A fast multi-output RBF neural network construction method
This paper investigates the center selection of multi-output radial basis function (RBF) networks, and a multi-output fast recursive algorithm (MFRA) is proposed. This method can not only reveal the significance of each candidate center based on the reduction in the trace of the error covariance mat...
Gespeichert in:
| Veröffentlicht in: | Neurocomputing (Amsterdam) Jg. 73; H. 10; S. 2196 - 2202 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier B.V
01.06.2010
|
| Schlagworte: | |
| ISSN: | 0925-2312, 1872-8286 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | This paper investigates the center selection of multi-output radial basis function (RBF) networks, and a multi-output fast recursive algorithm (MFRA) is proposed. This method can not only reveal the significance of each candidate center based on the reduction in the trace of the error covariance matrix, but also can estimate the network weights simultaneously using a back substitution approach. The main contribution is that the center selection procedure and the weight estimation are performed within a well-defined regression context, leading to a significantly reduced computational complexity. The efficiency of the algorithm is confirmed by a computational complexity analysis, and simulation results demonstrate its effectiveness. |
|---|---|
| ISSN: | 0925-2312 1872-8286 |
| DOI: | 10.1016/j.neucom.2010.01.014 |