensing classification dataset of Xiongan New Area (Matiwan Village)
  publication-title: Natl. Remote Sens. Bull.
– volume: 22
  start-page: 7833
  year: 2018
  ident: 10.1016/j.inffus.2024.102383_bib0018
  article-title: External archive matching strategy for MOEA/D
  publication-title: Soft Comput.
  doi: 10.1007/s00500-018-3499-9
– volume: 27
  start-page: 3418
  year: 2018
  ident: 10.1016/j.inffus.2024.102383_bib0022
  article-title: Full scale regression-based injection coefficients for panchromatic sharpening
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2018.2819501
– volume: 50
  start-page: 528
  year: 2011
  ident: 10.1016/j.inffus.2024.102383_bib0011
  article-title: Coupled nonnegative matrix factorization unmixing for hyperspectral and multispectral data fusion
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2011.2161320
– volume: 24
  start-page: 4109
  year: 2015
  ident: 10.1016/j.inffus.2024.102383_bib0013
  article-title: Fast fusion of multi-band images based on solving a Sylvester equation
  publication-title: IEEE J. Sel. Top. Signal Process.
– volume: 16
  start-page: 3268
  year: 2023
  ident: 10.1016/j.inffus.2024.102383_bib0033
  article-title: HyperRefiner: a refined hyperspectral pansharpening network based on the autoencoder and self-attention
  publication-title: Int. J. Digit. Earth.
  doi: 10.1080/17538947.2023.2246944
– start-page: 1
  year: 2010
  ident: 10.1016/j.inffus.2024.102383_bib0067
  article-title: Fusion of satellite images in urban area: assessing the quality of resulting images
– volume: 61
  start-page: 1
  year: 2023
  ident: 10.1016/j.inffus.2024.102383_bib0032
  article-title: Dynamic hyperspectral pansharpening CNNs
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 12
  start-page: 3092
  year: 2019
  ident: 10.1016/j.inffus.2024.102383_bib0031
  article-title: HyperPNN: hyperspectral pansharpening via spectrally predictive convolutional neural networks
  publication-title: IEEe J. Sel. Top. Appl. Earth. Obs. Remote Sens.
  doi: 10.1109/JSTARS.2019.2917584
– year: 2023
  ident: 10.1016/j.inffus.2024.102383_bib0039
  article-title: PCA-CNN Hybrid Approach for Hyperspectral Pansharpening
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2023.3326204
– volume: 53
  start-page: 3658
  year: 2015
  ident: 10.1016/j.inffus.2024.102383_bib0014
  article-title: Hyperspectral and multispectral image fusion based on a sparse representation
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2014.2381272
– volume: 54
  start-page: 6232
  year: 2016
  ident: 10.1016/j.inffus.2024.102383_bib0042
  article-title: Deep feature extraction and classification of hyperspectral images based on convolutional neural networks
  publication-title: IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens.
– volume: 2015
  start-page: 1
  year: 2015
  ident: 10.1016/j.inffus.2024.102383_bib0041
  article-title: Deep convolutional neural networks for hyperspectral image classification
  publication-title: J. Sens.
  doi: 10.1155/2015/258619
– volume: 60
  start-page: 1
  year: 2022
  ident: 10.1016/j.inffus.2024.102383_bib0056
  article-title: EMS-GCN: an end-to-end mixhop superpixel-based graph convolutional network for hyperspectral image classification
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 57
  start-page: 5329
  year: 2019
  ident: 10.1016/j.inffus.2024.102383_bib0048
  article-title: Classification of hyperspectral images based on multiclass spatial–spectral generative adversarial networks
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2019.2899057
– volume: 53
  start-page: 3373
  year: 2014
  ident: 10.1016/j.inffus.2024.102383_bib0025
  article-title: A convex formulation for hyperspectral image superresolution via subspace-based regularization
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2014.2375320
– volume: 45
  start-page: 3230
  year: 2007
  ident: 10.1016/j.inffus.2024.102383_bib0007
  article-title: Improving component substitution pansharpening through multivariate regression of MS $+ $ Pan data
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2007.901007
– volume: 60
  start-page: 1
  year: 2021
  ident: 10.1016/j.inffus.2024.102383_bib0029
  article-title: Laplacian pyramid dense network for hyperspectral pansharpening
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 29
  start-page: 2450
  year: 2017
  ident: 10.1016/j.inffus.2024.102383_bib0063
  article-title: Structure learning for deep neural networks based on multiobjective optimization
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2017.2695223
– volume: 59
  start-page: 5040
  year: 2020
  ident: 10.1016/j.inffus.2024.102383_bib0049
  article-title: Adaptive dropblock-enhanced generative adversarial networks for hyperspectral image classification
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2020.3015843
– volume: 43
  start-page: 1845
  year: 2013
  ident: 10.1016/j.inffus.2024.102383_bib0017
  article-title: MOEA/D-ACO: a multiobjective evolutionary algorithm using decomposition and antcolony
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TSMCB.2012.2231860
– volume: 31
  start-page: 1529
  year: 2019
  ident: 10.1016/j.inffus.2024.102383_bib0028
  article-title: Hyperspectral pansharpening with deep priors
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2019.2920857
– volume: 56
  start-page: 5046
  year: 2018
  ident: 10.1016/j.inffus.2024.102383_bib0047
  article-title: Generative adversarial networks for hyperspectral image classification
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2018.2805286
– volume: 54
  start-page: 6232
  year: 2016
  ident: 10.1016/j.inffus.2024.102383_bib0073
  article-title: Deep feature extraction and classification of hyperspectral images based on convolutional neural networks
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2016.2584107
– volume: 28
  start-page: 227
  year: 2018
  ident: 10.1016/j.inffus.2024.102383_bib0026
  article-title: High-quality Bayesian pansharpening
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2018.2866954
– volume: 61
  start-page: 1
  year: 2023
  ident: 10.1016/j.inffus.2024.102383_bib0060
  article-title: Spectral–spatial morphological attention transformer for hyperspectral image classification
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 28
  start-page: 2306
  year: 2016
  ident: 10.1016/j.inffus.2024.102383_bib0064
  article-title: Multiobjective deep belief networks ensemble for remaining useful life estimation in prognostics
  publication-title: IEEE transactions on neural networks learning systems
  doi: 10.1109/TNNLS.2016.2582798
– volume: 58
  start-page: 8059
  year: 2020
  ident: 10.1016/j.inffus.2024.102383_bib0027
  article-title: Hyperspectral pansharpening using deep prior and dual attention residual network
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2020.2986313
– volume: 11
  start-page: 712
  year: 2007
  ident: 10.1016/j.inffus.2024.102383_bib0016
  article-title: MOEA/D: a multiobjective evolutionary algorithm based on decomposition
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2007.892759
– volume: 49
  start-page: 295
  year: 2010
  ident: 10.1016/j.inffus.2024.102383_bib0020
  article-title: A new adaptive component-substitution-based satellite image fusion by using partial replacement
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2010.2051674
– ident: 10.1016/j.inffus.2024.102383_bib0050
  doi: 10.1016/j.engappai.2023.106017
– start-page: 3
  year: 2003
  ident: 10.1016/j.inffus.2024.102383_bib0071
  article-title: HySens-DAIS 7915/ROSIS imaging spectrometers at DLR
– volume: 59
  start-page: 2461
  year: 2020
  ident: 10.1016/j.inffus.2024.102383_bib0044
  article-title: Adaptive spectral–spatial multiscale contextual feature extraction for hyperspectral image classification
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2020.2999957
– start-page: 5449
  year: 2017
  ident: 10.1016/j.inffus.2024.102383_bib0068
  article-title: PanNet: a deep network architecture for pan-sharpening
– volume: 11
  start-page: 2691
  year: 2019
  ident: 10.1016/j.inffus.2024.102383_bib0036
  article-title: Hyperspectral pansharpening based on spectral constrained adversarial autoencoder
  publication-title: Remote Sens. (Basel)
  doi: 10.3390/rs11222691
– volume: 19
  start-page: 1
  year: 2022
  ident: 10.1016/j.inffus.2024.102383_bib0040
  article-title: Unsupervised hyperspectral pansharpening by ratio estimation and residual attention network
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2022.3227055
– volume: 29
  start-page: 3647
  year: 2017
  ident: 10.1016/j.inffus.2024.102383_bib0023
  article-title: Learning low-rank decomposition for pan-sharpening with spatial-spectral offsets
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2017.2736011
– volume: 21
  start-page: 3461
  year: 2000
  ident: 10.1016/j.inffus.2024.102383_bib0008
  article-title: Smoothing filter-based intensity modulation: a spectral preserve image fusion technique for improving spatial details
  publication-title: J. Int. J. Remote Sens.
  doi: 10.1080/014311600750037499
– volume: 15
  start-page: 5401
  year: 2022
  ident: 10.1016/j.inffus.2024.102383_bib0046
  article-title: Multiscale DenseNet meets with bi-RNN for hyperspectral image classification
  publication-title: IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens.
  doi: 10.1109/JSTARS.2022.3187009
– year: 2023
  ident: 10.1016/j.inffus.2024.102383_bib0038
  article-title: Band-wise Hyperspectral Image Pansharpening using CNN Model Propagation
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 15
  start-page: 4328
  year: 2023
  ident: 10.1016/j.inffus.2024.102383_bib0074
  article-title: CCC-SSA-UNet: U-Shaped Pansharpening Network with Channel Cross-Concatenation and Spatial–Spectral Attention Mechanism for Hyperspectral Image Super-Resolution
  publication-title: Remote Sens. (Basel)
  doi: 10.3390/rs15174328
– start-page: 3586
  year: 2015
  ident: 10.1016/j.inffus.2024.102383_bib0012
  article-title: Hyperspectral super-resolution by coupled spectral unmixing
– start-page: 12044
  year: 2020
  ident: 10.1016/j.inffus.2024.102383_bib0065
  article-title: MUXConv: information multiplexing in convolutional neural networks
– volume: 256
  year: 2022
  ident: 10.1016/j.inffus.2024.102383_bib0015
  article-title: CMNet: classification-oriented multi-task network for hyperspectral pansharpening
  publication-title: Knowl. Based Syst.
  doi: 10.1016/j.knosys.2022.109878
– volume: 5
  start-page: 5
  year: 2016
  ident: 10.1016/j.inffus.2024.102383_bib0070
– volume: 60
  start-page: 1
  year: 2021
  ident: 10.1016/j.inffus.2024.102383_bib0059
  article-title: SpectralFormer: rethinking hyperspectral image classification with transformers
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2022.3172371
– start-page: 1
  year: 2014
  ident: 10.1016/j.inffus.2024.102383_bib0062
  article-title: Ensemble deep learning for regression and time series forecasting
– volume: 60
  start-page: 1
  year: 2021
  ident: 10.1016/j.inffus.2024.102383_bib0043
  article-title: Feedback attention-based dense CNN for hyperspectral image classification
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2020.3040273
– volume: 72
  start-page: 591
  year: 2006
  ident: 10.1016/j.inffus.2024.102383_bib0009
  article-title: MTF-tailored multiscale fusion of high-resolution MS and Pan imagery
  publication-title: J. Photogramm. Eng. Remote Sens.
  doi: 10.14358/PERS.72.5.591
– volume: 16
  start-page: 241
  year: 2018
  ident: 10.1016/j.inffus.2024.102383_bib0051
  article-title: Spectral–spatial graph convolutional networks for semisupervised hyperspectral image classification
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2018.2869563
– volume: 58
  start-page: 8246
  year: 2020
  ident: 10.1016/j.inffus.2024.102383_bib0052
  article-title: Nonlocal graph convolutional networks for hyperspectral image classification
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/TGRS.2020.2973363
– volume: 59
  start-page: 5054
  year: 2020
  ident: 10.1016/j.inffus.2024.102383_bib0045
  article-title: Attention multibranch convolutional neural network for hyperspectral image classification based on adaptive region search
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2020.3011943
– start-page: 3435
  year: 2019
  ident: 10.1016/j.inffus.2024.102383_bib0066
  article-title: Drop an octave: reducing spatial redundancy in convolutional neural networks with octave convolution
– volume: 212
  year: 2023
  ident: 10.1016/j.inffus.2024.102383_bib0075
  article-title: Spatial-spectral attention-enhanced Res-3D-OctConv for corn and weed identification utilizing hyperspectral imaging and deep learning
  publication-title: Comput. Electr. Agric.
  doi: 10.1016/j.compag.2023.108092
– volume: 60
  start-page: 1
  year: 2022
  ident: 10.1016/j.inffus.2024.102383_bib0057
  article-title: Spectral–spatial feature tokenization transformer for hyperspectral image classification
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2022.3231215
– volume: 60
  start-page: 1
  year: 2022
  ident: 10.1016/j.inffus.2024.102383_bib0061
  article-title: LESSFormer: local-enhanced spectral-spatial transformer for hyperspectral image classification
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2022.3210185
– ident: 10.1016/j.inffus.2024.102383_bib0006
– volume: 60
  start-page: 1
  year: 2021
  ident: 10.1016/j.inffus.2024.102383_bib0030
  article-title: A dual-branch detail extraction network for hyperspectral pansharpening
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 52
  start-page: 353
  year: 2005
  ident: 10.1016/j.inffus.2024.102383_bib0001
  article-title: Hyperspectral imaging spectroscopy of a Mars analogue environment at the North Pole Dome, Pilbara Craton, Western Australia
  publication-title: Aust. J. Earth Sci.
  doi: 10.1080/08120090500134530
– volume: 59
  start-page: 463
  year: 2020
  ident: 10.1016/j.inffus.2024.102383_bib0035
  article-title: HPGAN: hyperspectral pansharpening using 3-D generative adversarial networks
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2020.2994238
– volume: 5
  start-page: 55
  year: 2004
  ident: 10.1016/j.inffus.2024.102383_bib0002
  article-title: Analysis of spectral absorption features in hyperspectral imagery
  publication-title: Int. J. Appl. Earth Observ. Geoinformation
  doi: 10.1016/j.jag.2003.09.001
– volume: 13
  start-page: 2216
  year: 2021
  ident: 10.1016/j.inffus.2024.102383_bib0058
  article-title: Improved transformer net for hyperspectral image classification
  publication-title: Remote Sens. (Basel)
  doi: 10.3390/rs13112216
– volume: 60
  start-page: 1
  year: 2021
  ident: 10.1016/j.inffus.2024.102383_bib0024
  article-title: ADMM-HFNet: a matrix decomposition-based deep approach for hyperspectral image fusion
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 57
  start-page: 6421
  year: 2019
  ident: 10.1016/j.inffus.2024.102383_bib0019
  article-title: Robust band-dependent spatial-detail approaches for panchromatic sharpening
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2019.2906073
– volume: 58
  start-page: 6152
  year: 2020
  ident: 10.1016/j.inffus.2024.102383_bib0021
  article-title: Pansharpening: context-based generalized Laplacian pyramids by robust regression
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2020.2974806
– volume: 53
  start-page: 2565
  year: 2014
  ident: 10.1016/j.inffus.2024.102383_bib0010
  article-title: A critical comparison among pansharpening algorithms
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2014.2361734
– volume: 42
  start-page: 1778
  year: 2004
  ident: 10.1016/j.inffus.2024.102383_bib0072
  article-title: Classification of hyperspectral remote sensing images with support vector machines
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2004.831865
– volume: 8
  start-page: 3140
  year: 2015
  ident: 10.1016/j.inffus.2024.102383_bib0003
  article-title: Generation of spectral–temporal response surfaces by combining multispectral satellite and hyperspectral UAV imagery for precision agriculture applications
  publication-title: IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens.
  doi: 10.1109/JSTARS.2015.2406339
– volume: 59
  start-page: 597
  year: 2020
  ident: 10.1016/j.inffus.2024.102383_bib0054
  article-title: Hyperspectral image classification with context-aware dynamic graph convolutional network
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2020.2994205
– volume: 197
  start-page: 145
  year: 2023
  ident: 10.1016/j.inffus.2024.102383_bib0076
  article-title: From center to surrounding: an interactive learning framework for hyperspectral image classification
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2023.01.024
– year: 2024
  ident: 10.1016/j.inffus.2024.102383_bib0037
  article-title: Unsupervised hyperspectral pansharpening via low-rank diffusion model
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2024.102325
– volume: 58
  start-page: 3162
  year: 2019
  ident: 10.1016/j.inffus.2024.102383_bib0053
  article-title: Multiscale dynamic graph convolutional network for hyperspectral image classification
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2019.2949180
– volume: 58
  start-page: 241
  year: 2010
  ident: 10.1016/j.inffus.2024.102383_bib0004
  article-title: An introduction to hyperspectral imaging and its application for security, surveillance and target acquisition
  publication-title: Imaging Sci. J.
  doi: 10.1179/174313110X12771950995716
SSID ssj0017031
Score 2.554806
Snippet •A multi-task multi-objective evolutionary network is proposed.•The framework combines two tasks by effective high-frequency information sharing.•Multi-task...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 102383
SubjectTerms Hyperspectral classification
Hyperspectral pansharpening
Multi-objective evolution algorithm
Multi-task learning
Title Multi-task multi-objective evolutionary network for hyperspectral image classification and pansharpening
URI https://dx.doi.org/10.1016/j.inffus.2024.102383
Volume 108
WOSCitedRecordID wos001221668500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-6305
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017031
  issn: 1566-2535
  databaseCode: AIEXJ
  dateStart: 20000701
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ba9swFBYh3cP2MHZl3Q097K2oOLIsS49ldGyBlbF2LG8mkqUlaeeE5kJ__o5uTtyM3WAvxojIcnQ-S-dI3_mE0JuMGWmYqAmvB4wwmKCIzKQlOdNcMjMeZMr6wybKszMxGslPvd4i5cJsrsqmETc3cvFfTQ1lYGyXOvsX5m4fCgVwD0aHK5gdrn9keJ9SS1bj5WVgC5K5moVR7chsYsuOKtcEArjnGU4gGg1Jl16E47sj8mjnVzsiUYCIFxSAeW3iNmyaNOHNEhG-TYI8suvlzt7-17Uz4mjq1qq3bmekAU_bovO0bv153nybrMfd6sNpM0wwjisUlLX8uLhstpc6E0ZazgktglbJsQlloqSE51nRGZ697sP-UB9WHWYuPoE_duwa9joU4VycWyLa564515qjzIKTC_HyAS0LKfro4OTD6WjY7jw5PX-vsRtfL6Vbek7gfls_d2d2XJSLB-h-jC3wScDEQ9QzzSN072MrzLt8jCZbdOBb6MC76MARHRjsijvowB4duIsODObFHXQ8QV_enV68fU_iYRtEQ9S4IgNVM2ZdnrM2tGR1AUO7BGeQ61JRRbViwlg5FpLJujRZXXAr8rrQ8EkXdiBt_hT1m3ljniGsIKbPNaPuJHsmFBeaWUqVNYbzMqvFIcpTn1U6KtG7A1GuqkQ5nFWhpyvX01Xo6UNE2lqLoMTym9-XyRxV9CaDl1gBgn5Z8_k_13yB7m4_gJeov7pem1fojt6spsvr1xFqPwCMCp_J
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-task+multi-objective+evolutionary+network+for+hyperspectral+image+classification+and+pansharpening&rft.jtitle=Information+fusion&rft.au=Wu%2C+Xiande&rft.au=Feng%2C+Jie&rft.au=Shang%2C+Ronghua&rft.au=Wu%2C+JinJian&rft.date=2024-08-01&rft.pub=Elsevier+B.V&rft.issn=1566-2535&rft.eissn=1872-6305&rft.volume=108&rft_id=info:doi/10.1016%2Fj.inffus.2024.102383&rft.externalDocID=S1566253524001611
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1566-2535&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1566-2535&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1566-2535&client=summon