Opportunistic sensing for inferring in-the-wild human contexts based on activity pattern recognition using smart computing

In recent years, with the evolution of internet-of-things and smart sensing technologies, sensor-based physical activity recognition has gained substantial prominence, and numerous research works have been conducted in this regard. However, the accurate recognition of in-the-wild human activities an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Future generation computer systems Jg. 106; S. 374 - 392
Hauptverfasser: Ehatisham-ul-Haq, Muhammad, Azam, Muhammad Awais
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier B.V 01.05.2020
Schlagworte:
ISSN:0167-739X, 1872-7115
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract In recent years, with the evolution of internet-of-things and smart sensing technologies, sensor-based physical activity recognition has gained substantial prominence, and numerous research works have been conducted in this regard. However, the accurate recognition of in-the-wild human activities and the associated contexts remains an open research challenge to be addressed. This research work presents a novel activity-aware human context recognition scheme that explicitly learns human activity patterns in diverse behavioral contexts and infers in-the-wild user contexts based on physical activity recognition. In this aspect, five daily living activities, e.g., lying, sitting, standing, walking, and running, are associated with overall fourteen different behavioral contexts, including phone positions. A public domain dataset, i.e., ExtraSensory, is used for evaluating the proposed scheme using a series of machine learning classifiers. Random Forest classifier achieves the best recognition rate of 88.4% and 89.8% in recognizing five physical activities and the associated behavioral contexts, respectively, which demonstrates the efficacy of the proposed method. •Novel scheme for activity-aware human context recognition (AAHCR) in-the-wild.•Integration of 14 diverse behavioral contexts with 05 physical activities for AAHCR.•Fusion of smartphone and watch accelerometer for inferring user activity and context.•Detailed performance analysis of position-independent and position-dependent AAHCR.•Detailed comparative analysis of a series of machine learning classifiers for AAHCR.
AbstractList In recent years, with the evolution of internet-of-things and smart sensing technologies, sensor-based physical activity recognition has gained substantial prominence, and numerous research works have been conducted in this regard. However, the accurate recognition of in-the-wild human activities and the associated contexts remains an open research challenge to be addressed. This research work presents a novel activity-aware human context recognition scheme that explicitly learns human activity patterns in diverse behavioral contexts and infers in-the-wild user contexts based on physical activity recognition. In this aspect, five daily living activities, e.g., lying, sitting, standing, walking, and running, are associated with overall fourteen different behavioral contexts, including phone positions. A public domain dataset, i.e., ExtraSensory, is used for evaluating the proposed scheme using a series of machine learning classifiers. Random Forest classifier achieves the best recognition rate of 88.4% and 89.8% in recognizing five physical activities and the associated behavioral contexts, respectively, which demonstrates the efficacy of the proposed method. •Novel scheme for activity-aware human context recognition (AAHCR) in-the-wild.•Integration of 14 diverse behavioral contexts with 05 physical activities for AAHCR.•Fusion of smartphone and watch accelerometer for inferring user activity and context.•Detailed performance analysis of position-independent and position-dependent AAHCR.•Detailed comparative analysis of a series of machine learning classifiers for AAHCR.
Author Azam, Muhammad Awais
Ehatisham-ul-Haq, Muhammad
Author_xml – sequence: 1
  givenname: Muhammad
  surname: Ehatisham-ul-Haq
  fullname: Ehatisham-ul-Haq, Muhammad
  email: ehatishamuet@gmail.com
– sequence: 2
  givenname: Muhammad Awais
  surname: Azam
  fullname: Azam, Muhammad Awais
  email: awais.azam@uettaxila.edu.pk
BookMark eNqFkMtKLDEQhoMoOF7ewEVeoNtkMulMuxBEvIHgRsFdyCTVWsNMukmq9ejTm3FcuTiuiqLq-6n6Dthu7CMwdiJFLYVsTpd1N9KYoJ6KqaiFrIVQO2wi52ZaGSn1LpuUNVMZ1T7vs4Ocl0IIaZScsM-HYegTjREzoecZYsb4wrs-cYwdpLTpMFb0CtU7rgJ_Hdcuct9Hgn-U-cJlCLyP3HnCN6QPPjgiSJEn8P1LRMIyHL9D89olKuh6GKn0R2yvc6sMxz_1kD1dXz1e3lb3Dzd3lxf3lVeioUqa2VzJObTgXKOMVhCU6bRTjfFuEaD1QXvdGC2DbJvWKbVwsxBarV2YdxrUIZttc33qc07Q2SFhOeXDSmE3_uzSbv3ZjT8rpC3-Cnb2C_NIbvMOJYerv-DzLQzlsTeEZLNHiB4CFi9kQ4__D_gCvPuVeA
CitedBy_id crossref_primary_10_1016_j_inffus_2023_102197
crossref_primary_10_1109_JSEN_2020_3044315
crossref_primary_10_3390_s23125756
crossref_primary_10_1016_j_measen_2025_101970
crossref_primary_10_3390_math10132187
crossref_primary_10_1016_j_future_2023_09_029
crossref_primary_10_1177_15501329221123531
crossref_primary_10_1016_j_future_2023_05_023
crossref_primary_10_1109_JIOT_2022_3207090
crossref_primary_10_3390_s23177363
crossref_primary_10_1007_s12652_022_03870_5
crossref_primary_10_1007_s00607_025_01548_2
crossref_primary_10_1109_JIOT_2025_3555799
crossref_primary_10_3390_ijerph17186573
crossref_primary_10_3390_s24103032
crossref_primary_10_1007_s12652_021_02931_5
crossref_primary_10_3389_fphys_2022_933987
crossref_primary_10_1371_journal_pone_0286919
crossref_primary_10_1145_3643511
Cites_doi 10.1016/j.procs.2017.06.030
10.1109/JSEN.2019.2898891
10.1109/MC.2012.393
10.1002/widm.1254
10.1016/j.patcog.2017.09.005
10.3390/s151229858
10.1007/978-3-030-01177-2_15
10.3390/s120912588
10.1016/j.jpdc.2017.05.007
10.1016/j.cviu.2018.04.007
10.1016/j.future.2018.02.033
10.3233/AIS-160386
10.1016/j.inffus.2017.06.004
10.1177/1357633X15595178
10.1016/S0004-3702(97)00043-X
10.1155/2016/9493047
10.1016/j.eswa.2016.04.032
10.1109/TMC.2018.2841905
10.3390/s131013099
10.1016/j.jneumeth.2013.09.015
10.1109/72.159058
10.1186/s13673-017-0113-6
10.1145/2480741.2480744
10.1109/THMS.2016.2641388
10.1109/TPAMI.2016.2565479
10.1016/j.patcog.2018.04.022
10.4236/etsn.2017.61001
10.1109/TMC.2017.2651820
10.1016/j.patrec.2018.03.020
10.1109/JSEN.2016.2545708
10.1016/j.cirp.2018.04.066
10.3390/s17010198
10.1016/j.inffus.2018.06.002
10.1016/j.pmcj.2017.01.008
10.1109/IJCNN.2017.7966102
10.1016/j.compenvurbsys.2017.09.012
10.1109/JSEN.2018.2833745
10.3390/s16040426
10.3390/data3020011
10.1016/j.jnca.2018.02.020
10.1023/A:1007465528199
10.1016/j.measurement.2015.04.017
10.1007/s11042-016-4197-1
10.3390/s140610146
10.1109/TSMC.2017.2660547
10.1109/TII.2018.2789925
10.3390/s17092043
10.1007/s00779-017-1007-3
10.4249/scholarpedia.1883
10.1007/s00779-012-0515-4
10.1016/j.future.2017.11.029
10.3390/s18020613
10.1016/j.eswa.2018.03.056
10.1007/978-3-662-46578-3_97
10.1016/j.jnca.2016.03.013
ContentType Journal Article
Copyright 2020 Elsevier B.V.
Copyright_xml – notice: 2020 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.future.2020.01.003
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-7115
EndPage 392
ExternalDocumentID 10_1016_j_future_2020_01_003
S0167739X19314967
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
29H
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
AEBSH
AEKER
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
G8K
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
KOM
LG9
M41
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SES
SEW
SPC
SPCBC
SSV
SSZ
T5K
UHS
WUQ
XPP
ZMT
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACLOT
ACRPL
ADNMO
AEIPS
AFJKZ
AGQPQ
AIIUN
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c306t-1748318e9eaa63753ed37f5a367cabde9cd5c56751d1969a33ba4dd955ad8f5e3
ISICitedReferencesCount 25
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000527320000030&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0167-739X
IngestDate Tue Nov 18 21:52:30 EST 2025
Sat Nov 29 07:25:41 EST 2025
Fri Feb 23 02:49:52 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords ANN
BACC
CNN
PRE
LR
In-the-wild
LDA
SVM
BN
STN
IoT
DT
MLP
DBN
LYD
WLK
GBT
Activity recognition
Smart sensing
KBS
SP
KPCA
K-NN
Pervasive computing
LMA
LSTM
AAHCR
GMM
HMM
IR
RUN
F1
AAL
Human context recognition
HCI
REC
PAMS
RF
CRF
HCR
Machine learning
DALs
SIT
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c306t-1748318e9eaa63753ed37f5a367cabde9cd5c56751d1969a33ba4dd955ad8f5e3
PageCount 19
ParticipantIDs crossref_primary_10_1016_j_future_2020_01_003
crossref_citationtrail_10_1016_j_future_2020_01_003
elsevier_sciencedirect_doi_10_1016_j_future_2020_01_003
PublicationCentury 2000
PublicationDate May 2020
2020-05-00
PublicationDateYYYYMMDD 2020-05-01
PublicationDate_xml – month: 05
  year: 2020
  text: May 2020
PublicationDecade 2020
PublicationTitle Future generation computer systems
PublicationYear 2020
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Rafferty, Nugent, Liu, Chen (b3) 2017; 47
Fahim, Khattak, Baker, Chow, Shah (b32) 2016
Pludwinski, Ahmad, Wayne, Ritvo (b5) 2016; 22
Han, Vinh, Lee, Lee (b33) 2012; 12
Vaizman Yonatan, Katherine (b34) 2017; 16
Zhang, Wei, Nie, Huang, Wang, Li (b10) 2017; 2017
Otebolaku, Andrade (b49) 2016; 66
Lu, Qing-ling, Yi-Ju (b13) 2017; 76
Scheurer, Tedesco, Brown, O’Flynn (b87) 2017
Nweke, Teh, Mujtaba, Al-garadi (b18) 2019; 46
Vaizman, Weibel (b35) 2017; 1
Polu (b23) 2018; 5
Chen, Zhang, Cao, Guo (b27) 2018; 14
Smeeton (b81) 1985; 41
Muheidat, Tawalbeh, Tyrer (b41) 2018
Chen, Jafari, Kehtarnavaz (b71) 2015
Ni, García Hernando, De La Cruz (b39) 2016; 2016
Hussain, Hussain, Ehatisham-ul-Haq, Azam (b24) 2019
Sztyler, Stuckenschmidt, Petrich (b42) 2017; 38
Yao, Hu, Zhao, Zhang, Abdelzaher (b88) 2017
Costa, Almeida, Lorayne, de Sousa, Perkusich, Ramos (b73) 2016
Klein, Solaz, Ohayon (b56) 2017; 2
Lim, An, Cho, Lee, Suh (b57) 2016
Chahuara, Fleury, Vacher, Chahuara, Fleury, Vacher, Activity (b38) 2016; 8
Pal, Mitra (b79) 1992; 3
Wang, Li, Ogunbona, Wan, Escalera (b9) 2018; 171
Ronao, Cho (b63) 2016; 59
Lamonaca, Polimeni, Barbé, Grimaldi (b6) 2015; 73
Roggen, Tröster, Lukowicz, Ferscha, Del R. Millán, Chavarriaga (b8) 2013; 46
.
Mehrang, Pietilä, Korhonen (b22) 2018; 18
D. Anguita, A. Ghio, L. Oneto, X. Parra, J.L. Reyes-Ortiz, A public domain dataset for human activity recognition using smartphones, in: 21th Eur. Symp. Artif. Neural Networks, Comput. Intell. Mach. Learn., ESANN 2013, 2013.
N.Y. Hammerla, S. Halloran, T. Plötz, Deep, convolutional, and recurrent models for human activity recognition using wearables, in: IJCAI Int. Jt. Conf. Artif. Intell., 2016, pp. 1533–1540.
Vaizman, Ellis, Lanckriet, Weibel (b36) 2018
Coskun, Incel, Ozgovde (b48) 2015
Esfahani, Malazi (b72) 2017
Shoaib, Bosch, Incel, Scholten, Havinga (b30) 2016; 16
Liu, Wang, Hu, Qiong, Wen, Rosenblum (b60) 2018; 81
Khan, Siddiqi, Lee (b44) 2013; 13
Kohavi, John (b75) 1997; 97
Wang, Chen, Hao, Peng, Hu (b68) 2018; 0
Ghayvat, Mukhopadhyay, Shenjie, Chouhan, Chen (b40) 2018
Lee, Kwan (b25) 2018; 67
Attal, Mohammed, Dedabrishvili, Chamroukhi, Oukhellou, Amirat (b82) 2015; 15
Hassan, Uddin, Mohamed, Almogren (b64) 2017
Peterson (b77) 2009; 4
Hoseini-Tabatabaei, Gluhak, Tafazolli (b51) 2013; 45
Cao, Wang, Zhang, Jin, Vasilakos (b31) 2018; 118
Friedman, Geiger, Goldszmidt (b78) 1997; 29
Wang, Chen, Yang, Zhao, Chang (b28) 2016; 16
Espinilla, Medina, Hallberg, Nugent (b61) 2018
Liang, Zhou, Guo, Yu (b7) 2018
El Baz, Zhu (b2) 2018; vol. 32
Fahad, Ali, Rajarajan (b37) 2015; 339
Zhu, Hu, Chang, Lu (b16) 2017; 16
Ehatisham-ul-Haq, Awais, Naeem, Amin, Loo (b17) 2018; 109
Vanus, Belesova, Martinek, Nedoma, Fajkus, Bilik, Zidek (b15) 2017; 7
Taherkhani, Cosma, Alani, McGinnity (b59) 2019
Alsheikh, Selim, Niyato, Doyle, Lin, Tan (b84) 2016
Xu, Yang, Cao, Li (b83) 2018
Esfahani, Malazi (b53) 2018
Shoaib, Bosch, Incel, Scholten, Havinga (b45) 2014; 14
Martinez-Hernandez, Dehghani-Sanij (b21) 2019; 118
Hassan, Uddin, Mohamed, Almogren (b54) 2018; 81
Sucerquia, López, Vargas-Bonilla (b69) 2017; 17
Breiman (b76) 1999
Shi, Wang, Wu, Mo, Wei (b46) 2017; 21
Ramasamy Ramamurthy, Roy (b19) 2018; 8
Vavoulas, Chatzaki, Malliotakis, Pediaditis, Tsiknakis (b70) 2016
Alsinglawi, Nguyen, Gunawardana, Maeder, Simoff (b14) 2017; 6
Wang, Cang, Yu, Member (b86) 2018; 18
Yang, Tian (b11) 2017; 39
Garcia-Ceja, Galván-Tejada, Brena (b62) 2018; 40
Chi (b1) 2018
Ehatisham-ul-Haq, Azam, Loo, Shuang, Islam, Naeem, Amin (b74) 2017; 17
Chi, Wang, Meng (b4) 2018; 48
Bharti, De, Chellappan, Das (b20) 2019; 18
Shoaib, Bosch, Scholten, Havinga, Incel (b58) 2015
Gadaleta, Rossi (b26) 2018; 74
Martín, Bernardos, Iglesias, Casar (b47) 2013; 17
Wang, Liu, Wang, Gao (b65) 2018; 67
J. Monteiro, R. Granada, R.C. Barros, F. Meneguzzi, Deep neural networks for kitchen activity recognition, in: Proc. Int. Jt. Conf. Neural Networks, 2017, pp. 2048–2055
Dao, Nguyen-Gia, Mai (b29) 2017
Antos, Albert, Kording (b43) 2014; 231
Kohavi (b55) 1996; 7
Nweke, Teh, Al-garadi, Alo (b67) 2018; 105
Alshammari, Alshammari, Sedky, Howard (b12) 2018; 3
Quinlan Ross (b80) 1993
Nalepa, Kutt, Bobek (b50) 2018; 92
Otebolaku (10.1016/j.future.2020.01.003_b49) 2016; 66
Pal (10.1016/j.future.2020.01.003_b79) 1992; 3
Vaizman Yonatan (10.1016/j.future.2020.01.003_b34) 2017; 16
Chahuara (10.1016/j.future.2020.01.003_b38) 2016; 8
Antos (10.1016/j.future.2020.01.003_b43) 2014; 231
Nalepa (10.1016/j.future.2020.01.003_b50) 2018; 92
Pludwinski (10.1016/j.future.2020.01.003_b5) 2016; 22
Martín (10.1016/j.future.2020.01.003_b47) 2013; 17
Hoseini-Tabatabaei (10.1016/j.future.2020.01.003_b51) 2013; 45
Nweke (10.1016/j.future.2020.01.003_b18) 2019; 46
Han (10.1016/j.future.2020.01.003_b33) 2012; 12
Liu (10.1016/j.future.2020.01.003_b60) 2018; 81
Mehrang (10.1016/j.future.2020.01.003_b22) 2018; 18
Hassan (10.1016/j.future.2020.01.003_b54) 2018; 81
Lim (10.1016/j.future.2020.01.003_b57) 2016
Taherkhani (10.1016/j.future.2020.01.003_b59) 2019
Alsheikh (10.1016/j.future.2020.01.003_b84) 2016
Alshammari (10.1016/j.future.2020.01.003_b12) 2018; 3
10.1016/j.future.2020.01.003_b85
Wang (10.1016/j.future.2020.01.003_b86) 2018; 18
Zhang (10.1016/j.future.2020.01.003_b10) 2017; 2017
Ramasamy Ramamurthy (10.1016/j.future.2020.01.003_b19) 2018; 8
Fahad (10.1016/j.future.2020.01.003_b37) 2015; 339
Nweke (10.1016/j.future.2020.01.003_b67) 2018; 105
Polu (10.1016/j.future.2020.01.003_b23) 2018; 5
Peterson (10.1016/j.future.2020.01.003_b77) 2009; 4
Alsinglawi (10.1016/j.future.2020.01.003_b14) 2017; 6
Friedman (10.1016/j.future.2020.01.003_b78) 1997; 29
Coskun (10.1016/j.future.2020.01.003_b48) 2015
Garcia-Ceja (10.1016/j.future.2020.01.003_b62) 2018; 40
Fahim (10.1016/j.future.2020.01.003_b32) 2016
Muheidat (10.1016/j.future.2020.01.003_b41) 2018
Esfahani (10.1016/j.future.2020.01.003_b53) 2018
Smeeton (10.1016/j.future.2020.01.003_b81) 1985; 41
Quinlan Ross (10.1016/j.future.2020.01.003_b80) 1993
Ni (10.1016/j.future.2020.01.003_b39) 2016; 2016
Wang (10.1016/j.future.2020.01.003_b9) 2018; 171
Vaizman (10.1016/j.future.2020.01.003_b36) 2018
Ghayvat (10.1016/j.future.2020.01.003_b40) 2018
10.1016/j.future.2020.01.003_b52
Espinilla (10.1016/j.future.2020.01.003_b61) 2018
Costa (10.1016/j.future.2020.01.003_b73) 2016
Vaizman (10.1016/j.future.2020.01.003_b35) 2017; 1
10.1016/j.future.2020.01.003_b66
Gadaleta (10.1016/j.future.2020.01.003_b26) 2018; 74
Chen (10.1016/j.future.2020.01.003_b27) 2018; 14
Breiman (10.1016/j.future.2020.01.003_b76) 1999
Chi (10.1016/j.future.2020.01.003_b1) 2018
Sucerquia (10.1016/j.future.2020.01.003_b69) 2017; 17
Esfahani (10.1016/j.future.2020.01.003_b72) 2017
Shoaib (10.1016/j.future.2020.01.003_b30) 2016; 16
Wang (10.1016/j.future.2020.01.003_b65) 2018; 67
Ehatisham-ul-Haq (10.1016/j.future.2020.01.003_b74) 2017; 17
Zhu (10.1016/j.future.2020.01.003_b16) 2017; 16
Ronao (10.1016/j.future.2020.01.003_b63) 2016; 59
Yang (10.1016/j.future.2020.01.003_b11) 2017; 39
Rafferty (10.1016/j.future.2020.01.003_b3) 2017; 47
Roggen (10.1016/j.future.2020.01.003_b8) 2013; 46
Kohavi (10.1016/j.future.2020.01.003_b55) 1996; 7
Lee (10.1016/j.future.2020.01.003_b25) 2018; 67
Shoaib (10.1016/j.future.2020.01.003_b45) 2014; 14
Chi (10.1016/j.future.2020.01.003_b4) 2018; 48
Scheurer (10.1016/j.future.2020.01.003_b87) 2017
Wang (10.1016/j.future.2020.01.003_b28) 2016; 16
El Baz (10.1016/j.future.2020.01.003_b2) 2018; vol. 32
Vavoulas (10.1016/j.future.2020.01.003_b70) 2016
Shi (10.1016/j.future.2020.01.003_b46) 2017; 21
Attal (10.1016/j.future.2020.01.003_b82) 2015; 15
Dao (10.1016/j.future.2020.01.003_b29) 2017
Kohavi (10.1016/j.future.2020.01.003_b75) 1997; 97
Vanus (10.1016/j.future.2020.01.003_b15) 2017; 7
Ehatisham-ul-Haq (10.1016/j.future.2020.01.003_b17) 2018; 109
Lu (10.1016/j.future.2020.01.003_b13) 2017; 76
Cao (10.1016/j.future.2020.01.003_b31) 2018; 118
Khan (10.1016/j.future.2020.01.003_b44) 2013; 13
Lamonaca (10.1016/j.future.2020.01.003_b6) 2015; 73
Martinez-Hernandez (10.1016/j.future.2020.01.003_b21) 2019; 118
Bharti (10.1016/j.future.2020.01.003_b20) 2019; 18
Sztyler (10.1016/j.future.2020.01.003_b42) 2017; 38
Hussain (10.1016/j.future.2020.01.003_b24) 2019
Xu (10.1016/j.future.2020.01.003_b83) 2018
Hassan (10.1016/j.future.2020.01.003_b64) 2017
Liang (10.1016/j.future.2020.01.003_b7) 2018
Klein (10.1016/j.future.2020.01.003_b56) 2017; 2
Wang (10.1016/j.future.2020.01.003_b68) 2018; 0
Chen (10.1016/j.future.2020.01.003_b71) 2015
Yao (10.1016/j.future.2020.01.003_b88) 2017
Shoaib (10.1016/j.future.2020.01.003_b58) 2015
References_xml – volume: 41
  start-page: 795
  year: 1985
  ident: b81
  article-title: Early history of the kappa statistic
  publication-title: Biometrics
– start-page: 1
  year: 2017
  end-page: 7
  ident: b72
  article-title: PAMS: A new position-aware multi-sensor dataset for human activity recognition using smartphones
  publication-title: 2017 19th Int. Symp. Comput. Archit. Digit. Syst.
– volume: 39
  start-page: 1028
  year: 2017
  end-page: 1039
  ident: b11
  article-title: Super normal vector for human activity recognition with depth cameras
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 14
  start-page: 4334
  year: 2018
  end-page: 4342
  ident: b27
  article-title: Distilling the knowledge from handcrafted features for human activity recognition
  publication-title: IEEE Trans. Ind. Inf.
– reference: J. Monteiro, R. Granada, R.C. Barros, F. Meneguzzi, Deep neural networks for kitchen activity recognition, in: Proc. Int. Jt. Conf. Neural Networks, 2017, pp. 2048–2055,
– start-page: 267
  year: 2016
  end-page: 272
  ident: b73
  article-title: Combining smartphone and smartwatch sensor data in activity recognition approaches: an experimental evaluation
  publication-title: Proc. 28th Int. Conf. Softw. Eng. Knowl. Eng.
– volume: 3
  start-page: 11
  year: 2018
  ident: b12
  article-title: SIMADL: Simulated activities of daily living dataset
  publication-title: Data
– volume: 46
  start-page: 147
  year: 2019
  end-page: 170
  ident: b18
  article-title: Data fusion and multiple classifier systems for human activity detection and health monitoring: Review and open research directions
  publication-title: Inf. Fusion
– volume: 21
  start-page: 427
  year: 2017
  end-page: 441
  ident: b46
  article-title: A novel orientation- and location-independent activity recognition method
  publication-title: Pers. Ubiquitous Comput.
– volume: 16
  year: 2017
  ident: b34
  article-title: Recognizing detailed human context in-the-wildfrom smart phones and smartwatches
  publication-title: IEEE Pervasive Comput.
– volume: 13
  start-page: 13099
  year: 2013
  end-page: 13122
  ident: b44
  article-title: Exploratory data analysis of acceleration signals to select light-weight and accurate features for real-time activity recognition on smartphones
  publication-title: Sensors
– start-page: 8
  year: 2016
  end-page: 13
  ident: b84
  article-title: Deep Activity Recognition Models with Triaxial Accelerometers
– volume: vol. 32
  start-page: 3
  year: 2018
  end-page: 11
  ident: b2
  article-title: Smart systems, the fourth industrial revolution and new challenges in distributed computing
  publication-title: Adv. Parallel Comput.
– volume: 2016
  year: 2016
  ident: b39
  article-title: A context-aware system infrastructure for monitoring activities of daily living in smart home
  publication-title: J. Sensors
– volume: 17
  start-page: 675
  year: 2013
  end-page: 695
  ident: b47
  article-title: Activity logging using lightweight classification techniques in mobile devices
  publication-title: Pers. Ubiquitous Comput.
– start-page: 548
  year: 2018
  end-page: 553
  ident: b83
  article-title: Human activity recognition based on random forests
  publication-title: ICNC-FSKD 2017-13th Int. Conf. Nat. Comput. Fuzzy Syst. Knowl. Discov.
– volume: 17
  start-page: 198
  year: 2017
  ident: b69
  article-title: SisFall: A fall and movement dataset
  publication-title: Sensors
– volume: 76
  start-page: 24203
  year: 2017
  end-page: 24220
  ident: b13
  article-title: Activity recognition in smart homes
  publication-title: Multimed. Tools Appl.
– volume: 16
  year: 2016
  ident: b30
  article-title: Complex human activity recognition using smartphone and wrist-worn motion sensors
  publication-title: Sensors
– volume: 59
  start-page: 235
  year: 2016
  end-page: 244
  ident: b63
  article-title: Human activity recognition with smartphone sensors using deep learning neural networks
  publication-title: Expert Syst. Appl.
– reference: N.Y. Hammerla, S. Halloran, T. Plötz, Deep, convolutional, and recurrent models for human activity recognition using wearables, in: IJCAI Int. Jt. Conf. Artif. Intell., 2016, pp. 1533–1540.
– volume: 105
  start-page: 233
  year: 2018
  end-page: 261
  ident: b67
  article-title: Deep learning algorithms for human activity recognition using mobile and wearable sensor networks: State of the art and research challenges
  publication-title: Expert Syst. Appl.
– start-page: 329
  year: 2018
  end-page: 333
  ident: b41
  article-title: Context-aware, accurate, and real time fall detection system for elderly people
  publication-title: Proc. - 12th IEEE Int. Conf. Semant. Comput
– start-page: 1
  year: 2018
  end-page: 13
  ident: b61
  article-title: A new approach based on temporal sub-windows for online sensor-based activity recognition
  publication-title: J. Ambient Intell. Humaniz. Comput.
– volume: 4
  start-page: 1883
  year: 2009
  ident: b77
  article-title: K-nearest neighbor
  publication-title: Scholarpedia
– volume: 2017
  start-page: 1
  year: 2017
  end-page: 31
  ident: b10
  article-title: A review on human activity recognition using vision-based method
  publication-title: J. Healthc. Eng.
– start-page: 1
  year: 2018
  end-page: 7
  ident: b53
  article-title: PAMS: A new position-aware multi-sensor dataset for human activity recognition using smartphones
  publication-title: 2017 19th Int. Symp. Comput. Archit. Digit. Syst
– volume: 73
  start-page: 82
  year: 2015
  end-page: 94
  ident: b6
  article-title: Health parameters monitoring by smartphone for quality of life improvement
  publication-title: Meas. J. Int. Meas. Confed.
– volume: 97
  start-page: 273
  year: 1997
  end-page: 324
  ident: b75
  article-title: Wrappers for feature subset selection
  publication-title: Artificial Intelligence
– start-page: 1
  year: 1999
  end-page: 29
  ident: b76
  article-title: Random Forests–Random Features
– volume: 7
  year: 2017
  ident: b15
  article-title: Monitoring of the daily living activities in smart home care
  publication-title: Human-Centric Comput. Inf. Sci.
– volume: 66
  start-page: 33
  year: 2016
  end-page: 51
  ident: b49
  article-title: User context recognition using smartphone sensors and classification models
  publication-title: J. Netw. Comput. Appl.
– volume: 6
  start-page: 1
  year: 2017
  end-page: 17
  ident: b14
  article-title: RFID systems in healthcare settings and activity of daily living in smart homes: A review
  publication-title: E-Health Telecommun. Syst. Netw.
– volume: 67
  start-page: 124
  year: 2018
  end-page: 131
  ident: b25
  article-title: Physical activity classification in free-living conditions using smartphone accelerometer data and exploration of predicted results
  publication-title: Comput. Environ. Urban Syst.
– volume: 16
  start-page: 4566
  year: 2016
  end-page: 4578
  ident: b28
  article-title: A comparative study on human activity recognition using inertial sensors in a smartphone
  publication-title: IEEE Sens. J.
– reference: D. Anguita, A. Ghio, L. Oneto, X. Parra, J.L. Reyes-Ortiz, A public domain dataset for human activity recognition using smartphones, in: 21th Eur. Symp. Artif. Neural Networks, Comput. Intell. Mach. Learn., ESANN 2013, 2013.
– volume: 231
  start-page: 22
  year: 2014
  end-page: 30
  ident: b43
  article-title: Hand, belt, pocket or bag: Practical activity tracking with mobile phones
  publication-title: J. Neurosci. Methods
– volume: 92
  start-page: 490
  year: 2018
  end-page: 503
  ident: b50
  article-title: Mobile platform for affective context-aware systems
  publication-title: Future Gener. Comput. Syst.
– volume: 74
  start-page: 25
  year: 2018
  end-page: 37
  ident: b26
  article-title: IDNet: Smartphone-based gait recognition with convolutional neural networks
  publication-title: Pattern Recognit.
– year: 1993
  ident: b80
  article-title: C4. 5: Programs for Machine Learning
– volume: 17
  year: 2017
  ident: b74
  article-title: Authentication of smartphone users based on activity recognition and mobile sensing
  publication-title: Sensors
– volume: 15
  start-page: 31314
  year: 2015
  end-page: 31338
  ident: b82
  article-title: Physical human activity recognition using wearable sensors
  publication-title: Sensors
– start-page: 323
  year: 2017
  end-page: 328
  ident: b29
  article-title: Daily human activities recognition using heterogeneous sensors from smartphones
  publication-title: Procedia Comput. Sci.
– volume: 118
  start-page: 67
  year: 2018
  end-page: 80
  ident: b31
  article-title: GCHAR: An efficient group-based context—aware human activity recognition on smartphone
  publication-title: J. Parallel Distrib. Comput.
– volume: 22
  start-page: 172
  year: 2016
  end-page: 178
  ident: b5
  article-title: Participant experiences in a smartphone-based health coaching intervention for type 2 diabetes: A qualitative inquiry
  publication-title: J. Telemed. Telecare
– start-page: 1
  year: 2018
  end-page: 5
  ident: b40
  article-title: Smart home based ambient assisted living: Recognition of anomaly in the activity of daily living for an elderly living alone
  publication-title: I2MTC 2018-2018 IEEE Int. Instrum. Meas. Technol. Conf. Discov. New Horizons Instrum. Meas. Proc.
– volume: 14
  start-page: 10146
  year: 2014
  end-page: 10176
  ident: b45
  article-title: Fusion of smartphone motion sensors for physical activity recognition
  publication-title: Sensors
– start-page: 351
  year: 2017
  end-page: 360
  ident: b88
  article-title: DeepSense: A unified deep learning framework for time-series mobile sensing data processing
  publication-title: 26th Int. World Wide Web Conf.
– volume: 118
  start-page: 32
  year: 2019
  end-page: 41
  ident: b21
  article-title: Probabilistic identification of sit-to-stand and stand-to-sit with a wearable sensor
  publication-title: Pattern Recognit. Lett.
– volume: 339
  start-page: 819
  year: 2015
  end-page: 826
  ident: b37
  article-title: Learning models for activity recognition in smart homes
  publication-title: Lect. Notes Electr. Eng.
– year: 2018
  ident: b36
  article-title: ExtraSensory App: Data Collection In-the-Wild with Rich User Interface to Self-Report Behavior, Proc. CHI. 1–12.
– start-page: 203
  year: 2019
  end-page: 218
  ident: b59
  article-title: Activity recognition from multi-modal sensor data using a deep convolutional neural network
  publication-title: Adv. Intell. Syst. Comput.
– volume: 8
  year: 2018
  ident: b19
  article-title: Recent trends in machine learning for human activity recognition—A survey
  publication-title: Wiley Interdiscip. Rev. Data Min. Knowl. Discov.
– volume: 46
  start-page: 36
  year: 2013
  end-page: 45
  ident: b8
  article-title: Opportunistic human activity and context recognition
  publication-title: Computer
– volume: 109
  start-page: 24
  year: 2018
  end-page: 35
  ident: b17
  article-title: Continuous authentication of smartphone users based on activity pattern recognition using passive mobile sensing
  publication-title: J. Netw. Comput. Appl.
– volume: 29
  start-page: 131
  year: 1997
  end-page: 163
  ident: b78
  article-title: Bayesian network classifiers
  publication-title: Mach. Learn.
– volume: 12
  start-page: 12588
  year: 2012
  end-page: 12605
  ident: b33
  article-title: Comprehensive context recognizer based on multimodal sensors in a smartphone
  publication-title: Sensors
– volume: 38
  start-page: 281
  year: 2017
  end-page: 295
  ident: b42
  article-title: Position-aware activity recognition with wearable devices
  publication-title: Pervasive Mob. Comput.
– start-page: 22
  year: 2018
  end-page: 52
  ident: b7
  article-title: Activity recognition using ubiquitous sensors
– volume: 1
  start-page: 22
  year: 2017
  ident: b35
  article-title: Context recognition in-the-wild: Unified model for multi-modal sensors and multi-label classification
  publication-title: Proc. ACM Interact. Mob. Wearable Ubiquitous Technol.
– volume: 81
  start-page: 545
  year: 2018
  end-page: 561
  ident: b60
  article-title: Learning structures of interval-based Bayesian networks in probabilistic generative model for human complex activity recognition
  publication-title: Pattern Recognit.
– volume: 47
  start-page: 368
  year: 2017
  end-page: 379
  ident: b3
  article-title: From activity recognition to intention recognition for assisted living within smart homes
  publication-title: IEEE Trans. Human-Mach. Syst.
– volume: 171
  start-page: 118
  year: 2018
  end-page: 139
  ident: b9
  article-title: RGB-D-based human motion recognition with deep learning: A survey
  publication-title: Comput. Vis. Image Underst.
– volume: 16
  start-page: 2901
  year: 2017
  end-page: 2912
  ident: b16
  article-title: Shakein: Secure user authentication of smartphones with single-handed shakes
  publication-title: IEEE Trans. Mob. Comput.
– start-page: 30
  year: 2016
  end-page: 34
  ident: b32
  article-title: Micro-context recognition of sedentary behaviour using smartphone
  publication-title: 2016 6th Int. Conf. Digit. Inf. Commun. Technol. its Appl.
– volume: 3
  start-page: 683
  year: 1992
  end-page: 697
  ident: b79
  article-title: Multilayer perceptron, Fuzzy sets, and classification
  publication-title: IEEE Trans. Neural Netw.
– volume: 18
  year: 2018
  ident: b22
  article-title: An activity recognition framework deploying the random forest classifier and a single optical heart rate monitoring and triaxial accelerometer wrist-band
  publication-title: Sensors
– volume: 8
  start-page: 399
  year: 2016
  end-page: 422
  ident: b38
  article-title: On-line human activity recognition from audio and home automation sensors
  publication-title: J. Ambient Intell. Smart Environ.
– volume: 45
  start-page: 1
  year: 2013
  end-page: 51
  ident: b51
  article-title: A survey on smartphone-based systems for opportunistic user context recognition
  publication-title: ACM Comput. Surv.
– volume: 7
  start-page: 202
  year: 1996
  end-page: 207
  ident: b55
  article-title: Scaling up the accuracy of Naive–Bayes classifiers: A decision-tree hybrid
  publication-title: Proc. Second Int. Conf. Knowl. Discov. Data Min.
– start-page: 143
  year: 2016
  end-page: 151
  ident: b70
  article-title: The mobiact dataset: Recognition of activities of daily living using smartphones
  publication-title: Proc. Int. Conf. Inf. Commun. Technol. Ageing Well E-Health
– volume: 67
  start-page: 17
  year: 2018
  end-page: 20
  ident: b65
  article-title: Deep learning-based human motion recognition for predictive context-aware human–robot collaboration
  publication-title: CIRP Ann.
– volume: 18
  start-page: 857
  year: 2019
  end-page: 870
  ident: b20
  article-title: HuMAn: Complex activity recognition with multi-modal multi-positional body sensing
  publication-title: IEEE Trans. Mob. Comput.
– reference: .
– year: 2015
  ident: b48
  article-title: Phone position/placement detection using accelerometer: Impact on activity recognition
  publication-title: 2015 IEEE 10th Int. Conf. Intell. Sensors, Sens. Networks Inf. Process
– year: 2017
  ident: b64
  article-title: A robust human activity recognition system using smartphone sensors and deep learning
  publication-title: Future Gener. Comput. Syst.
– volume: 18
  start-page: 6874
  year: 2018
  end-page: 6888
  ident: b86
  article-title: A data fusion-based hybrid sensory system for older people’s daily activity and daily routine recognition
  publication-title: IEEE Sens. J.
– volume: 48
  start-page: 1429
  year: 2018
  end-page: 1440
  ident: b4
  article-title: A gait recognition method for human following in service robots
  publication-title: IEEE Trans. Syst. Man Cybern. Syst.
– start-page: 675
  year: 2016
  end-page: 681
  ident: b57
  article-title: WhichHand: Automatic recognition of a smartphone’s position in the hand using a smartwatch
  publication-title: Proc. 18th Int. Conf. Human-Computer Interact. with Mob. Devices Serv. Adjun
– volume: 5
  start-page: 31
  year: 2018
  end-page: 37
  ident: b23
  article-title: Human activity recognition on smartphones using machine learning algorithms
  publication-title: Int. J. Innov. Res. Sci. Technol.
– year: 2019
  ident: b24
  article-title: Activity-aware fall detection and recognition based on wearable sensors
  publication-title: IEEE Sens. J.
– start-page: 168
  year: 2015
  end-page: 172
  ident: b71
  article-title: UTD-MHAD: A multimodal dataset for human action recognition utilizing a depth camera and a wearable inertial sensor
  publication-title: Proc. - Int. Conf. Image Process
– volume: 81
  start-page: 307
  year: 2018
  end-page: 313
  ident: b54
  article-title: A robust human activity recognition system using smartphone sensors and deep learning
  publication-title: Future Gener. Comput. Syst.
– volume: 0
  start-page: 1
  year: 2018
  end-page: 9
  ident: b68
  article-title: Deep learning for sensor-based activity recognition: A survey
  publication-title: Pattern Recognit. Lett.
– start-page: 5
  year: 2017
  end-page: 8
  ident: b87
  article-title: Human activity recognition for emergency first responders via body-worn inertial sensors
  publication-title: 2017 IEEE 14th Int. Conf. Wearable Implant. Body Sens. Networks
– volume: 40
  start-page: 45
  year: 2018
  end-page: 56
  ident: b62
  article-title: Multi-view stacking for activity recognition with sound and accelerometer data
  publication-title: Inf. Fusion
– start-page: 1
  year: 2018
  end-page: 4
  ident: b1
  article-title: Smart IC technologies for smart devices in IoT applications
  publication-title: China Semicond. Technol. Int. Conf. 2018
– start-page: 591
  year: 2015
  end-page: 596
  ident: b58
  article-title: Towards detection of bad habits by fusing smartphone and smartwatch sensors
  publication-title: 2015 IEEE Int. Conf. Pervasive Comput. Commun. Work. PerCom Work. 2015
– volume: 2
  start-page: 145
  year: 2017
  ident: b56
  article-title: Smartphone motion mode recognition
  publication-title: Proceedings
– year: 1993
  ident: 10.1016/j.future.2020.01.003_b80
– start-page: 323
  year: 2017
  ident: 10.1016/j.future.2020.01.003_b29
  article-title: Daily human activities recognition using heterogeneous sensors from smartphones
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2017.06.030
– start-page: 351
  year: 2017
  ident: 10.1016/j.future.2020.01.003_b88
  article-title: DeepSense: A unified deep learning framework for time-series mobile sensing data processing
– year: 2019
  ident: 10.1016/j.future.2020.01.003_b24
  article-title: Activity-aware fall detection and recognition based on wearable sensors
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2019.2898891
– volume: 46
  start-page: 36
  year: 2013
  ident: 10.1016/j.future.2020.01.003_b8
  article-title: Opportunistic human activity and context recognition
  publication-title: Computer
  doi: 10.1109/MC.2012.393
– volume: 8
  year: 2018
  ident: 10.1016/j.future.2020.01.003_b19
  article-title: Recent trends in machine learning for human activity recognition—A survey
  publication-title: Wiley Interdiscip. Rev. Data Min. Knowl. Discov.
  doi: 10.1002/widm.1254
– volume: 0
  start-page: 1
  year: 2018
  ident: 10.1016/j.future.2020.01.003_b68
  article-title: Deep learning for sensor-based activity recognition: A survey
  publication-title: Pattern Recognit. Lett.
– start-page: 1
  year: 1999
  ident: 10.1016/j.future.2020.01.003_b76
– volume: 74
  start-page: 25
  year: 2018
  ident: 10.1016/j.future.2020.01.003_b26
  article-title: IDNet: Smartphone-based gait recognition with convolutional neural networks
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2017.09.005
– volume: 15
  start-page: 31314
  year: 2015
  ident: 10.1016/j.future.2020.01.003_b82
  article-title: Physical human activity recognition using wearable sensors
  publication-title: Sensors
  doi: 10.3390/s151229858
– start-page: 203
  year: 2019
  ident: 10.1016/j.future.2020.01.003_b59
  article-title: Activity recognition from multi-modal sensor data using a deep convolutional neural network
  doi: 10.1007/978-3-030-01177-2_15
– start-page: 1
  year: 2018
  ident: 10.1016/j.future.2020.01.003_b61
  article-title: A new approach based on temporal sub-windows for online sensor-based activity recognition
  publication-title: J. Ambient Intell. Humaniz. Comput.
– volume: 12
  start-page: 12588
  year: 2012
  ident: 10.1016/j.future.2020.01.003_b33
  article-title: Comprehensive context recognizer based on multimodal sensors in a smartphone
  publication-title: Sensors
  doi: 10.3390/s120912588
– start-page: 1
  year: 2018
  ident: 10.1016/j.future.2020.01.003_b53
  article-title: PAMS: A new position-aware multi-sensor dataset for human activity recognition using smartphones
– start-page: 329
  year: 2018
  ident: 10.1016/j.future.2020.01.003_b41
  article-title: Context-aware, accurate, and real time fall detection system for elderly people
– volume: 118
  start-page: 67
  year: 2018
  ident: 10.1016/j.future.2020.01.003_b31
  article-title: GCHAR: An efficient group-based context—aware human activity recognition on smartphone
  publication-title: J. Parallel Distrib. Comput.
  doi: 10.1016/j.jpdc.2017.05.007
– volume: 171
  start-page: 118
  year: 2018
  ident: 10.1016/j.future.2020.01.003_b9
  article-title: RGB-D-based human motion recognition with deep learning: A survey
  publication-title: Comput. Vis. Image Underst.
  doi: 10.1016/j.cviu.2018.04.007
– volume: 92
  start-page: 490
  year: 2018
  ident: 10.1016/j.future.2020.01.003_b50
  article-title: Mobile platform for affective context-aware systems
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2018.02.033
– volume: 8
  start-page: 399
  year: 2016
  ident: 10.1016/j.future.2020.01.003_b38
  article-title: On-line human activity recognition from audio and home automation sensors
  publication-title: J. Ambient Intell. Smart Environ.
  doi: 10.3233/AIS-160386
– volume: 40
  start-page: 45
  year: 2018
  ident: 10.1016/j.future.2020.01.003_b62
  article-title: Multi-view stacking for activity recognition with sound and accelerometer data
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2017.06.004
– volume: 22
  start-page: 172
  year: 2016
  ident: 10.1016/j.future.2020.01.003_b5
  article-title: Participant experiences in a smartphone-based health coaching intervention for type 2 diabetes: A qualitative inquiry
  publication-title: J. Telemed. Telecare
  doi: 10.1177/1357633X15595178
– ident: 10.1016/j.future.2020.01.003_b52
– start-page: 675
  year: 2016
  ident: 10.1016/j.future.2020.01.003_b57
  article-title: WhichHand: Automatic recognition of a smartphone’s position in the hand using a smartwatch
– volume: 97
  start-page: 273
  year: 1997
  ident: 10.1016/j.future.2020.01.003_b75
  article-title: Wrappers for feature subset selection
  publication-title: Artificial Intelligence
  doi: 10.1016/S0004-3702(97)00043-X
– volume: 2016
  year: 2016
  ident: 10.1016/j.future.2020.01.003_b39
  article-title: A context-aware system infrastructure for monitoring activities of daily living in smart home
  publication-title: J. Sensors
  doi: 10.1155/2016/9493047
– volume: 7
  start-page: 202
  year: 1996
  ident: 10.1016/j.future.2020.01.003_b55
  article-title: Scaling up the accuracy of Naive–Bayes classifiers: A decision-tree hybrid
  publication-title: Proc. Second Int. Conf. Knowl. Discov. Data Min.
– volume: 59
  start-page: 235
  year: 2016
  ident: 10.1016/j.future.2020.01.003_b63
  article-title: Human activity recognition with smartphone sensors using deep learning neural networks
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2016.04.032
– volume: 18
  start-page: 857
  year: 2019
  ident: 10.1016/j.future.2020.01.003_b20
  article-title: HuMAn: Complex activity recognition with multi-modal multi-positional body sensing
  publication-title: IEEE Trans. Mob. Comput.
  doi: 10.1109/TMC.2018.2841905
– volume: 13
  start-page: 13099
  year: 2013
  ident: 10.1016/j.future.2020.01.003_b44
  article-title: Exploratory data analysis of acceleration signals to select light-weight and accurate features for real-time activity recognition on smartphones
  publication-title: Sensors
  doi: 10.3390/s131013099
– volume: 231
  start-page: 22
  year: 2014
  ident: 10.1016/j.future.2020.01.003_b43
  article-title: Hand, belt, pocket or bag: Practical activity tracking with mobile phones
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2013.09.015
– volume: 3
  start-page: 683
  year: 1992
  ident: 10.1016/j.future.2020.01.003_b79
  article-title: Multilayer perceptron, Fuzzy sets, and classification
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/72.159058
– volume: 7
  year: 2017
  ident: 10.1016/j.future.2020.01.003_b15
  article-title: Monitoring of the daily living activities in smart home care
  publication-title: Human-Centric Comput. Inf. Sci.
  doi: 10.1186/s13673-017-0113-6
– volume: 45
  start-page: 1
  year: 2013
  ident: 10.1016/j.future.2020.01.003_b51
  article-title: A survey on smartphone-based systems for opportunistic user context recognition
  publication-title: ACM Comput. Surv.
  doi: 10.1145/2480741.2480744
– start-page: 548
  year: 2018
  ident: 10.1016/j.future.2020.01.003_b83
  article-title: Human activity recognition based on random forests
– volume: 47
  start-page: 368
  year: 2017
  ident: 10.1016/j.future.2020.01.003_b3
  article-title: From activity recognition to intention recognition for assisted living within smart homes
  publication-title: IEEE Trans. Human-Mach. Syst.
  doi: 10.1109/THMS.2016.2641388
– volume: 39
  start-page: 1028
  year: 2017
  ident: 10.1016/j.future.2020.01.003_b11
  article-title: Super normal vector for human activity recognition with depth cameras
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2016.2565479
– start-page: 1
  year: 2018
  ident: 10.1016/j.future.2020.01.003_b1
  article-title: Smart IC technologies for smart devices in IoT applications
– start-page: 591
  year: 2015
  ident: 10.1016/j.future.2020.01.003_b58
  article-title: Towards detection of bad habits by fusing smartphone and smartwatch sensors
– volume: 81
  start-page: 545
  year: 2018
  ident: 10.1016/j.future.2020.01.003_b60
  article-title: Learning structures of interval-based Bayesian networks in probabilistic generative model for human complex activity recognition
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2018.04.022
– volume: 6
  start-page: 1
  year: 2017
  ident: 10.1016/j.future.2020.01.003_b14
  article-title: RFID systems in healthcare settings and activity of daily living in smart homes: A review
  publication-title: E-Health Telecommun. Syst. Netw.
  doi: 10.4236/etsn.2017.61001
– volume: 16
  start-page: 2901
  year: 2017
  ident: 10.1016/j.future.2020.01.003_b16
  article-title: Shakein: Secure user authentication of smartphones with single-handed shakes
  publication-title: IEEE Trans. Mob. Comput.
  doi: 10.1109/TMC.2017.2651820
– volume: 41
  start-page: 795
  year: 1985
  ident: 10.1016/j.future.2020.01.003_b81
  article-title: Early history of the kappa statistic
  publication-title: Biometrics
– volume: 118
  start-page: 32
  year: 2019
  ident: 10.1016/j.future.2020.01.003_b21
  article-title: Probabilistic identification of sit-to-stand and stand-to-sit with a wearable sensor
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2018.03.020
– volume: 16
  start-page: 4566
  year: 2016
  ident: 10.1016/j.future.2020.01.003_b28
  article-title: A comparative study on human activity recognition using inertial sensors in a smartphone
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2016.2545708
– volume: 1
  start-page: 22
  issue: 4
  year: 2017
  ident: 10.1016/j.future.2020.01.003_b35
  article-title: Context recognition in-the-wild: Unified model for multi-modal sensors and multi-label classification
  publication-title: Proc. ACM Interact. Mob. Wearable Ubiquitous Technol.
– start-page: 22
  year: 2018
  ident: 10.1016/j.future.2020.01.003_b7
– volume: 67
  start-page: 17
  year: 2018
  ident: 10.1016/j.future.2020.01.003_b65
  article-title: Deep learning-based human motion recognition for predictive context-aware human–robot collaboration
  publication-title: CIRP Ann.
  doi: 10.1016/j.cirp.2018.04.066
– volume: 17
  start-page: 198
  year: 2017
  ident: 10.1016/j.future.2020.01.003_b69
  article-title: SisFall: A fall and movement dataset
  publication-title: Sensors
  doi: 10.3390/s17010198
– volume: 46
  start-page: 147
  year: 2019
  ident: 10.1016/j.future.2020.01.003_b18
  article-title: Data fusion and multiple classifier systems for human activity detection and health monitoring: Review and open research directions
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2018.06.002
– volume: 38
  start-page: 281
  year: 2017
  ident: 10.1016/j.future.2020.01.003_b42
  article-title: Position-aware activity recognition with wearable devices
  publication-title: Pervasive Mob. Comput.
  doi: 10.1016/j.pmcj.2017.01.008
– year: 2017
  ident: 10.1016/j.future.2020.01.003_b64
  article-title: A robust human activity recognition system using smartphone sensors and deep learning
  publication-title: Future Gener. Comput. Syst.
– ident: 10.1016/j.future.2020.01.003_b66
  doi: 10.1109/IJCNN.2017.7966102
– volume: 67
  start-page: 124
  year: 2018
  ident: 10.1016/j.future.2020.01.003_b25
  article-title: Physical activity classification in free-living conditions using smartphone accelerometer data and exploration of predicted results
  publication-title: Comput. Environ. Urban Syst.
  doi: 10.1016/j.compenvurbsys.2017.09.012
– volume: 18
  start-page: 6874
  year: 2018
  ident: 10.1016/j.future.2020.01.003_b86
  article-title: A data fusion-based hybrid sensory system for older people’s daily activity and daily routine recognition
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2018.2833745
– volume: 16
  year: 2016
  ident: 10.1016/j.future.2020.01.003_b30
  article-title: Complex human activity recognition using smartphone and wrist-worn motion sensors
  publication-title: Sensors
  doi: 10.3390/s16040426
– volume: 3
  start-page: 11
  year: 2018
  ident: 10.1016/j.future.2020.01.003_b12
  article-title: SIMADL: Simulated activities of daily living dataset
  publication-title: Data
  doi: 10.3390/data3020011
– volume: 109
  start-page: 24
  year: 2018
  ident: 10.1016/j.future.2020.01.003_b17
  article-title: Continuous authentication of smartphone users based on activity pattern recognition using passive mobile sensing
  publication-title: J. Netw. Comput. Appl.
  doi: 10.1016/j.jnca.2018.02.020
– volume: 29
  start-page: 131
  year: 1997
  ident: 10.1016/j.future.2020.01.003_b78
  article-title: Bayesian network classifiers
  publication-title: Mach. Learn.
  doi: 10.1023/A:1007465528199
– volume: 73
  start-page: 82
  year: 2015
  ident: 10.1016/j.future.2020.01.003_b6
  article-title: Health parameters monitoring by smartphone for quality of life improvement
  publication-title: Meas. J. Int. Meas. Confed.
  doi: 10.1016/j.measurement.2015.04.017
– volume: 76
  start-page: 24203
  year: 2017
  ident: 10.1016/j.future.2020.01.003_b13
  article-title: Activity recognition in smart homes
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-016-4197-1
– volume: 14
  start-page: 10146
  year: 2014
  ident: 10.1016/j.future.2020.01.003_b45
  article-title: Fusion of smartphone motion sensors for physical activity recognition
  publication-title: Sensors
  doi: 10.3390/s140610146
– volume: 48
  start-page: 1429
  year: 2018
  ident: 10.1016/j.future.2020.01.003_b4
  article-title: A gait recognition method for human following in service robots
  publication-title: IEEE Trans. Syst. Man Cybern. Syst.
  doi: 10.1109/TSMC.2017.2660547
– volume: 5
  start-page: 31
  year: 2018
  ident: 10.1016/j.future.2020.01.003_b23
  article-title: Human activity recognition on smartphones using machine learning algorithms
  publication-title: Int. J. Innov. Res. Sci. Technol.
– start-page: 8
  year: 2016
  ident: 10.1016/j.future.2020.01.003_b84
– volume: 14
  start-page: 4334
  year: 2018
  ident: 10.1016/j.future.2020.01.003_b27
  article-title: Distilling the knowledge from handcrafted features for human activity recognition
  publication-title: IEEE Trans. Ind. Inf.
  doi: 10.1109/TII.2018.2789925
– start-page: 5
  year: 2017
  ident: 10.1016/j.future.2020.01.003_b87
  article-title: Human activity recognition for emergency first responders via body-worn inertial sensors
– volume: 16
  year: 2017
  ident: 10.1016/j.future.2020.01.003_b34
  article-title: Recognizing detailed human context in-the-wildfrom smart phones and smartwatches
  publication-title: IEEE Pervasive Comput.
– year: 2018
  ident: 10.1016/j.future.2020.01.003_b36
– volume: 17
  year: 2017
  ident: 10.1016/j.future.2020.01.003_b74
  article-title: Authentication of smartphone users based on activity recognition and mobile sensing
  publication-title: Sensors
  doi: 10.3390/s17092043
– year: 2015
  ident: 10.1016/j.future.2020.01.003_b48
  article-title: Phone position/placement detection using accelerometer: Impact on activity recognition
– volume: 21
  start-page: 427
  year: 2017
  ident: 10.1016/j.future.2020.01.003_b46
  article-title: A novel orientation- and location-independent activity recognition method
  publication-title: Pers. Ubiquitous Comput.
  doi: 10.1007/s00779-017-1007-3
– ident: 10.1016/j.future.2020.01.003_b85
– volume: 2017
  start-page: 1
  year: 2017
  ident: 10.1016/j.future.2020.01.003_b10
  article-title: A review on human activity recognition using vision-based method
  publication-title: J. Healthc. Eng.
– start-page: 1
  year: 2017
  ident: 10.1016/j.future.2020.01.003_b72
  article-title: PAMS: A new position-aware multi-sensor dataset for human activity recognition using smartphones
– volume: vol. 32
  start-page: 3
  year: 2018
  ident: 10.1016/j.future.2020.01.003_b2
  article-title: Smart systems, the fourth industrial revolution and new challenges in distributed computing
– volume: 4
  start-page: 1883
  year: 2009
  ident: 10.1016/j.future.2020.01.003_b77
  article-title: K-nearest neighbor
  publication-title: Scholarpedia
  doi: 10.4249/scholarpedia.1883
– volume: 2
  start-page: 145
  year: 2017
  ident: 10.1016/j.future.2020.01.003_b56
  article-title: Smartphone motion mode recognition
  publication-title: Proceedings
– volume: 17
  start-page: 675
  year: 2013
  ident: 10.1016/j.future.2020.01.003_b47
  article-title: Activity logging using lightweight classification techniques in mobile devices
  publication-title: Pers. Ubiquitous Comput.
  doi: 10.1007/s00779-012-0515-4
– start-page: 30
  year: 2016
  ident: 10.1016/j.future.2020.01.003_b32
  article-title: Micro-context recognition of sedentary behaviour using smartphone
– start-page: 1
  year: 2018
  ident: 10.1016/j.future.2020.01.003_b40
  article-title: Smart home based ambient assisted living: Recognition of anomaly in the activity of daily living for an elderly living alone
– volume: 81
  start-page: 307
  year: 2018
  ident: 10.1016/j.future.2020.01.003_b54
  article-title: A robust human activity recognition system using smartphone sensors and deep learning
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2017.11.029
– start-page: 168
  year: 2015
  ident: 10.1016/j.future.2020.01.003_b71
  article-title: UTD-MHAD: A multimodal dataset for human action recognition utilizing a depth camera and a wearable inertial sensor
– volume: 18
  year: 2018
  ident: 10.1016/j.future.2020.01.003_b22
  article-title: An activity recognition framework deploying the random forest classifier and a single optical heart rate monitoring and triaxial accelerometer wrist-band
  publication-title: Sensors
  doi: 10.3390/s18020613
– volume: 105
  start-page: 233
  year: 2018
  ident: 10.1016/j.future.2020.01.003_b67
  article-title: Deep learning algorithms for human activity recognition using mobile and wearable sensor networks: State of the art and research challenges
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2018.03.056
– start-page: 267
  year: 2016
  ident: 10.1016/j.future.2020.01.003_b73
  article-title: Combining smartphone and smartwatch sensor data in activity recognition approaches: an experimental evaluation
– volume: 339
  start-page: 819
  year: 2015
  ident: 10.1016/j.future.2020.01.003_b37
  article-title: Learning models for activity recognition in smart homes
  publication-title: Lect. Notes Electr. Eng.
  doi: 10.1007/978-3-662-46578-3_97
– volume: 66
  start-page: 33
  year: 2016
  ident: 10.1016/j.future.2020.01.003_b49
  article-title: User context recognition using smartphone sensors and classification models
  publication-title: J. Netw. Comput. Appl.
  doi: 10.1016/j.jnca.2016.03.013
– start-page: 143
  year: 2016
  ident: 10.1016/j.future.2020.01.003_b70
  article-title: The mobiact dataset: Recognition of activities of daily living using smartphones
SSID ssj0001731
Score 2.4279401
Snippet In recent years, with the evolution of internet-of-things and smart sensing technologies, sensor-based physical activity recognition has gained substantial...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 374
SubjectTerms Activity recognition
Human context recognition
In-the-wild
Machine learning
Pervasive computing
Smart sensing
Title Opportunistic sensing for inferring in-the-wild human contexts based on activity pattern recognition using smart computing
URI https://dx.doi.org/10.1016/j.future.2020.01.003
Volume 106
WOSCitedRecordID wos000527320000030&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-7115
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001731
  issn: 0167-739X
  databaseCode: AIEXJ
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07b9swECaMpEOXvoumL3DoFjCgRFGkRqNIkXZIO6SAN4EiKaSBrbi2lQb5H_2_Pb4kpynSZugi2LRFyr5P96Du7kPoXSt0I3LakIw3hhRS56TSuiCmpFYWsimlbDzZhDg-lrNZ9WUy-ZlqYS7mouvk5WW1_K-ihjEQtiudvYO4h0lhAF6D0OEIYofjPwn-89K51O4ptevFunYJ6jFZ0iVerVahiIWA40fATzaRpc-lrIOeXu87s2bcIwRX8eCJJZa-Bacre4m5RvBh7yddL2B9n5Xeb5IJTJSfvleJI2i2EWM68kfE5tGjL3_qCixO1YL0c3Kkvvst2h7eL5QZ4HgVcJvG96c_1LdrOxY5HfMD0yYmKGfBPIXuqIXpth5lgbonmmQW6PJuaPuw8XB2ENqvHLi1fA9Wykbrlp7o_2b0hlTElOV2VodZajdLTbPa95DdzQWvQN_vTj8ezj4NJj4Tkegy_pBUk-kTB29ezZ99ni0_5uQRehADEDwNwHmMJrZ7gh4mcg8cdf1TdHUNRzjiCAOO8IAjvIUj7HGEE46wxxE-73DCEY44wls4wh5H2OMIDzh6hr5-ODx5f0QiUQfREHFuCES1EmyDraxSJYMA2BomWq5YKbRqjK204ZpDaJoZ141JMdaowpiKc2Vkyy17jna6886-QFjQCoJcanmrTVFq2ehctqrkmSypzhTdQyz9lbWOXewdmcq8vk2Qe4gMZy1DF5e_fF8kKdXREw0eZg3Qu_XMl3dc6RW6P94ir9HOZtXbN-ievoA7b_U24u4XFfy2pw
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Opportunistic+sensing+for+inferring+in-the-wild+human+contexts+based+on+activity+pattern+recognition+using+smart+computing&rft.jtitle=Future+generation+computer+systems&rft.au=Ehatisham-ul-Haq%2C+Muhammad&rft.au=Azam%2C+Muhammad+Awais&rft.date=2020-05-01&rft.issn=0167-739X&rft.volume=106&rft.spage=374&rft.epage=392&rft_id=info:doi/10.1016%2Fj.future.2020.01.003&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_future_2020_01_003
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-739X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-739X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-739X&client=summon