Opportunistic sensing for inferring in-the-wild human contexts based on activity pattern recognition using smart computing
In recent years, with the evolution of internet-of-things and smart sensing technologies, sensor-based physical activity recognition has gained substantial prominence, and numerous research works have been conducted in this regard. However, the accurate recognition of in-the-wild human activities an...
Gespeichert in:
| Veröffentlicht in: | Future generation computer systems Jg. 106; S. 374 - 392 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier B.V
01.05.2020
|
| Schlagworte: | |
| ISSN: | 0167-739X, 1872-7115 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | In recent years, with the evolution of internet-of-things and smart sensing technologies, sensor-based physical activity recognition has gained substantial prominence, and numerous research works have been conducted in this regard. However, the accurate recognition of in-the-wild human activities and the associated contexts remains an open research challenge to be addressed. This research work presents a novel activity-aware human context recognition scheme that explicitly learns human activity patterns in diverse behavioral contexts and infers in-the-wild user contexts based on physical activity recognition. In this aspect, five daily living activities, e.g., lying, sitting, standing, walking, and running, are associated with overall fourteen different behavioral contexts, including phone positions. A public domain dataset, i.e., ExtraSensory, is used for evaluating the proposed scheme using a series of machine learning classifiers. Random Forest classifier achieves the best recognition rate of 88.4% and 89.8% in recognizing five physical activities and the associated behavioral contexts, respectively, which demonstrates the efficacy of the proposed method.
•Novel scheme for activity-aware human context recognition (AAHCR) in-the-wild.•Integration of 14 diverse behavioral contexts with 05 physical activities for AAHCR.•Fusion of smartphone and watch accelerometer for inferring user activity and context.•Detailed performance analysis of position-independent and position-dependent AAHCR.•Detailed comparative analysis of a series of machine learning classifiers for AAHCR. |
|---|---|
| AbstractList | In recent years, with the evolution of internet-of-things and smart sensing technologies, sensor-based physical activity recognition has gained substantial prominence, and numerous research works have been conducted in this regard. However, the accurate recognition of in-the-wild human activities and the associated contexts remains an open research challenge to be addressed. This research work presents a novel activity-aware human context recognition scheme that explicitly learns human activity patterns in diverse behavioral contexts and infers in-the-wild user contexts based on physical activity recognition. In this aspect, five daily living activities, e.g., lying, sitting, standing, walking, and running, are associated with overall fourteen different behavioral contexts, including phone positions. A public domain dataset, i.e., ExtraSensory, is used for evaluating the proposed scheme using a series of machine learning classifiers. Random Forest classifier achieves the best recognition rate of 88.4% and 89.8% in recognizing five physical activities and the associated behavioral contexts, respectively, which demonstrates the efficacy of the proposed method.
•Novel scheme for activity-aware human context recognition (AAHCR) in-the-wild.•Integration of 14 diverse behavioral contexts with 05 physical activities for AAHCR.•Fusion of smartphone and watch accelerometer for inferring user activity and context.•Detailed performance analysis of position-independent and position-dependent AAHCR.•Detailed comparative analysis of a series of machine learning classifiers for AAHCR. |
| Author | Azam, Muhammad Awais Ehatisham-ul-Haq, Muhammad |
| Author_xml | – sequence: 1 givenname: Muhammad surname: Ehatisham-ul-Haq fullname: Ehatisham-ul-Haq, Muhammad email: ehatishamuet@gmail.com – sequence: 2 givenname: Muhammad Awais surname: Azam fullname: Azam, Muhammad Awais email: awais.azam@uettaxila.edu.pk |
| BookMark | eNqFkMtKLDEQhoMoOF7ewEVeoNtkMulMuxBEvIHgRsFdyCTVWsNMukmq9ejTm3FcuTiuiqLq-6n6Dthu7CMwdiJFLYVsTpd1N9KYoJ6KqaiFrIVQO2wi52ZaGSn1LpuUNVMZ1T7vs4Ocl0IIaZScsM-HYegTjREzoecZYsb4wrs-cYwdpLTpMFb0CtU7rgJ_Hdcuct9Hgn-U-cJlCLyP3HnCN6QPPjgiSJEn8P1LRMIyHL9D89olKuh6GKn0R2yvc6sMxz_1kD1dXz1e3lb3Dzd3lxf3lVeioUqa2VzJObTgXKOMVhCU6bRTjfFuEaD1QXvdGC2DbJvWKbVwsxBarV2YdxrUIZttc33qc07Q2SFhOeXDSmE3_uzSbv3ZjT8rpC3-Cnb2C_NIbvMOJYerv-DzLQzlsTeEZLNHiB4CFi9kQ4__D_gCvPuVeA |
| CitedBy_id | crossref_primary_10_1016_j_inffus_2023_102197 crossref_primary_10_1109_JSEN_2020_3044315 crossref_primary_10_3390_s23125756 crossref_primary_10_1016_j_measen_2025_101970 crossref_primary_10_3390_math10132187 crossref_primary_10_1016_j_future_2023_09_029 crossref_primary_10_1177_15501329221123531 crossref_primary_10_1016_j_future_2023_05_023 crossref_primary_10_1109_JIOT_2022_3207090 crossref_primary_10_3390_s23177363 crossref_primary_10_1007_s12652_022_03870_5 crossref_primary_10_1007_s00607_025_01548_2 crossref_primary_10_1109_JIOT_2025_3555799 crossref_primary_10_3390_ijerph17186573 crossref_primary_10_3390_s24103032 crossref_primary_10_1007_s12652_021_02931_5 crossref_primary_10_3389_fphys_2022_933987 crossref_primary_10_1371_journal_pone_0286919 crossref_primary_10_1145_3643511 |
| Cites_doi | 10.1016/j.procs.2017.06.030 10.1109/JSEN.2019.2898891 10.1109/MC.2012.393 10.1002/widm.1254 10.1016/j.patcog.2017.09.005 10.3390/s151229858 10.1007/978-3-030-01177-2_15 10.3390/s120912588 10.1016/j.jpdc.2017.05.007 10.1016/j.cviu.2018.04.007 10.1016/j.future.2018.02.033 10.3233/AIS-160386 10.1016/j.inffus.2017.06.004 10.1177/1357633X15595178 10.1016/S0004-3702(97)00043-X 10.1155/2016/9493047 10.1016/j.eswa.2016.04.032 10.1109/TMC.2018.2841905 10.3390/s131013099 10.1016/j.jneumeth.2013.09.015 10.1109/72.159058 10.1186/s13673-017-0113-6 10.1145/2480741.2480744 10.1109/THMS.2016.2641388 10.1109/TPAMI.2016.2565479 10.1016/j.patcog.2018.04.022 10.4236/etsn.2017.61001 10.1109/TMC.2017.2651820 10.1016/j.patrec.2018.03.020 10.1109/JSEN.2016.2545708 10.1016/j.cirp.2018.04.066 10.3390/s17010198 10.1016/j.inffus.2018.06.002 10.1016/j.pmcj.2017.01.008 10.1109/IJCNN.2017.7966102 10.1016/j.compenvurbsys.2017.09.012 10.1109/JSEN.2018.2833745 10.3390/s16040426 10.3390/data3020011 10.1016/j.jnca.2018.02.020 10.1023/A:1007465528199 10.1016/j.measurement.2015.04.017 10.1007/s11042-016-4197-1 10.3390/s140610146 10.1109/TSMC.2017.2660547 10.1109/TII.2018.2789925 10.3390/s17092043 10.1007/s00779-017-1007-3 10.4249/scholarpedia.1883 10.1007/s00779-012-0515-4 10.1016/j.future.2017.11.029 10.3390/s18020613 10.1016/j.eswa.2018.03.056 10.1007/978-3-662-46578-3_97 10.1016/j.jnca.2016.03.013 |
| ContentType | Journal Article |
| Copyright | 2020 Elsevier B.V. |
| Copyright_xml | – notice: 2020 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.future.2020.01.003 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1872-7115 |
| EndPage | 392 |
| ExternalDocumentID | 10_1016_j_future_2020_01_003 S0167739X19314967 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 29H 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD AEBSH AEKER AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q G8K GBLVA GBOLZ HLZ HVGLF HZ~ IHE J1W KOM LG9 M41 MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 R2- RIG ROL RPZ SBC SDF SDG SES SEW SPC SPCBC SSV SSZ T5K UHS WUQ XPP ZMT ~G- 9DU AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACLOT ACRPL ADNMO AEIPS AFJKZ AGQPQ AIIUN ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c306t-1748318e9eaa63753ed37f5a367cabde9cd5c56751d1969a33ba4dd955ad8f5e3 |
| ISICitedReferencesCount | 25 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000527320000030&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0167-739X |
| IngestDate | Tue Nov 18 21:52:30 EST 2025 Sat Nov 29 07:25:41 EST 2025 Fri Feb 23 02:49:52 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | ANN BACC CNN PRE LR In-the-wild LDA SVM BN STN IoT DT MLP DBN LYD WLK GBT Activity recognition Smart sensing KBS SP KPCA K-NN Pervasive computing LMA LSTM AAHCR GMM HMM IR RUN F1 AAL Human context recognition HCI REC PAMS RF CRF HCR Machine learning DALs SIT |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c306t-1748318e9eaa63753ed37f5a367cabde9cd5c56751d1969a33ba4dd955ad8f5e3 |
| PageCount | 19 |
| ParticipantIDs | crossref_primary_10_1016_j_future_2020_01_003 crossref_citationtrail_10_1016_j_future_2020_01_003 elsevier_sciencedirect_doi_10_1016_j_future_2020_01_003 |
| PublicationCentury | 2000 |
| PublicationDate | May 2020 2020-05-00 |
| PublicationDateYYYYMMDD | 2020-05-01 |
| PublicationDate_xml | – month: 05 year: 2020 text: May 2020 |
| PublicationDecade | 2020 |
| PublicationTitle | Future generation computer systems |
| PublicationYear | 2020 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Rafferty, Nugent, Liu, Chen (b3) 2017; 47 Fahim, Khattak, Baker, Chow, Shah (b32) 2016 Pludwinski, Ahmad, Wayne, Ritvo (b5) 2016; 22 Han, Vinh, Lee, Lee (b33) 2012; 12 Vaizman Yonatan, Katherine (b34) 2017; 16 Zhang, Wei, Nie, Huang, Wang, Li (b10) 2017; 2017 Otebolaku, Andrade (b49) 2016; 66 Lu, Qing-ling, Yi-Ju (b13) 2017; 76 Scheurer, Tedesco, Brown, O’Flynn (b87) 2017 Nweke, Teh, Mujtaba, Al-garadi (b18) 2019; 46 Vaizman, Weibel (b35) 2017; 1 Polu (b23) 2018; 5 Chen, Zhang, Cao, Guo (b27) 2018; 14 Smeeton (b81) 1985; 41 Muheidat, Tawalbeh, Tyrer (b41) 2018 Chen, Jafari, Kehtarnavaz (b71) 2015 Ni, García Hernando, De La Cruz (b39) 2016; 2016 Hussain, Hussain, Ehatisham-ul-Haq, Azam (b24) 2019 Sztyler, Stuckenschmidt, Petrich (b42) 2017; 38 Yao, Hu, Zhao, Zhang, Abdelzaher (b88) 2017 Costa, Almeida, Lorayne, de Sousa, Perkusich, Ramos (b73) 2016 Klein, Solaz, Ohayon (b56) 2017; 2 Lim, An, Cho, Lee, Suh (b57) 2016 Chahuara, Fleury, Vacher, Chahuara, Fleury, Vacher, Activity (b38) 2016; 8 Pal, Mitra (b79) 1992; 3 Wang, Li, Ogunbona, Wan, Escalera (b9) 2018; 171 Ronao, Cho (b63) 2016; 59 Lamonaca, Polimeni, Barbé, Grimaldi (b6) 2015; 73 Roggen, Tröster, Lukowicz, Ferscha, Del R. Millán, Chavarriaga (b8) 2013; 46 . Mehrang, Pietilä, Korhonen (b22) 2018; 18 D. Anguita, A. Ghio, L. Oneto, X. Parra, J.L. Reyes-Ortiz, A public domain dataset for human activity recognition using smartphones, in: 21th Eur. Symp. Artif. Neural Networks, Comput. Intell. Mach. Learn., ESANN 2013, 2013. N.Y. Hammerla, S. Halloran, T. Plötz, Deep, convolutional, and recurrent models for human activity recognition using wearables, in: IJCAI Int. Jt. Conf. Artif. Intell., 2016, pp. 1533–1540. Vaizman, Ellis, Lanckriet, Weibel (b36) 2018 Coskun, Incel, Ozgovde (b48) 2015 Esfahani, Malazi (b72) 2017 Shoaib, Bosch, Incel, Scholten, Havinga (b30) 2016; 16 Liu, Wang, Hu, Qiong, Wen, Rosenblum (b60) 2018; 81 Khan, Siddiqi, Lee (b44) 2013; 13 Kohavi, John (b75) 1997; 97 Wang, Chen, Hao, Peng, Hu (b68) 2018; 0 Ghayvat, Mukhopadhyay, Shenjie, Chouhan, Chen (b40) 2018 Lee, Kwan (b25) 2018; 67 Attal, Mohammed, Dedabrishvili, Chamroukhi, Oukhellou, Amirat (b82) 2015; 15 Hassan, Uddin, Mohamed, Almogren (b64) 2017 Peterson (b77) 2009; 4 Hoseini-Tabatabaei, Gluhak, Tafazolli (b51) 2013; 45 Cao, Wang, Zhang, Jin, Vasilakos (b31) 2018; 118 Friedman, Geiger, Goldszmidt (b78) 1997; 29 Wang, Chen, Yang, Zhao, Chang (b28) 2016; 16 Espinilla, Medina, Hallberg, Nugent (b61) 2018 Liang, Zhou, Guo, Yu (b7) 2018 El Baz, Zhu (b2) 2018; vol. 32 Fahad, Ali, Rajarajan (b37) 2015; 339 Zhu, Hu, Chang, Lu (b16) 2017; 16 Ehatisham-ul-Haq, Awais, Naeem, Amin, Loo (b17) 2018; 109 Vanus, Belesova, Martinek, Nedoma, Fajkus, Bilik, Zidek (b15) 2017; 7 Taherkhani, Cosma, Alani, McGinnity (b59) 2019 Alsheikh, Selim, Niyato, Doyle, Lin, Tan (b84) 2016 Xu, Yang, Cao, Li (b83) 2018 Esfahani, Malazi (b53) 2018 Shoaib, Bosch, Incel, Scholten, Havinga (b45) 2014; 14 Martinez-Hernandez, Dehghani-Sanij (b21) 2019; 118 Hassan, Uddin, Mohamed, Almogren (b54) 2018; 81 Sucerquia, López, Vargas-Bonilla (b69) 2017; 17 Breiman (b76) 1999 Shi, Wang, Wu, Mo, Wei (b46) 2017; 21 Ramasamy Ramamurthy, Roy (b19) 2018; 8 Vavoulas, Chatzaki, Malliotakis, Pediaditis, Tsiknakis (b70) 2016 Alsinglawi, Nguyen, Gunawardana, Maeder, Simoff (b14) 2017; 6 Wang, Cang, Yu, Member (b86) 2018; 18 Yang, Tian (b11) 2017; 39 Garcia-Ceja, Galván-Tejada, Brena (b62) 2018; 40 Chi (b1) 2018 Ehatisham-ul-Haq, Azam, Loo, Shuang, Islam, Naeem, Amin (b74) 2017; 17 Chi, Wang, Meng (b4) 2018; 48 Bharti, De, Chellappan, Das (b20) 2019; 18 Shoaib, Bosch, Scholten, Havinga, Incel (b58) 2015 Gadaleta, Rossi (b26) 2018; 74 Martín, Bernardos, Iglesias, Casar (b47) 2013; 17 Wang, Liu, Wang, Gao (b65) 2018; 67 J. Monteiro, R. Granada, R.C. Barros, F. Meneguzzi, Deep neural networks for kitchen activity recognition, in: Proc. Int. Jt. Conf. Neural Networks, 2017, pp. 2048–2055 Dao, Nguyen-Gia, Mai (b29) 2017 Antos, Albert, Kording (b43) 2014; 231 Kohavi (b55) 1996; 7 Nweke, Teh, Al-garadi, Alo (b67) 2018; 105 Alshammari, Alshammari, Sedky, Howard (b12) 2018; 3 Quinlan Ross (b80) 1993 Nalepa, Kutt, Bobek (b50) 2018; 92 Otebolaku (10.1016/j.future.2020.01.003_b49) 2016; 66 Pal (10.1016/j.future.2020.01.003_b79) 1992; 3 Vaizman Yonatan (10.1016/j.future.2020.01.003_b34) 2017; 16 Chahuara (10.1016/j.future.2020.01.003_b38) 2016; 8 Antos (10.1016/j.future.2020.01.003_b43) 2014; 231 Nalepa (10.1016/j.future.2020.01.003_b50) 2018; 92 Pludwinski (10.1016/j.future.2020.01.003_b5) 2016; 22 Martín (10.1016/j.future.2020.01.003_b47) 2013; 17 Hoseini-Tabatabaei (10.1016/j.future.2020.01.003_b51) 2013; 45 Nweke (10.1016/j.future.2020.01.003_b18) 2019; 46 Han (10.1016/j.future.2020.01.003_b33) 2012; 12 Liu (10.1016/j.future.2020.01.003_b60) 2018; 81 Mehrang (10.1016/j.future.2020.01.003_b22) 2018; 18 Hassan (10.1016/j.future.2020.01.003_b54) 2018; 81 Lim (10.1016/j.future.2020.01.003_b57) 2016 Taherkhani (10.1016/j.future.2020.01.003_b59) 2019 Alsheikh (10.1016/j.future.2020.01.003_b84) 2016 Alshammari (10.1016/j.future.2020.01.003_b12) 2018; 3 10.1016/j.future.2020.01.003_b85 Wang (10.1016/j.future.2020.01.003_b86) 2018; 18 Zhang (10.1016/j.future.2020.01.003_b10) 2017; 2017 Ramasamy Ramamurthy (10.1016/j.future.2020.01.003_b19) 2018; 8 Fahad (10.1016/j.future.2020.01.003_b37) 2015; 339 Nweke (10.1016/j.future.2020.01.003_b67) 2018; 105 Polu (10.1016/j.future.2020.01.003_b23) 2018; 5 Peterson (10.1016/j.future.2020.01.003_b77) 2009; 4 Alsinglawi (10.1016/j.future.2020.01.003_b14) 2017; 6 Friedman (10.1016/j.future.2020.01.003_b78) 1997; 29 Coskun (10.1016/j.future.2020.01.003_b48) 2015 Garcia-Ceja (10.1016/j.future.2020.01.003_b62) 2018; 40 Fahim (10.1016/j.future.2020.01.003_b32) 2016 Muheidat (10.1016/j.future.2020.01.003_b41) 2018 Esfahani (10.1016/j.future.2020.01.003_b53) 2018 Smeeton (10.1016/j.future.2020.01.003_b81) 1985; 41 Quinlan Ross (10.1016/j.future.2020.01.003_b80) 1993 Ni (10.1016/j.future.2020.01.003_b39) 2016; 2016 Wang (10.1016/j.future.2020.01.003_b9) 2018; 171 Vaizman (10.1016/j.future.2020.01.003_b36) 2018 Ghayvat (10.1016/j.future.2020.01.003_b40) 2018 10.1016/j.future.2020.01.003_b52 Espinilla (10.1016/j.future.2020.01.003_b61) 2018 Costa (10.1016/j.future.2020.01.003_b73) 2016 Vaizman (10.1016/j.future.2020.01.003_b35) 2017; 1 10.1016/j.future.2020.01.003_b66 Gadaleta (10.1016/j.future.2020.01.003_b26) 2018; 74 Chen (10.1016/j.future.2020.01.003_b27) 2018; 14 Breiman (10.1016/j.future.2020.01.003_b76) 1999 Chi (10.1016/j.future.2020.01.003_b1) 2018 Sucerquia (10.1016/j.future.2020.01.003_b69) 2017; 17 Esfahani (10.1016/j.future.2020.01.003_b72) 2017 Shoaib (10.1016/j.future.2020.01.003_b30) 2016; 16 Wang (10.1016/j.future.2020.01.003_b65) 2018; 67 Ehatisham-ul-Haq (10.1016/j.future.2020.01.003_b74) 2017; 17 Zhu (10.1016/j.future.2020.01.003_b16) 2017; 16 Ronao (10.1016/j.future.2020.01.003_b63) 2016; 59 Yang (10.1016/j.future.2020.01.003_b11) 2017; 39 Rafferty (10.1016/j.future.2020.01.003_b3) 2017; 47 Roggen (10.1016/j.future.2020.01.003_b8) 2013; 46 Kohavi (10.1016/j.future.2020.01.003_b55) 1996; 7 Lee (10.1016/j.future.2020.01.003_b25) 2018; 67 Shoaib (10.1016/j.future.2020.01.003_b45) 2014; 14 Chi (10.1016/j.future.2020.01.003_b4) 2018; 48 Scheurer (10.1016/j.future.2020.01.003_b87) 2017 Wang (10.1016/j.future.2020.01.003_b28) 2016; 16 El Baz (10.1016/j.future.2020.01.003_b2) 2018; vol. 32 Vavoulas (10.1016/j.future.2020.01.003_b70) 2016 Shi (10.1016/j.future.2020.01.003_b46) 2017; 21 Attal (10.1016/j.future.2020.01.003_b82) 2015; 15 Dao (10.1016/j.future.2020.01.003_b29) 2017 Kohavi (10.1016/j.future.2020.01.003_b75) 1997; 97 Vanus (10.1016/j.future.2020.01.003_b15) 2017; 7 Ehatisham-ul-Haq (10.1016/j.future.2020.01.003_b17) 2018; 109 Lu (10.1016/j.future.2020.01.003_b13) 2017; 76 Cao (10.1016/j.future.2020.01.003_b31) 2018; 118 Khan (10.1016/j.future.2020.01.003_b44) 2013; 13 Lamonaca (10.1016/j.future.2020.01.003_b6) 2015; 73 Martinez-Hernandez (10.1016/j.future.2020.01.003_b21) 2019; 118 Bharti (10.1016/j.future.2020.01.003_b20) 2019; 18 Sztyler (10.1016/j.future.2020.01.003_b42) 2017; 38 Hussain (10.1016/j.future.2020.01.003_b24) 2019 Xu (10.1016/j.future.2020.01.003_b83) 2018 Hassan (10.1016/j.future.2020.01.003_b64) 2017 Liang (10.1016/j.future.2020.01.003_b7) 2018 Klein (10.1016/j.future.2020.01.003_b56) 2017; 2 Wang (10.1016/j.future.2020.01.003_b68) 2018; 0 Chen (10.1016/j.future.2020.01.003_b71) 2015 Yao (10.1016/j.future.2020.01.003_b88) 2017 Shoaib (10.1016/j.future.2020.01.003_b58) 2015 |
| References_xml | – volume: 41 start-page: 795 year: 1985 ident: b81 article-title: Early history of the kappa statistic publication-title: Biometrics – start-page: 1 year: 2017 end-page: 7 ident: b72 article-title: PAMS: A new position-aware multi-sensor dataset for human activity recognition using smartphones publication-title: 2017 19th Int. Symp. Comput. Archit. Digit. Syst. – volume: 39 start-page: 1028 year: 2017 end-page: 1039 ident: b11 article-title: Super normal vector for human activity recognition with depth cameras publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 14 start-page: 4334 year: 2018 end-page: 4342 ident: b27 article-title: Distilling the knowledge from handcrafted features for human activity recognition publication-title: IEEE Trans. Ind. Inf. – reference: J. Monteiro, R. Granada, R.C. Barros, F. Meneguzzi, Deep neural networks for kitchen activity recognition, in: Proc. Int. Jt. Conf. Neural Networks, 2017, pp. 2048–2055, – start-page: 267 year: 2016 end-page: 272 ident: b73 article-title: Combining smartphone and smartwatch sensor data in activity recognition approaches: an experimental evaluation publication-title: Proc. 28th Int. Conf. Softw. Eng. Knowl. Eng. – volume: 3 start-page: 11 year: 2018 ident: b12 article-title: SIMADL: Simulated activities of daily living dataset publication-title: Data – volume: 46 start-page: 147 year: 2019 end-page: 170 ident: b18 article-title: Data fusion and multiple classifier systems for human activity detection and health monitoring: Review and open research directions publication-title: Inf. Fusion – volume: 21 start-page: 427 year: 2017 end-page: 441 ident: b46 article-title: A novel orientation- and location-independent activity recognition method publication-title: Pers. Ubiquitous Comput. – volume: 16 year: 2017 ident: b34 article-title: Recognizing detailed human context in-the-wildfrom smart phones and smartwatches publication-title: IEEE Pervasive Comput. – volume: 13 start-page: 13099 year: 2013 end-page: 13122 ident: b44 article-title: Exploratory data analysis of acceleration signals to select light-weight and accurate features for real-time activity recognition on smartphones publication-title: Sensors – start-page: 8 year: 2016 end-page: 13 ident: b84 article-title: Deep Activity Recognition Models with Triaxial Accelerometers – volume: vol. 32 start-page: 3 year: 2018 end-page: 11 ident: b2 article-title: Smart systems, the fourth industrial revolution and new challenges in distributed computing publication-title: Adv. Parallel Comput. – volume: 2016 year: 2016 ident: b39 article-title: A context-aware system infrastructure for monitoring activities of daily living in smart home publication-title: J. Sensors – volume: 17 start-page: 675 year: 2013 end-page: 695 ident: b47 article-title: Activity logging using lightweight classification techniques in mobile devices publication-title: Pers. Ubiquitous Comput. – start-page: 548 year: 2018 end-page: 553 ident: b83 article-title: Human activity recognition based on random forests publication-title: ICNC-FSKD 2017-13th Int. Conf. Nat. Comput. Fuzzy Syst. Knowl. Discov. – volume: 17 start-page: 198 year: 2017 ident: b69 article-title: SisFall: A fall and movement dataset publication-title: Sensors – volume: 76 start-page: 24203 year: 2017 end-page: 24220 ident: b13 article-title: Activity recognition in smart homes publication-title: Multimed. Tools Appl. – volume: 16 year: 2016 ident: b30 article-title: Complex human activity recognition using smartphone and wrist-worn motion sensors publication-title: Sensors – volume: 59 start-page: 235 year: 2016 end-page: 244 ident: b63 article-title: Human activity recognition with smartphone sensors using deep learning neural networks publication-title: Expert Syst. Appl. – reference: N.Y. Hammerla, S. Halloran, T. Plötz, Deep, convolutional, and recurrent models for human activity recognition using wearables, in: IJCAI Int. Jt. Conf. Artif. Intell., 2016, pp. 1533–1540. – volume: 105 start-page: 233 year: 2018 end-page: 261 ident: b67 article-title: Deep learning algorithms for human activity recognition using mobile and wearable sensor networks: State of the art and research challenges publication-title: Expert Syst. Appl. – start-page: 329 year: 2018 end-page: 333 ident: b41 article-title: Context-aware, accurate, and real time fall detection system for elderly people publication-title: Proc. - 12th IEEE Int. Conf. Semant. Comput – start-page: 1 year: 2018 end-page: 13 ident: b61 article-title: A new approach based on temporal sub-windows for online sensor-based activity recognition publication-title: J. Ambient Intell. Humaniz. Comput. – volume: 4 start-page: 1883 year: 2009 ident: b77 article-title: K-nearest neighbor publication-title: Scholarpedia – volume: 2017 start-page: 1 year: 2017 end-page: 31 ident: b10 article-title: A review on human activity recognition using vision-based method publication-title: J. Healthc. Eng. – start-page: 1 year: 2018 end-page: 7 ident: b53 article-title: PAMS: A new position-aware multi-sensor dataset for human activity recognition using smartphones publication-title: 2017 19th Int. Symp. Comput. Archit. Digit. Syst – volume: 73 start-page: 82 year: 2015 end-page: 94 ident: b6 article-title: Health parameters monitoring by smartphone for quality of life improvement publication-title: Meas. J. Int. Meas. Confed. – volume: 97 start-page: 273 year: 1997 end-page: 324 ident: b75 article-title: Wrappers for feature subset selection publication-title: Artificial Intelligence – start-page: 1 year: 1999 end-page: 29 ident: b76 article-title: Random Forests–Random Features – volume: 7 year: 2017 ident: b15 article-title: Monitoring of the daily living activities in smart home care publication-title: Human-Centric Comput. Inf. Sci. – volume: 66 start-page: 33 year: 2016 end-page: 51 ident: b49 article-title: User context recognition using smartphone sensors and classification models publication-title: J. Netw. Comput. Appl. – volume: 6 start-page: 1 year: 2017 end-page: 17 ident: b14 article-title: RFID systems in healthcare settings and activity of daily living in smart homes: A review publication-title: E-Health Telecommun. Syst. Netw. – volume: 67 start-page: 124 year: 2018 end-page: 131 ident: b25 article-title: Physical activity classification in free-living conditions using smartphone accelerometer data and exploration of predicted results publication-title: Comput. Environ. Urban Syst. – volume: 16 start-page: 4566 year: 2016 end-page: 4578 ident: b28 article-title: A comparative study on human activity recognition using inertial sensors in a smartphone publication-title: IEEE Sens. J. – reference: D. Anguita, A. Ghio, L. Oneto, X. Parra, J.L. Reyes-Ortiz, A public domain dataset for human activity recognition using smartphones, in: 21th Eur. Symp. Artif. Neural Networks, Comput. Intell. Mach. Learn., ESANN 2013, 2013. – volume: 231 start-page: 22 year: 2014 end-page: 30 ident: b43 article-title: Hand, belt, pocket or bag: Practical activity tracking with mobile phones publication-title: J. Neurosci. Methods – volume: 92 start-page: 490 year: 2018 end-page: 503 ident: b50 article-title: Mobile platform for affective context-aware systems publication-title: Future Gener. Comput. Syst. – volume: 74 start-page: 25 year: 2018 end-page: 37 ident: b26 article-title: IDNet: Smartphone-based gait recognition with convolutional neural networks publication-title: Pattern Recognit. – year: 1993 ident: b80 article-title: C4. 5: Programs for Machine Learning – volume: 17 year: 2017 ident: b74 article-title: Authentication of smartphone users based on activity recognition and mobile sensing publication-title: Sensors – volume: 15 start-page: 31314 year: 2015 end-page: 31338 ident: b82 article-title: Physical human activity recognition using wearable sensors publication-title: Sensors – start-page: 323 year: 2017 end-page: 328 ident: b29 article-title: Daily human activities recognition using heterogeneous sensors from smartphones publication-title: Procedia Comput. Sci. – volume: 118 start-page: 67 year: 2018 end-page: 80 ident: b31 article-title: GCHAR: An efficient group-based context—aware human activity recognition on smartphone publication-title: J. Parallel Distrib. Comput. – volume: 22 start-page: 172 year: 2016 end-page: 178 ident: b5 article-title: Participant experiences in a smartphone-based health coaching intervention for type 2 diabetes: A qualitative inquiry publication-title: J. Telemed. Telecare – start-page: 1 year: 2018 end-page: 5 ident: b40 article-title: Smart home based ambient assisted living: Recognition of anomaly in the activity of daily living for an elderly living alone publication-title: I2MTC 2018-2018 IEEE Int. Instrum. Meas. Technol. Conf. Discov. New Horizons Instrum. Meas. Proc. – volume: 14 start-page: 10146 year: 2014 end-page: 10176 ident: b45 article-title: Fusion of smartphone motion sensors for physical activity recognition publication-title: Sensors – start-page: 351 year: 2017 end-page: 360 ident: b88 article-title: DeepSense: A unified deep learning framework for time-series mobile sensing data processing publication-title: 26th Int. World Wide Web Conf. – volume: 118 start-page: 32 year: 2019 end-page: 41 ident: b21 article-title: Probabilistic identification of sit-to-stand and stand-to-sit with a wearable sensor publication-title: Pattern Recognit. Lett. – volume: 339 start-page: 819 year: 2015 end-page: 826 ident: b37 article-title: Learning models for activity recognition in smart homes publication-title: Lect. Notes Electr. Eng. – year: 2018 ident: b36 article-title: ExtraSensory App: Data Collection In-the-Wild with Rich User Interface to Self-Report Behavior, Proc. CHI. 1–12. – start-page: 203 year: 2019 end-page: 218 ident: b59 article-title: Activity recognition from multi-modal sensor data using a deep convolutional neural network publication-title: Adv. Intell. Syst. Comput. – volume: 8 year: 2018 ident: b19 article-title: Recent trends in machine learning for human activity recognition—A survey publication-title: Wiley Interdiscip. Rev. Data Min. Knowl. Discov. – volume: 46 start-page: 36 year: 2013 end-page: 45 ident: b8 article-title: Opportunistic human activity and context recognition publication-title: Computer – volume: 109 start-page: 24 year: 2018 end-page: 35 ident: b17 article-title: Continuous authentication of smartphone users based on activity pattern recognition using passive mobile sensing publication-title: J. Netw. Comput. Appl. – volume: 29 start-page: 131 year: 1997 end-page: 163 ident: b78 article-title: Bayesian network classifiers publication-title: Mach. Learn. – volume: 12 start-page: 12588 year: 2012 end-page: 12605 ident: b33 article-title: Comprehensive context recognizer based on multimodal sensors in a smartphone publication-title: Sensors – volume: 38 start-page: 281 year: 2017 end-page: 295 ident: b42 article-title: Position-aware activity recognition with wearable devices publication-title: Pervasive Mob. Comput. – start-page: 22 year: 2018 end-page: 52 ident: b7 article-title: Activity recognition using ubiquitous sensors – volume: 1 start-page: 22 year: 2017 ident: b35 article-title: Context recognition in-the-wild: Unified model for multi-modal sensors and multi-label classification publication-title: Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. – volume: 81 start-page: 545 year: 2018 end-page: 561 ident: b60 article-title: Learning structures of interval-based Bayesian networks in probabilistic generative model for human complex activity recognition publication-title: Pattern Recognit. – volume: 47 start-page: 368 year: 2017 end-page: 379 ident: b3 article-title: From activity recognition to intention recognition for assisted living within smart homes publication-title: IEEE Trans. Human-Mach. Syst. – volume: 171 start-page: 118 year: 2018 end-page: 139 ident: b9 article-title: RGB-D-based human motion recognition with deep learning: A survey publication-title: Comput. Vis. Image Underst. – volume: 16 start-page: 2901 year: 2017 end-page: 2912 ident: b16 article-title: Shakein: Secure user authentication of smartphones with single-handed shakes publication-title: IEEE Trans. Mob. Comput. – start-page: 30 year: 2016 end-page: 34 ident: b32 article-title: Micro-context recognition of sedentary behaviour using smartphone publication-title: 2016 6th Int. Conf. Digit. Inf. Commun. Technol. its Appl. – volume: 3 start-page: 683 year: 1992 end-page: 697 ident: b79 article-title: Multilayer perceptron, Fuzzy sets, and classification publication-title: IEEE Trans. Neural Netw. – volume: 18 year: 2018 ident: b22 article-title: An activity recognition framework deploying the random forest classifier and a single optical heart rate monitoring and triaxial accelerometer wrist-band publication-title: Sensors – volume: 8 start-page: 399 year: 2016 end-page: 422 ident: b38 article-title: On-line human activity recognition from audio and home automation sensors publication-title: J. Ambient Intell. Smart Environ. – volume: 45 start-page: 1 year: 2013 end-page: 51 ident: b51 article-title: A survey on smartphone-based systems for opportunistic user context recognition publication-title: ACM Comput. Surv. – volume: 7 start-page: 202 year: 1996 end-page: 207 ident: b55 article-title: Scaling up the accuracy of Naive–Bayes classifiers: A decision-tree hybrid publication-title: Proc. Second Int. Conf. Knowl. Discov. Data Min. – start-page: 143 year: 2016 end-page: 151 ident: b70 article-title: The mobiact dataset: Recognition of activities of daily living using smartphones publication-title: Proc. Int. Conf. Inf. Commun. Technol. Ageing Well E-Health – volume: 67 start-page: 17 year: 2018 end-page: 20 ident: b65 article-title: Deep learning-based human motion recognition for predictive context-aware human–robot collaboration publication-title: CIRP Ann. – volume: 18 start-page: 857 year: 2019 end-page: 870 ident: b20 article-title: HuMAn: Complex activity recognition with multi-modal multi-positional body sensing publication-title: IEEE Trans. Mob. Comput. – reference: . – year: 2015 ident: b48 article-title: Phone position/placement detection using accelerometer: Impact on activity recognition publication-title: 2015 IEEE 10th Int. Conf. Intell. Sensors, Sens. Networks Inf. Process – year: 2017 ident: b64 article-title: A robust human activity recognition system using smartphone sensors and deep learning publication-title: Future Gener. Comput. Syst. – volume: 18 start-page: 6874 year: 2018 end-page: 6888 ident: b86 article-title: A data fusion-based hybrid sensory system for older people’s daily activity and daily routine recognition publication-title: IEEE Sens. J. – volume: 48 start-page: 1429 year: 2018 end-page: 1440 ident: b4 article-title: A gait recognition method for human following in service robots publication-title: IEEE Trans. Syst. Man Cybern. Syst. – start-page: 675 year: 2016 end-page: 681 ident: b57 article-title: WhichHand: Automatic recognition of a smartphone’s position in the hand using a smartwatch publication-title: Proc. 18th Int. Conf. Human-Computer Interact. with Mob. Devices Serv. Adjun – volume: 5 start-page: 31 year: 2018 end-page: 37 ident: b23 article-title: Human activity recognition on smartphones using machine learning algorithms publication-title: Int. J. Innov. Res. Sci. Technol. – year: 2019 ident: b24 article-title: Activity-aware fall detection and recognition based on wearable sensors publication-title: IEEE Sens. J. – start-page: 168 year: 2015 end-page: 172 ident: b71 article-title: UTD-MHAD: A multimodal dataset for human action recognition utilizing a depth camera and a wearable inertial sensor publication-title: Proc. - Int. Conf. Image Process – volume: 81 start-page: 307 year: 2018 end-page: 313 ident: b54 article-title: A robust human activity recognition system using smartphone sensors and deep learning publication-title: Future Gener. Comput. Syst. – volume: 0 start-page: 1 year: 2018 end-page: 9 ident: b68 article-title: Deep learning for sensor-based activity recognition: A survey publication-title: Pattern Recognit. Lett. – start-page: 5 year: 2017 end-page: 8 ident: b87 article-title: Human activity recognition for emergency first responders via body-worn inertial sensors publication-title: 2017 IEEE 14th Int. Conf. Wearable Implant. Body Sens. Networks – volume: 40 start-page: 45 year: 2018 end-page: 56 ident: b62 article-title: Multi-view stacking for activity recognition with sound and accelerometer data publication-title: Inf. Fusion – start-page: 1 year: 2018 end-page: 4 ident: b1 article-title: Smart IC technologies for smart devices in IoT applications publication-title: China Semicond. Technol. Int. Conf. 2018 – start-page: 591 year: 2015 end-page: 596 ident: b58 article-title: Towards detection of bad habits by fusing smartphone and smartwatch sensors publication-title: 2015 IEEE Int. Conf. Pervasive Comput. Commun. Work. PerCom Work. 2015 – volume: 2 start-page: 145 year: 2017 ident: b56 article-title: Smartphone motion mode recognition publication-title: Proceedings – year: 1993 ident: 10.1016/j.future.2020.01.003_b80 – start-page: 323 year: 2017 ident: 10.1016/j.future.2020.01.003_b29 article-title: Daily human activities recognition using heterogeneous sensors from smartphones publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2017.06.030 – start-page: 351 year: 2017 ident: 10.1016/j.future.2020.01.003_b88 article-title: DeepSense: A unified deep learning framework for time-series mobile sensing data processing – year: 2019 ident: 10.1016/j.future.2020.01.003_b24 article-title: Activity-aware fall detection and recognition based on wearable sensors publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2019.2898891 – volume: 46 start-page: 36 year: 2013 ident: 10.1016/j.future.2020.01.003_b8 article-title: Opportunistic human activity and context recognition publication-title: Computer doi: 10.1109/MC.2012.393 – volume: 8 year: 2018 ident: 10.1016/j.future.2020.01.003_b19 article-title: Recent trends in machine learning for human activity recognition—A survey publication-title: Wiley Interdiscip. Rev. Data Min. Knowl. Discov. doi: 10.1002/widm.1254 – volume: 0 start-page: 1 year: 2018 ident: 10.1016/j.future.2020.01.003_b68 article-title: Deep learning for sensor-based activity recognition: A survey publication-title: Pattern Recognit. Lett. – start-page: 1 year: 1999 ident: 10.1016/j.future.2020.01.003_b76 – volume: 74 start-page: 25 year: 2018 ident: 10.1016/j.future.2020.01.003_b26 article-title: IDNet: Smartphone-based gait recognition with convolutional neural networks publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2017.09.005 – volume: 15 start-page: 31314 year: 2015 ident: 10.1016/j.future.2020.01.003_b82 article-title: Physical human activity recognition using wearable sensors publication-title: Sensors doi: 10.3390/s151229858 – start-page: 203 year: 2019 ident: 10.1016/j.future.2020.01.003_b59 article-title: Activity recognition from multi-modal sensor data using a deep convolutional neural network doi: 10.1007/978-3-030-01177-2_15 – start-page: 1 year: 2018 ident: 10.1016/j.future.2020.01.003_b61 article-title: A new approach based on temporal sub-windows for online sensor-based activity recognition publication-title: J. Ambient Intell. Humaniz. Comput. – volume: 12 start-page: 12588 year: 2012 ident: 10.1016/j.future.2020.01.003_b33 article-title: Comprehensive context recognizer based on multimodal sensors in a smartphone publication-title: Sensors doi: 10.3390/s120912588 – start-page: 1 year: 2018 ident: 10.1016/j.future.2020.01.003_b53 article-title: PAMS: A new position-aware multi-sensor dataset for human activity recognition using smartphones – start-page: 329 year: 2018 ident: 10.1016/j.future.2020.01.003_b41 article-title: Context-aware, accurate, and real time fall detection system for elderly people – volume: 118 start-page: 67 year: 2018 ident: 10.1016/j.future.2020.01.003_b31 article-title: GCHAR: An efficient group-based context—aware human activity recognition on smartphone publication-title: J. Parallel Distrib. Comput. doi: 10.1016/j.jpdc.2017.05.007 – volume: 171 start-page: 118 year: 2018 ident: 10.1016/j.future.2020.01.003_b9 article-title: RGB-D-based human motion recognition with deep learning: A survey publication-title: Comput. Vis. Image Underst. doi: 10.1016/j.cviu.2018.04.007 – volume: 92 start-page: 490 year: 2018 ident: 10.1016/j.future.2020.01.003_b50 article-title: Mobile platform for affective context-aware systems publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2018.02.033 – volume: 8 start-page: 399 year: 2016 ident: 10.1016/j.future.2020.01.003_b38 article-title: On-line human activity recognition from audio and home automation sensors publication-title: J. Ambient Intell. Smart Environ. doi: 10.3233/AIS-160386 – volume: 40 start-page: 45 year: 2018 ident: 10.1016/j.future.2020.01.003_b62 article-title: Multi-view stacking for activity recognition with sound and accelerometer data publication-title: Inf. Fusion doi: 10.1016/j.inffus.2017.06.004 – volume: 22 start-page: 172 year: 2016 ident: 10.1016/j.future.2020.01.003_b5 article-title: Participant experiences in a smartphone-based health coaching intervention for type 2 diabetes: A qualitative inquiry publication-title: J. Telemed. Telecare doi: 10.1177/1357633X15595178 – ident: 10.1016/j.future.2020.01.003_b52 – start-page: 675 year: 2016 ident: 10.1016/j.future.2020.01.003_b57 article-title: WhichHand: Automatic recognition of a smartphone’s position in the hand using a smartwatch – volume: 97 start-page: 273 year: 1997 ident: 10.1016/j.future.2020.01.003_b75 article-title: Wrappers for feature subset selection publication-title: Artificial Intelligence doi: 10.1016/S0004-3702(97)00043-X – volume: 2016 year: 2016 ident: 10.1016/j.future.2020.01.003_b39 article-title: A context-aware system infrastructure for monitoring activities of daily living in smart home publication-title: J. Sensors doi: 10.1155/2016/9493047 – volume: 7 start-page: 202 year: 1996 ident: 10.1016/j.future.2020.01.003_b55 article-title: Scaling up the accuracy of Naive–Bayes classifiers: A decision-tree hybrid publication-title: Proc. Second Int. Conf. Knowl. Discov. Data Min. – volume: 59 start-page: 235 year: 2016 ident: 10.1016/j.future.2020.01.003_b63 article-title: Human activity recognition with smartphone sensors using deep learning neural networks publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2016.04.032 – volume: 18 start-page: 857 year: 2019 ident: 10.1016/j.future.2020.01.003_b20 article-title: HuMAn: Complex activity recognition with multi-modal multi-positional body sensing publication-title: IEEE Trans. Mob. Comput. doi: 10.1109/TMC.2018.2841905 – volume: 13 start-page: 13099 year: 2013 ident: 10.1016/j.future.2020.01.003_b44 article-title: Exploratory data analysis of acceleration signals to select light-weight and accurate features for real-time activity recognition on smartphones publication-title: Sensors doi: 10.3390/s131013099 – volume: 231 start-page: 22 year: 2014 ident: 10.1016/j.future.2020.01.003_b43 article-title: Hand, belt, pocket or bag: Practical activity tracking with mobile phones publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2013.09.015 – volume: 3 start-page: 683 year: 1992 ident: 10.1016/j.future.2020.01.003_b79 article-title: Multilayer perceptron, Fuzzy sets, and classification publication-title: IEEE Trans. Neural Netw. doi: 10.1109/72.159058 – volume: 7 year: 2017 ident: 10.1016/j.future.2020.01.003_b15 article-title: Monitoring of the daily living activities in smart home care publication-title: Human-Centric Comput. Inf. Sci. doi: 10.1186/s13673-017-0113-6 – volume: 45 start-page: 1 year: 2013 ident: 10.1016/j.future.2020.01.003_b51 article-title: A survey on smartphone-based systems for opportunistic user context recognition publication-title: ACM Comput. Surv. doi: 10.1145/2480741.2480744 – start-page: 548 year: 2018 ident: 10.1016/j.future.2020.01.003_b83 article-title: Human activity recognition based on random forests – volume: 47 start-page: 368 year: 2017 ident: 10.1016/j.future.2020.01.003_b3 article-title: From activity recognition to intention recognition for assisted living within smart homes publication-title: IEEE Trans. Human-Mach. Syst. doi: 10.1109/THMS.2016.2641388 – volume: 39 start-page: 1028 year: 2017 ident: 10.1016/j.future.2020.01.003_b11 article-title: Super normal vector for human activity recognition with depth cameras publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2016.2565479 – start-page: 1 year: 2018 ident: 10.1016/j.future.2020.01.003_b1 article-title: Smart IC technologies for smart devices in IoT applications – start-page: 591 year: 2015 ident: 10.1016/j.future.2020.01.003_b58 article-title: Towards detection of bad habits by fusing smartphone and smartwatch sensors – volume: 81 start-page: 545 year: 2018 ident: 10.1016/j.future.2020.01.003_b60 article-title: Learning structures of interval-based Bayesian networks in probabilistic generative model for human complex activity recognition publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2018.04.022 – volume: 6 start-page: 1 year: 2017 ident: 10.1016/j.future.2020.01.003_b14 article-title: RFID systems in healthcare settings and activity of daily living in smart homes: A review publication-title: E-Health Telecommun. Syst. Netw. doi: 10.4236/etsn.2017.61001 – volume: 16 start-page: 2901 year: 2017 ident: 10.1016/j.future.2020.01.003_b16 article-title: Shakein: Secure user authentication of smartphones with single-handed shakes publication-title: IEEE Trans. Mob. Comput. doi: 10.1109/TMC.2017.2651820 – volume: 41 start-page: 795 year: 1985 ident: 10.1016/j.future.2020.01.003_b81 article-title: Early history of the kappa statistic publication-title: Biometrics – volume: 118 start-page: 32 year: 2019 ident: 10.1016/j.future.2020.01.003_b21 article-title: Probabilistic identification of sit-to-stand and stand-to-sit with a wearable sensor publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2018.03.020 – volume: 16 start-page: 4566 year: 2016 ident: 10.1016/j.future.2020.01.003_b28 article-title: A comparative study on human activity recognition using inertial sensors in a smartphone publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2016.2545708 – volume: 1 start-page: 22 issue: 4 year: 2017 ident: 10.1016/j.future.2020.01.003_b35 article-title: Context recognition in-the-wild: Unified model for multi-modal sensors and multi-label classification publication-title: Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. – start-page: 22 year: 2018 ident: 10.1016/j.future.2020.01.003_b7 – volume: 67 start-page: 17 year: 2018 ident: 10.1016/j.future.2020.01.003_b65 article-title: Deep learning-based human motion recognition for predictive context-aware human–robot collaboration publication-title: CIRP Ann. doi: 10.1016/j.cirp.2018.04.066 – volume: 17 start-page: 198 year: 2017 ident: 10.1016/j.future.2020.01.003_b69 article-title: SisFall: A fall and movement dataset publication-title: Sensors doi: 10.3390/s17010198 – volume: 46 start-page: 147 year: 2019 ident: 10.1016/j.future.2020.01.003_b18 article-title: Data fusion and multiple classifier systems for human activity detection and health monitoring: Review and open research directions publication-title: Inf. Fusion doi: 10.1016/j.inffus.2018.06.002 – volume: 38 start-page: 281 year: 2017 ident: 10.1016/j.future.2020.01.003_b42 article-title: Position-aware activity recognition with wearable devices publication-title: Pervasive Mob. Comput. doi: 10.1016/j.pmcj.2017.01.008 – year: 2017 ident: 10.1016/j.future.2020.01.003_b64 article-title: A robust human activity recognition system using smartphone sensors and deep learning publication-title: Future Gener. Comput. Syst. – ident: 10.1016/j.future.2020.01.003_b66 doi: 10.1109/IJCNN.2017.7966102 – volume: 67 start-page: 124 year: 2018 ident: 10.1016/j.future.2020.01.003_b25 article-title: Physical activity classification in free-living conditions using smartphone accelerometer data and exploration of predicted results publication-title: Comput. Environ. Urban Syst. doi: 10.1016/j.compenvurbsys.2017.09.012 – volume: 18 start-page: 6874 year: 2018 ident: 10.1016/j.future.2020.01.003_b86 article-title: A data fusion-based hybrid sensory system for older people’s daily activity and daily routine recognition publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2018.2833745 – volume: 16 year: 2016 ident: 10.1016/j.future.2020.01.003_b30 article-title: Complex human activity recognition using smartphone and wrist-worn motion sensors publication-title: Sensors doi: 10.3390/s16040426 – volume: 3 start-page: 11 year: 2018 ident: 10.1016/j.future.2020.01.003_b12 article-title: SIMADL: Simulated activities of daily living dataset publication-title: Data doi: 10.3390/data3020011 – volume: 109 start-page: 24 year: 2018 ident: 10.1016/j.future.2020.01.003_b17 article-title: Continuous authentication of smartphone users based on activity pattern recognition using passive mobile sensing publication-title: J. Netw. Comput. Appl. doi: 10.1016/j.jnca.2018.02.020 – volume: 29 start-page: 131 year: 1997 ident: 10.1016/j.future.2020.01.003_b78 article-title: Bayesian network classifiers publication-title: Mach. Learn. doi: 10.1023/A:1007465528199 – volume: 73 start-page: 82 year: 2015 ident: 10.1016/j.future.2020.01.003_b6 article-title: Health parameters monitoring by smartphone for quality of life improvement publication-title: Meas. J. Int. Meas. Confed. doi: 10.1016/j.measurement.2015.04.017 – volume: 76 start-page: 24203 year: 2017 ident: 10.1016/j.future.2020.01.003_b13 article-title: Activity recognition in smart homes publication-title: Multimed. Tools Appl. doi: 10.1007/s11042-016-4197-1 – volume: 14 start-page: 10146 year: 2014 ident: 10.1016/j.future.2020.01.003_b45 article-title: Fusion of smartphone motion sensors for physical activity recognition publication-title: Sensors doi: 10.3390/s140610146 – volume: 48 start-page: 1429 year: 2018 ident: 10.1016/j.future.2020.01.003_b4 article-title: A gait recognition method for human following in service robots publication-title: IEEE Trans. Syst. Man Cybern. Syst. doi: 10.1109/TSMC.2017.2660547 – volume: 5 start-page: 31 year: 2018 ident: 10.1016/j.future.2020.01.003_b23 article-title: Human activity recognition on smartphones using machine learning algorithms publication-title: Int. J. Innov. Res. Sci. Technol. – start-page: 8 year: 2016 ident: 10.1016/j.future.2020.01.003_b84 – volume: 14 start-page: 4334 year: 2018 ident: 10.1016/j.future.2020.01.003_b27 article-title: Distilling the knowledge from handcrafted features for human activity recognition publication-title: IEEE Trans. Ind. Inf. doi: 10.1109/TII.2018.2789925 – start-page: 5 year: 2017 ident: 10.1016/j.future.2020.01.003_b87 article-title: Human activity recognition for emergency first responders via body-worn inertial sensors – volume: 16 year: 2017 ident: 10.1016/j.future.2020.01.003_b34 article-title: Recognizing detailed human context in-the-wildfrom smart phones and smartwatches publication-title: IEEE Pervasive Comput. – year: 2018 ident: 10.1016/j.future.2020.01.003_b36 – volume: 17 year: 2017 ident: 10.1016/j.future.2020.01.003_b74 article-title: Authentication of smartphone users based on activity recognition and mobile sensing publication-title: Sensors doi: 10.3390/s17092043 – year: 2015 ident: 10.1016/j.future.2020.01.003_b48 article-title: Phone position/placement detection using accelerometer: Impact on activity recognition – volume: 21 start-page: 427 year: 2017 ident: 10.1016/j.future.2020.01.003_b46 article-title: A novel orientation- and location-independent activity recognition method publication-title: Pers. Ubiquitous Comput. doi: 10.1007/s00779-017-1007-3 – ident: 10.1016/j.future.2020.01.003_b85 – volume: 2017 start-page: 1 year: 2017 ident: 10.1016/j.future.2020.01.003_b10 article-title: A review on human activity recognition using vision-based method publication-title: J. Healthc. Eng. – start-page: 1 year: 2017 ident: 10.1016/j.future.2020.01.003_b72 article-title: PAMS: A new position-aware multi-sensor dataset for human activity recognition using smartphones – volume: vol. 32 start-page: 3 year: 2018 ident: 10.1016/j.future.2020.01.003_b2 article-title: Smart systems, the fourth industrial revolution and new challenges in distributed computing – volume: 4 start-page: 1883 year: 2009 ident: 10.1016/j.future.2020.01.003_b77 article-title: K-nearest neighbor publication-title: Scholarpedia doi: 10.4249/scholarpedia.1883 – volume: 2 start-page: 145 year: 2017 ident: 10.1016/j.future.2020.01.003_b56 article-title: Smartphone motion mode recognition publication-title: Proceedings – volume: 17 start-page: 675 year: 2013 ident: 10.1016/j.future.2020.01.003_b47 article-title: Activity logging using lightweight classification techniques in mobile devices publication-title: Pers. Ubiquitous Comput. doi: 10.1007/s00779-012-0515-4 – start-page: 30 year: 2016 ident: 10.1016/j.future.2020.01.003_b32 article-title: Micro-context recognition of sedentary behaviour using smartphone – start-page: 1 year: 2018 ident: 10.1016/j.future.2020.01.003_b40 article-title: Smart home based ambient assisted living: Recognition of anomaly in the activity of daily living for an elderly living alone – volume: 81 start-page: 307 year: 2018 ident: 10.1016/j.future.2020.01.003_b54 article-title: A robust human activity recognition system using smartphone sensors and deep learning publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2017.11.029 – start-page: 168 year: 2015 ident: 10.1016/j.future.2020.01.003_b71 article-title: UTD-MHAD: A multimodal dataset for human action recognition utilizing a depth camera and a wearable inertial sensor – volume: 18 year: 2018 ident: 10.1016/j.future.2020.01.003_b22 article-title: An activity recognition framework deploying the random forest classifier and a single optical heart rate monitoring and triaxial accelerometer wrist-band publication-title: Sensors doi: 10.3390/s18020613 – volume: 105 start-page: 233 year: 2018 ident: 10.1016/j.future.2020.01.003_b67 article-title: Deep learning algorithms for human activity recognition using mobile and wearable sensor networks: State of the art and research challenges publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2018.03.056 – start-page: 267 year: 2016 ident: 10.1016/j.future.2020.01.003_b73 article-title: Combining smartphone and smartwatch sensor data in activity recognition approaches: an experimental evaluation – volume: 339 start-page: 819 year: 2015 ident: 10.1016/j.future.2020.01.003_b37 article-title: Learning models for activity recognition in smart homes publication-title: Lect. Notes Electr. Eng. doi: 10.1007/978-3-662-46578-3_97 – volume: 66 start-page: 33 year: 2016 ident: 10.1016/j.future.2020.01.003_b49 article-title: User context recognition using smartphone sensors and classification models publication-title: J. Netw. Comput. Appl. doi: 10.1016/j.jnca.2016.03.013 – start-page: 143 year: 2016 ident: 10.1016/j.future.2020.01.003_b70 article-title: The mobiact dataset: Recognition of activities of daily living using smartphones |
| SSID | ssj0001731 |
| Score | 2.4279401 |
| Snippet | In recent years, with the evolution of internet-of-things and smart sensing technologies, sensor-based physical activity recognition has gained substantial... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 374 |
| SubjectTerms | Activity recognition Human context recognition In-the-wild Machine learning Pervasive computing Smart sensing |
| Title | Opportunistic sensing for inferring in-the-wild human contexts based on activity pattern recognition using smart computing |
| URI | https://dx.doi.org/10.1016/j.future.2020.01.003 |
| Volume | 106 |
| WOSCitedRecordID | wos000527320000030&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1872-7115 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001731 issn: 0167-739X databaseCode: AIEXJ dateStart: 19950201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07b9swECaMpEOXvoumL3DoFjCgRFGkRqNIkXZIO6SAN4EiKaSBrbi2lQb5H_2_Pb4kpynSZugi2LRFyr5P96Du7kPoXSt0I3LakIw3hhRS56TSuiCmpFYWsimlbDzZhDg-lrNZ9WUy-ZlqYS7mouvk5WW1_K-ihjEQtiudvYO4h0lhAF6D0OEIYofjPwn-89K51O4ptevFunYJ6jFZ0iVerVahiIWA40fATzaRpc-lrIOeXu87s2bcIwRX8eCJJZa-Bacre4m5RvBh7yddL2B9n5Xeb5IJTJSfvleJI2i2EWM68kfE5tGjL3_qCixO1YL0c3Kkvvst2h7eL5QZ4HgVcJvG96c_1LdrOxY5HfMD0yYmKGfBPIXuqIXpth5lgbonmmQW6PJuaPuw8XB2ENqvHLi1fA9Wykbrlp7o_2b0hlTElOV2VodZajdLTbPa95DdzQWvQN_vTj8ezj4NJj4Tkegy_pBUk-kTB29ezZ99ni0_5uQRehADEDwNwHmMJrZ7gh4mcg8cdf1TdHUNRzjiCAOO8IAjvIUj7HGEE46wxxE-73DCEY44wls4wh5H2OMIDzh6hr5-ODx5f0QiUQfREHFuCES1EmyDraxSJYMA2BomWq5YKbRqjK204ZpDaJoZ141JMdaowpiKc2Vkyy17jna6886-QFjQCoJcanmrTVFq2ehctqrkmSypzhTdQyz9lbWOXewdmcq8vk2Qe4gMZy1DF5e_fF8kKdXREw0eZg3Qu_XMl3dc6RW6P94ir9HOZtXbN-ievoA7b_U24u4XFfy2pw |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Opportunistic+sensing+for+inferring+in-the-wild+human+contexts+based+on+activity+pattern+recognition+using+smart+computing&rft.jtitle=Future+generation+computer+systems&rft.au=Ehatisham-ul-Haq%2C+Muhammad&rft.au=Azam%2C+Muhammad+Awais&rft.date=2020-05-01&rft.issn=0167-739X&rft.volume=106&rft.spage=374&rft.epage=392&rft_id=info:doi/10.1016%2Fj.future.2020.01.003&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_future_2020_01_003 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-739X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-739X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-739X&client=summon |