Tensor ring decomposition-based model with interpretable gradient factors regularization for tensor completion
Tensor ring (TR) decomposition, which factorizes a tensor into a sequence of cyclically interconnected third-order TR factors, is a powerful tool to capture the global low-rankness of high-dimensional data. However, the understanding of the physical interpretation of TR factors is not clear. In this...
Uložené v:
| Vydané v: | Knowledge-based systems Ročník 259; s. 110094 |
|---|---|
| Hlavní autori: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier B.V
10.01.2023
|
| Predmet: | |
| ISSN: | 0950-7051, 1872-7409 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Tensor ring (TR) decomposition, which factorizes a tensor into a sequence of cyclically interconnected third-order TR factors, is a powerful tool to capture the global low-rankness of high-dimensional data. However, the understanding of the physical interpretation of TR factors is not clear. In this paper, we first empirically discover the physical interpretation of TR factors in the gradient domain (termed as gradient factors) and then give the theoretical justification. Based on the interpretable gradient factors, we suggest a TR decomposition-based model with interpretable gradient factors regularization (TR-GFR) for tensor completion. To be specific, we consider the low-rankness and transformed sparsity priors of gradient factors to boost the performance and robustness of TR decomposition-based model. In addition, we develop an effective proximal alternating minimization algorithm to solve the proposed model. Numerical experiments validate that the proposed TR-GFR is superior to the compared state-of-the-art methods in terms of PSNR and SSIM values and more robust with TR rank. |
|---|---|
| AbstractList | Tensor ring (TR) decomposition, which factorizes a tensor into a sequence of cyclically interconnected third-order TR factors, is a powerful tool to capture the global low-rankness of high-dimensional data. However, the understanding of the physical interpretation of TR factors is not clear. In this paper, we first empirically discover the physical interpretation of TR factors in the gradient domain (termed as gradient factors) and then give the theoretical justification. Based on the interpretable gradient factors, we suggest a TR decomposition-based model with interpretable gradient factors regularization (TR-GFR) for tensor completion. To be specific, we consider the low-rankness and transformed sparsity priors of gradient factors to boost the performance and robustness of TR decomposition-based model. In addition, we develop an effective proximal alternating minimization algorithm to solve the proposed model. Numerical experiments validate that the proposed TR-GFR is superior to the compared state-of-the-art methods in terms of PSNR and SSIM values and more robust with TR rank. |
| ArticleNumber | 110094 |
| Author | Ding, Meng Cui, Lu-Bin Zheng, Yu-Bang Zhao, Xi-Le Wu, Peng-Ling Huang, Ting-Zhu |
| Author_xml | – sequence: 1 givenname: Peng-Ling surname: Wu fullname: Wu, Peng-Ling email: wupengling@163.com organization: School of Mathematical Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, 611731, China – sequence: 2 givenname: Xi-Le surname: Zhao fullname: Zhao, Xi-Le email: xlzhao122003@163.com organization: School of Mathematical Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, 611731, China – sequence: 3 givenname: Meng surname: Ding fullname: Ding, Meng email: dingmeng56@163.com organization: School of Mathematics, Southwest Jiaotong University, Chengdu, Sichuan, 611756, China – sequence: 4 givenname: Yu-Bang orcidid: 0000-0003-1756-6716 surname: Zheng fullname: Zheng, Yu-Bang email: zhengyubang@163.com organization: School of Mathematical Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, 611731, China – sequence: 5 givenname: Lu-Bin surname: Cui fullname: Cui, Lu-Bin email: cuilubinrx@163.com organization: School of Mathematics and Information Sciences, Henan Engineering Laboratory for Big Data Statistical Analysis and Optimal Control, Henan Normal University, Xinxiang, Henan, 453007, China – sequence: 6 givenname: Ting-Zhu surname: Huang fullname: Huang, Ting-Zhu email: tingzhuhuang@126.com organization: School of Mathematical Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, 611731, China |
| BookMark | eNqFkMtKAzEUQINUsK3-gYv8wIw3844LQYovENzUdchkbmrqNClJVOrXO-O4cqGrwCXncO9ZkJl1Fgk5Z5AyYNXFNn21LhxCmkGWpYwB8OKIzFlTZ0ldAJ-ROfASkhpKdkIWIWwBhp-smRO7Rhucp97YDe1Qud3eBRONs0krA3Z05zrs6YeJL9TYiH7vMcq2R7rxsjNoI9VSRecD9bh566U3n3LEqR6scZKP1h7H6Sk51rIPePbzLsnz7c16dZ88Pt09rK4fE5VDFRNWlSUvG2wVr1THQBZZWzUg21pXuoEaVVYpWdSSFx20nOVYSa2bXOqiLDi2-ZJcTl7lXQgetVAmfu8VvTS9YCDGcmIrpnJiLCemcgNc_IL33uykP_yHXU0YDoe9G_QiqCGQws54VFF0zvwt-AINupDM |
| CitedBy_id | crossref_primary_10_1016_j_amc_2025_129504 crossref_primary_10_1016_j_apm_2025_116404 crossref_primary_10_1016_j_patcog_2024_111000 crossref_primary_10_1109_TCSVT_2024_3401134 crossref_primary_10_1080_1206212X_2023_2219836 crossref_primary_10_1016_j_ins_2023_120002 crossref_primary_10_1016_j_jocs_2024_102520 crossref_primary_10_1109_LGRS_2025_3569305 crossref_primary_10_1016_j_dsp_2025_105169 crossref_primary_10_1007_s10489_023_04538_z crossref_primary_10_1016_j_ins_2024_121176 crossref_primary_10_1016_j_neunet_2025_107808 crossref_primary_10_1016_j_ins_2025_122257 crossref_primary_10_1109_TIP_2024_3489272 crossref_primary_10_1016_j_knosys_2023_111222 crossref_primary_10_1016_j_knosys_2025_114372 crossref_primary_10_1007_s10915_024_02624_z crossref_primary_10_1109_TBDATA_2023_3342611 crossref_primary_10_3390_electronics14061086 |
| Cites_doi | 10.1016/j.knosys.2017.04.011 10.1137/090752286 10.1109/TIP.2017.2672439 10.1137/110842570 10.1109/ICPR.2002.1048350 10.1016/j.aop.2014.06.013 10.1016/j.neucom.2013.11.020 10.1007/s11075-020-01029-x 10.1109/18.382009 10.1109/TPAMI.2012.39 10.1109/ICDM.2005.77 10.1007/s10107-013-0701-9 10.1088/1367-2630/12/2/025010 10.1109/TIP.2022.3176220 10.1109/TNNLS.2019.2956153 10.1137/07070111X 10.1109/ACV.1994.341300 10.1137/110837711 10.1007/BF02289464 10.3934/ipi.2021001 10.1109/TSP.2016.2586759 10.1103/PhysRevA.81.032336 10.1109/CVPR.2006.141 10.1016/j.laa.2010.09.020 10.1609/aaai.v29i1.9158 10.1016/j.knosys.2021.107006 10.1145/2512329 10.1109/TPAMI.2015.2392756 10.1007/s10915-022-01937-1 10.1002/sapm192761164 10.1109/TSP.2016.2639466 10.1002/nla.2299 10.1145/344779.344972 10.1007/s11075-018-0601-4 10.1109/JSTSP.2020.3045965 10.1090/S0002-9939-1955-0067841-7 10.1109/TMM.2018.2806225 10.1109/TIP.2020.3007840 10.1109/TIP.2003.819861 10.24963/ijcai.2018/347 10.1007/s10915-022-02009-0 10.1609/aaai.v29i1.9564 10.1088/0266-5611/27/2/025010 10.1109/TGRS.2019.2940534 10.1109/TIP.2020.3000349 10.1109/TSP.2017.2690524 10.1137/1.9781611973440.99 10.1109/TIP.2014.2305840 10.1109/LSP.2021.3084511 10.1007/s10107-011-0484-9 10.1609/aaai.v33i01.33019151 10.1109/ICCV.2017.607 10.1016/j.knosys.2022.108468 10.1007/s10915-022-01841-8 10.1109/TIP.2021.3138325 10.1109/TCYB.2014.2374695 10.1109/TGRS.2020.2987954 10.3934/ipi.2015.9.601 10.1109/CVPR.2018.00334 |
| ContentType | Journal Article |
| Copyright | 2022 Elsevier B.V. |
| Copyright_xml | – notice: 2022 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.knosys.2022.110094 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1872-7409 |
| ExternalDocumentID | 10_1016_j_knosys_2022_110094 S095070512201190X |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 77K 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO AAYFN ABAOU ABBOA ABIVO ABJNI ABMAC ABYKQ ACAZW ACDAQ ACGFS ACRLP ACZNC ADBBV ADEZE ADGUI ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ARUGR AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ IHE J1W JJJVA KOM LG9 LY7 M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 ROL RPZ SDF SDG SDP SES SPC SPCBC SST SSV SSW SSZ T5K WH7 XPP ZMT ~02 ~G- 29L 77I 9DU AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- SBC SET SEW UHS WUQ ~HD |
| ID | FETCH-LOGICAL-c306t-1655958ebc96cd10a42b680ab7f6f807ec26ca47a94d0b913e6aff83af4549eb3 |
| ISICitedReferencesCount | 21 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000933581900005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0950-7051 |
| IngestDate | Sat Nov 29 07:07:54 EST 2025 Tue Nov 18 21:16:18 EST 2025 Fri Feb 23 02:39:41 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Tensor completion Proximal alternating minimization Tensor ring decomposition Interpretable gradient factors |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c306t-1655958ebc96cd10a42b680ab7f6f807ec26ca47a94d0b913e6aff83af4549eb3 |
| ORCID | 0000-0003-1756-6716 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_knosys_2022_110094 crossref_primary_10_1016_j_knosys_2022_110094 elsevier_sciencedirect_doi_10_1016_j_knosys_2022_110094 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-01-10 |
| PublicationDateYYYYMMDD | 2023-01-10 |
| PublicationDate_xml | – month: 01 year: 2023 text: 2023-01-10 day: 10 |
| PublicationDecade | 2020 |
| PublicationTitle | Knowledge-based systems |
| PublicationYear | 2023 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Chen, Zhou, Zhao (b52) 2021; 28 Hitchcock (b22) 1927; 6 Zheng, Huang, Zhao, Jiang, Ma, Ji (b8) 2020; 58 Luo, Zhao, Jiang, Chang, Ng, Li (b13) 2022; 31 Pérez-García, Sanz, Gonzalez-Guillen, Wolf, Cirac (b46) 2010; 12 N. Yair, T. Michaeli, Multi-scale weighted nuclear norm image restoration, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 3165–3174. Donoho (b58) 1995; 41 Zhao, Yang, Ma, Jiang, Ng, Huang (b14) 2022; 31 M.A.O. Vasilescu, D. Terzopoulos, Multilinear image analysis for facial recognition, in: Proceedings of the International Conference on Pattern Recognition, Vol. 2, 2002, pp. 511–514. Y.-Y. Liu, F.-H. Shang, H. Cheng, J. Cheng, H.-H. Tong, Factor matrix trace norm minimization for low-rank tensor completion, in: Proceedings of the SIAM International Conference on Data Mining, 2014, pp. 866–874. Bengua, Phien, Tuan, Do (b43) 2017; 26 Song, Ng, Zhang (b40) 2020; 27 Hillar, Lim (b23) 2013; 60 Garnerone, de Oliveira, Zanardi (b45) 2010; 81 T.G. Kolda, B.W. Bader, J.P. Kenny, Higher-order web link analysis using multilinear algebra, in: Proceedings of the IEEE International Conference on Data Mining, 2005, pp. 242–249. Yi, Zhao, Wei, Xu (b2) 2021; 222 Kilmer, Martin (b35) 2011; 435 Kilmer, Braman, Hao, Hoover (b34) 2013; 34 Zheng, Huang, Zhao, Zhao (b57) 2022; 92 Ding, Fu, Huang, Wang, Zhao (b4) 2021; 15 Gandy, Recht, Yamada (b30) 2011; 27 Zheng, Huang, Zhao, Chen, He (b32) 2020; 58 Yuhas, Boardman, Goetz (b63) 1993 Xue, Zhao, Liao, Chan, Kong (b55) 2019; 31 N. Komodakis, Image Completion Using Global Optimization, in: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Vol. 1, 2006, pp. 442–452. Liang, Zheng, Zhao (b44) 2019; 80 Sidiropoulos, De Lathauwer, Fu, Huang, Papalexakis, Faloutsos (b3) 2017; 65 Lyu, Zhao, Li, Zhang, Huang (b7) 2022; 93 Rauhut, Stojanac (b39) 2020; 88 Ding, Huang, Zhao, Ng, Ma (b48) 2021; 15 Tan, Cheng, Wang, Zhang, Ran (b12) 2014; 133 Zhang, Aeron (b36) 2016; 65 F.S. Samaria, A.C. Harter, Parameterisation of a stochastic model for human face identification, in: Proceedings of the IEEE Workshop on Applications of Computer Vision, 1994, pp. 138–142. C.-Y. Lu, J.-S. Feng, Z.-C. Lin, S.-C. Yan, Exact low tubal rank tensor recovery from Gaussian measurements, in: Proceedings of the International Joint Conference on Artificial Intelligence, 2018, pp. 2504–2510. Hao, Kilmer, Braman, Hoover (b19) 2013; 6 Attouch, Bolte, Svaiter (b56) 2013; 137 Cichocki (b53) 2014 Wang, Bovik, Sheikh, Simoncelli (b62) 2004; 13 Bolte, Sabach, Teboulle (b60) 2014; 146 Tucker (b28) 1966; 31 Orús (b47) 2014; 349 Zhao, Zhou, Xie, Zhang, Cichocki (b49) 2016 Kolda, Bader (b1) 2009; 51 Liu, Musialski, Wonka, Ye (b29) 2013; 35 Xu, Hao, Yin, Su (b31) 2015; 9 Peng, Xie, Zhao, Wang, Meng, Yee (b54) 2020; 29 Li, Zhao, Ji, Zhang, Huang (b11) 2022; 92 Xiong, Liu, Xiong, Li, Wang, Liang (b33) 2018; 20 W.-Q. Wang, V. Aggarwal, S.C. Aeron, Efficient low rank tensor ring completion, in: Proceedings of the IEEE International Conference on Computer Vision, 2017, pp. 5698–5706. Yokota, Zhao, Cichocki (b25) 2016; 64 Liu, Shang, Jiao, Cheng, Cheng (b24) 2014; 45 C. Li, Q.-B. Zhao, J.-H. Li, A. Cichocki, L.-L. Guo, Multi-tensor completion with common structures, in: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 29, (1) 2015, pp. 2743–2749. Zhao, Zhang, Cichocki (b26) 2015; 37 Semerci, Hao, Kilmer, Miller (b38) 2014; 23 Fan, Hoffman (b59) 1955; 6 M. Bertalmio, G. Sapiro, V. Caselles, C. Ballester, Image inpainting, in: Proceedings of the Conference on Computer Graphics and Interactive Techniques, 2000, pp. 417–424. Yang, Chen, Dai, Ding, Wu, Zheng (b15) 2022 L.-H. Yuan, C. Li, D. Mandic, J.-T. Cao, Q.-B. Zhao, Tensor ring decomposition with rank minimization on latent space: An efficient approach for tensor completion, in: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 33, (01) 2019, pp. 9151–9158. Jiang, Ng, Zhao, Huang (b41) 2020; 29 Oseledets (b42) 2011; 33 Wu, Zhao, Zhang, Meng, Zhang, Zhang, Sun (b18) 2017; 128 Du, Liu, Shan, Shi, Wang (b6) 2022; 243 Q. Liu, S. Wu, L. Wang, COT: Contextual operating tensor for context-aware recommender systems, in: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 29, (1) 2015, pp. 203–209. 10.1016/j.knosys.2022.110094_b5 Bengua (10.1016/j.knosys.2022.110094_b43) 2017; 26 10.1016/j.knosys.2022.110094_b27 10.1016/j.knosys.2022.110094_b21 Liu (10.1016/j.knosys.2022.110094_b24) 2014; 45 Yi (10.1016/j.knosys.2022.110094_b2) 2021; 222 Hillar (10.1016/j.knosys.2022.110094_b23) 2013; 60 Chen (10.1016/j.knosys.2022.110094_b52) 2021; 28 10.1016/j.knosys.2022.110094_b9 Rauhut (10.1016/j.knosys.2022.110094_b39) 2020; 88 Song (10.1016/j.knosys.2022.110094_b40) 2020; 27 Semerci (10.1016/j.knosys.2022.110094_b38) 2014; 23 Ding (10.1016/j.knosys.2022.110094_b48) 2021; 15 Bolte (10.1016/j.knosys.2022.110094_b60) 2014; 146 Wang (10.1016/j.knosys.2022.110094_b62) 2004; 13 Zhang (10.1016/j.knosys.2022.110094_b36) 2016; 65 Zheng (10.1016/j.knosys.2022.110094_b8) 2020; 58 Du (10.1016/j.knosys.2022.110094_b6) 2022; 243 Zhao (10.1016/j.knosys.2022.110094_b26) 2015; 37 Kilmer (10.1016/j.knosys.2022.110094_b35) 2011; 435 Attouch (10.1016/j.knosys.2022.110094_b56) 2013; 137 Yuhas (10.1016/j.knosys.2022.110094_b63) 1993 Zheng (10.1016/j.knosys.2022.110094_b57) 2022; 92 Tan (10.1016/j.knosys.2022.110094_b12) 2014; 133 Donoho (10.1016/j.knosys.2022.110094_b58) 1995; 41 10.1016/j.knosys.2022.110094_b17 10.1016/j.knosys.2022.110094_b16 Zheng (10.1016/j.knosys.2022.110094_b32) 2020; 58 Pérez-García (10.1016/j.knosys.2022.110094_b46) 2010; 12 10.1016/j.knosys.2022.110094_b10 Sidiropoulos (10.1016/j.knosys.2022.110094_b3) 2017; 65 Oseledets (10.1016/j.knosys.2022.110094_b42) 2011; 33 Hitchcock (10.1016/j.knosys.2022.110094_b22) 1927; 6 Peng (10.1016/j.knosys.2022.110094_b54) 2020; 29 10.1016/j.knosys.2022.110094_b61 10.1016/j.knosys.2022.110094_b20 Kilmer (10.1016/j.knosys.2022.110094_b34) 2013; 34 Lyu (10.1016/j.knosys.2022.110094_b7) 2022; 93 Orús (10.1016/j.knosys.2022.110094_b47) 2014; 349 Tucker (10.1016/j.knosys.2022.110094_b28) 1966; 31 Li (10.1016/j.knosys.2022.110094_b11) 2022; 92 Garnerone (10.1016/j.knosys.2022.110094_b45) 2010; 81 Cichocki (10.1016/j.knosys.2022.110094_b53) 2014 Liu (10.1016/j.knosys.2022.110094_b29) 2013; 35 Liang (10.1016/j.knosys.2022.110094_b44) 2019; 80 10.1016/j.knosys.2022.110094_b51 10.1016/j.knosys.2022.110094_b50 Wu (10.1016/j.knosys.2022.110094_b18) 2017; 128 Fan (10.1016/j.knosys.2022.110094_b59) 1955; 6 Kolda (10.1016/j.knosys.2022.110094_b1) 2009; 51 10.1016/j.knosys.2022.110094_b37 Xue (10.1016/j.knosys.2022.110094_b55) 2019; 31 Ding (10.1016/j.knosys.2022.110094_b4) 2021; 15 Zhao (10.1016/j.knosys.2022.110094_b14) 2022; 31 Luo (10.1016/j.knosys.2022.110094_b13) 2022; 31 Xiong (10.1016/j.knosys.2022.110094_b33) 2018; 20 Jiang (10.1016/j.knosys.2022.110094_b41) 2020; 29 Zhao (10.1016/j.knosys.2022.110094_b49) 2016 Yokota (10.1016/j.knosys.2022.110094_b25) 2016; 64 Hao (10.1016/j.knosys.2022.110094_b19) 2013; 6 Yang (10.1016/j.knosys.2022.110094_b15) 2022 Xu (10.1016/j.knosys.2022.110094_b31) 2015; 9 Gandy (10.1016/j.knosys.2022.110094_b30) 2011; 27 |
| References_xml | – reference: F.S. Samaria, A.C. Harter, Parameterisation of a stochastic model for human face identification, in: Proceedings of the IEEE Workshop on Applications of Computer Vision, 1994, pp. 138–142. – volume: 41 start-page: 613 year: 1995 end-page: 627 ident: b58 article-title: De-noising by soft-thresholding publication-title: IEEE Trans. Inform. Theory – volume: 58 start-page: 734 year: 2020 end-page: 749 ident: b8 article-title: Mixed noise removal in hyperspectral image via low-fibered-rank regularization publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 6 start-page: 437 year: 2013 end-page: 463 ident: b19 article-title: Facial recognition using tensor-tensor decompositions publication-title: SIAM J. Imaging Sci. – volume: 92 start-page: 1 year: 2022 end-page: 30 ident: b11 article-title: Nonlinear transform induced tensor nuclear norm for tensor completion publication-title: J. Sci. Comput. – reference: N. Komodakis, Image Completion Using Global Optimization, in: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Vol. 1, 2006, pp. 442–452. – volume: 29 start-page: 7889 year: 2020 end-page: 7903 ident: b54 article-title: Enhanced 3DTV regularization and its applications on HSI denoising and compressed sensing publication-title: IEEE Trans. Image Process. – reference: N. Yair, T. Michaeli, Multi-scale weighted nuclear norm image restoration, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 3165–3174. – volume: 31 start-page: 4567 year: 2019 end-page: 4581 ident: b55 article-title: Enhanced sparsity prior model for low-rank tensor completion publication-title: IEEE Trans. Neural Netw. Learn. Syst. – volume: 27 year: 2020 ident: b40 article-title: Robust tensor completion using transformed tensor singular value decomposition publication-title: Numer. Linear Algebra Appl. – reference: C. Li, Q.-B. Zhao, J.-H. Li, A. Cichocki, L.-L. Guo, Multi-tensor completion with common structures, in: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 29, (1) 2015, pp. 2743–2749. – volume: 34 start-page: 148 year: 2013 end-page: 172 ident: b34 article-title: Third-order tensors as operators on matrices: A theoretical and computational framework with applications in imaging publication-title: SIAM J. Matrix Anal. Appl. – start-page: 620 year: 1993 end-page: 636 ident: b63 article-title: Determination of semi-arid landscape endmembers and seasonal trends using convex geometry spectral unmixing techniques publication-title: Summaries of the JPL Airborne Geoscience Workshop, Vol. 4 – reference: T.G. Kolda, B.W. Bader, J.P. Kenny, Higher-order web link analysis using multilinear algebra, in: Proceedings of the IEEE International Conference on Data Mining, 2005, pp. 242–249. – volume: 33 start-page: 2295 year: 2011 end-page: 2317 ident: b42 article-title: Tensor-train decomposition publication-title: SIAM J. Sci. Comput. – volume: 15 start-page: 475 year: 2021 end-page: 498 ident: b48 article-title: Tensor train rank minimization with nonlocal self-similarity for tensor completion publication-title: Inverse Probl. Imaging – reference: Q. Liu, S. Wu, L. Wang, COT: Contextual operating tensor for context-aware recommender systems, in: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 29, (1) 2015, pp. 203–209. – volume: 60 start-page: 1 year: 2013 end-page: 39 ident: b23 article-title: Most tensor problems are NP-hard publication-title: J. ACM – volume: 435 start-page: 641 year: 2011 end-page: 658 ident: b35 article-title: Factorization strategies for third-order tensors publication-title: Linear Algebra Appl. – volume: 35 start-page: 208 year: 2013 end-page: 220 ident: b29 article-title: Tensor completion for estimating missing values in visual data publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 65 start-page: 3551 year: 2017 end-page: 3582 ident: b3 article-title: Tensor decomposition for signal processing and machine learning publication-title: IEEE Trans. Signal Process. – start-page: 1 year: 2022 end-page: 15 ident: b15 article-title: Robust corrupted data recovery and clustering via generalized transformed tensor low-rank representation publication-title: IEEE Trans. Neural Netw. Learn. Syst. – reference: C.-Y. Lu, J.-S. Feng, Z.-C. Lin, S.-C. Yan, Exact low tubal rank tensor recovery from Gaussian measurements, in: Proceedings of the International Joint Conference on Artificial Intelligence, 2018, pp. 2504–2510. – volume: 12 year: 2010 ident: b46 article-title: Characterizing symmetries in a projected entangled pair state publication-title: New J. Phys. – volume: 92 start-page: 1 year: 2022 end-page: 35 ident: b57 article-title: Tensor completion via fully-connected tensor network decomposition with regularized factors publication-title: J. Sci. Comput. – volume: 28 start-page: 1255 year: 2021 end-page: 1259 ident: b52 article-title: Hierarchical factorization strategy for high-order tensor and application for data completion publication-title: IEEE Signal Process. Lett. – volume: 64 start-page: 5423 year: 2016 end-page: 5436 ident: b25 article-title: Smooth PARAFAC decomposition for tensor completion publication-title: IEEE Trans. Signal Process. – volume: 58 start-page: 8450 year: 2020 end-page: 8464 ident: b32 article-title: Double-factor-regularized low-rank tensor factorization for mixed noise removal in hyperspectral image publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 243 year: 2022 ident: b6 article-title: Enhanced tensor low-rank representation for clustering and denoising publication-title: Knowl.-Based Syst. – volume: 31 start-page: 984 year: 2022 end-page: 999 ident: b14 article-title: Tensor completion via complementary global, local, and nonlocal priors publication-title: IEEE Trans. Image Process. – volume: 29 start-page: 7233 year: 2020 end-page: 7244 ident: b41 article-title: Framelet representation of tensor nuclear norm for third-order tensor completion publication-title: IEEE Trans. Image Process. – volume: 26 start-page: 2466 year: 2017 end-page: 2479 ident: b43 article-title: Efficient tensor completion for color image and video recovery: Low-rank tensor train publication-title: IEEE Trans. Image Process. – reference: L.-H. Yuan, C. Li, D. Mandic, J.-T. Cao, Q.-B. Zhao, Tensor ring decomposition with rank minimization on latent space: An efficient approach for tensor completion, in: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 33, (01) 2019, pp. 9151–9158. – reference: M. Bertalmio, G. Sapiro, V. Caselles, C. Ballester, Image inpainting, in: Proceedings of the Conference on Computer Graphics and Interactive Techniques, 2000, pp. 417–424. – volume: 349 start-page: 117 year: 2014 end-page: 158 ident: b47 article-title: A practical introduction to tensor networks: Matrix product states and projected entangled pair states publication-title: Ann. Physics – volume: 93 start-page: 1 year: 2022 end-page: 24 ident: b7 article-title: Multi-dimensional image recovery via fully-connected tensor network decomposition under the learnable transforms publication-title: J. Sci. Comput. – reference: M.A.O. Vasilescu, D. Terzopoulos, Multilinear image analysis for facial recognition, in: Proceedings of the International Conference on Pattern Recognition, Vol. 2, 2002, pp. 511–514. – volume: 20 start-page: 2316 year: 2018 end-page: 2329 ident: b33 article-title: Field-of-experts filters guided tensor completion publication-title: IEEE Trans. Multimed. – volume: 80 start-page: 1437 year: 2019 end-page: 1465 ident: b44 article-title: Alternating iterative methods for solving tensor equations with applications publication-title: Numer. Algorithms – volume: 6 start-page: 164 year: 1927 end-page: 189 ident: b22 article-title: The expression of a tensor or a polyadic as a sum of products publication-title: J. Math. Phys. – year: 2016 ident: b49 article-title: Tensor ring decomposition – volume: 6 start-page: 111 year: 1955 end-page: 116 ident: b59 article-title: Some metric inequalities in the space of matrices publication-title: Proc. Amer. Math. Soc. – volume: 37 start-page: 1751 year: 2015 end-page: 1763 ident: b26 article-title: Bayesian CP factorization of incomplete tensors with automatic rank determination publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 31 start-page: 3793 year: 2022 end-page: 3808 ident: b13 article-title: Self-supervised nonlinear transform-based tensor nuclear norm for multi-dimensional image recovery publication-title: IEEE Trans. Image Process. – volume: 13 start-page: 600 year: 2004 end-page: 612 ident: b62 article-title: Image quality assessment: from error visibility to structural similarity publication-title: IEEE Trans. Image Process. – volume: 222 year: 2021 ident: b2 article-title: Robust online rain removal for surveillance videos with dynamic rains publication-title: Knowl.-Based Syst. – volume: 133 start-page: 161 year: 2014 end-page: 169 ident: b12 article-title: Tensor completion via a multi-linear low-n-rank factorization model publication-title: Neurocomputing – volume: 137 start-page: 91 year: 2013 end-page: 129 ident: b56 article-title: Convergence of descent methods for semi-algebraic and tame problems: Proximal algorithms, forward-backward splitting, and regularized Gauss-Seidel methods publication-title: Math. Program. – volume: 81 year: 2010 ident: b45 article-title: Typicality in random matrix product states publication-title: Phys. Rev. A – reference: W.-Q. Wang, V. Aggarwal, S.C. Aeron, Efficient low rank tensor ring completion, in: Proceedings of the IEEE International Conference on Computer Vision, 2017, pp. 5698–5706. – volume: 45 start-page: 2437 year: 2014 end-page: 2448 ident: b24 article-title: Trace norm regularized CANDECOMP/PARAFAC decomposition with missing data publication-title: IEEE Trans. Cybern. – reference: Y.-Y. Liu, F.-H. Shang, H. Cheng, J. Cheng, H.-H. Tong, Factor matrix trace norm minimization for low-rank tensor completion, in: Proceedings of the SIAM International Conference on Data Mining, 2014, pp. 866–874. – volume: 9 start-page: 601 year: 2015 end-page: 624 ident: b31 article-title: Parallel matrix factorization for low-rank tensor completion publication-title: Inverse Probl. Imaging – volume: 15 start-page: 641 year: 2021 end-page: 656 ident: b4 article-title: Hyperspectral super-resolution via interpretable block-term tensor modeling publication-title: IEEE J. Sel. Top. Sign. Proces. – year: 2014 ident: b53 article-title: Tensor networks for big data analytics and large-scale optimization problems – volume: 27 year: 2011 ident: b30 article-title: Tensor completion and low-n-rank tensor recovery via convex optimization publication-title: Inverse Problems – volume: 23 start-page: 1678 year: 2014 end-page: 1693 ident: b38 article-title: Tensor-based formulation and nuclear norm regularization for multienergy computed tomography publication-title: IEEE Trans. Image Process. – volume: 51 start-page: 455 year: 2009 end-page: 500 ident: b1 article-title: Tensor decompositions and applications publication-title: SIAM Rev. – volume: 88 start-page: 25 year: 2020 end-page: 66 ident: b39 article-title: Tensor theta norms and low rank recovery publication-title: Numer. Algorithms – volume: 146 start-page: 459 year: 2014 end-page: 494 ident: b60 article-title: Proximal alternating linearized minimization for nonconvex and nonsmooth problems publication-title: Math. Program. – volume: 128 start-page: 71 year: 2017 end-page: 77 ident: b18 article-title: Improving performance of tensor-based context-aware recommenders using bias tensor factorization with context feature auto-encoding publication-title: Knowl.-Based Syst. – volume: 31 start-page: 279 year: 1966 end-page: 311 ident: b28 article-title: Some mathematical notes on three-mode factor analysis publication-title: Psychometrika – volume: 65 start-page: 1511 year: 2016 end-page: 1526 ident: b36 article-title: Exact tensor completion using t-SVD publication-title: IEEE Trans. Signal Process. – volume: 128 start-page: 71 year: 2017 ident: 10.1016/j.knosys.2022.110094_b18 article-title: Improving performance of tensor-based context-aware recommenders using bias tensor factorization with context feature auto-encoding publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2017.04.011 – volume: 33 start-page: 2295 issue: 5 year: 2011 ident: 10.1016/j.knosys.2022.110094_b42 article-title: Tensor-train decomposition publication-title: SIAM J. Sci. Comput. doi: 10.1137/090752286 – volume: 26 start-page: 2466 issue: 5 year: 2017 ident: 10.1016/j.knosys.2022.110094_b43 article-title: Efficient tensor completion for color image and video recovery: Low-rank tensor train publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2017.2672439 – volume: 6 start-page: 437 issue: 1 year: 2013 ident: 10.1016/j.knosys.2022.110094_b19 article-title: Facial recognition using tensor-tensor decompositions publication-title: SIAM J. Imaging Sci. doi: 10.1137/110842570 – ident: 10.1016/j.knosys.2022.110094_b21 doi: 10.1109/ICPR.2002.1048350 – volume: 349 start-page: 117 year: 2014 ident: 10.1016/j.knosys.2022.110094_b47 article-title: A practical introduction to tensor networks: Matrix product states and projected entangled pair states publication-title: Ann. Physics doi: 10.1016/j.aop.2014.06.013 – volume: 133 start-page: 161 year: 2014 ident: 10.1016/j.knosys.2022.110094_b12 article-title: Tensor completion via a multi-linear low-n-rank factorization model publication-title: Neurocomputing doi: 10.1016/j.neucom.2013.11.020 – volume: 88 start-page: 25 issue: 1 year: 2020 ident: 10.1016/j.knosys.2022.110094_b39 article-title: Tensor theta norms and low rank recovery publication-title: Numer. Algorithms doi: 10.1007/s11075-020-01029-x – volume: 41 start-page: 613 issue: 3 year: 1995 ident: 10.1016/j.knosys.2022.110094_b58 article-title: De-noising by soft-thresholding publication-title: IEEE Trans. Inform. Theory doi: 10.1109/18.382009 – volume: 35 start-page: 208 issue: 1 year: 2013 ident: 10.1016/j.knosys.2022.110094_b29 article-title: Tensor completion for estimating missing values in visual data publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2012.39 – ident: 10.1016/j.knosys.2022.110094_b5 doi: 10.1109/ICDM.2005.77 – year: 2014 ident: 10.1016/j.knosys.2022.110094_b53 – volume: 146 start-page: 459 issue: 1 year: 2014 ident: 10.1016/j.knosys.2022.110094_b60 article-title: Proximal alternating linearized minimization for nonconvex and nonsmooth problems publication-title: Math. Program. doi: 10.1007/s10107-013-0701-9 – volume: 12 issue: 2 year: 2010 ident: 10.1016/j.knosys.2022.110094_b46 article-title: Characterizing symmetries in a projected entangled pair state publication-title: New J. Phys. doi: 10.1088/1367-2630/12/2/025010 – volume: 31 start-page: 3793 year: 2022 ident: 10.1016/j.knosys.2022.110094_b13 article-title: Self-supervised nonlinear transform-based tensor nuclear norm for multi-dimensional image recovery publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2022.3176220 – volume: 31 start-page: 4567 issue: 11 year: 2019 ident: 10.1016/j.knosys.2022.110094_b55 article-title: Enhanced sparsity prior model for low-rank tensor completion publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2019.2956153 – volume: 51 start-page: 455 issue: 3 year: 2009 ident: 10.1016/j.knosys.2022.110094_b1 article-title: Tensor decompositions and applications publication-title: SIAM Rev. doi: 10.1137/07070111X – ident: 10.1016/j.knosys.2022.110094_b20 doi: 10.1109/ACV.1994.341300 – volume: 34 start-page: 148 issue: 1 year: 2013 ident: 10.1016/j.knosys.2022.110094_b34 article-title: Third-order tensors as operators on matrices: A theoretical and computational framework with applications in imaging publication-title: SIAM J. Matrix Anal. Appl. doi: 10.1137/110837711 – volume: 31 start-page: 279 issue: 3 year: 1966 ident: 10.1016/j.knosys.2022.110094_b28 article-title: Some mathematical notes on three-mode factor analysis publication-title: Psychometrika doi: 10.1007/BF02289464 – volume: 15 start-page: 475 issue: 3 year: 2021 ident: 10.1016/j.knosys.2022.110094_b48 article-title: Tensor train rank minimization with nonlocal self-similarity for tensor completion publication-title: Inverse Probl. Imaging doi: 10.3934/ipi.2021001 – start-page: 1 year: 2022 ident: 10.1016/j.knosys.2022.110094_b15 article-title: Robust corrupted data recovery and clustering via generalized transformed tensor low-rank representation publication-title: IEEE Trans. Neural Netw. Learn. Syst. – volume: 64 start-page: 5423 issue: 20 year: 2016 ident: 10.1016/j.knosys.2022.110094_b25 article-title: Smooth PARAFAC decomposition for tensor completion publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2016.2586759 – volume: 81 issue: 3 year: 2010 ident: 10.1016/j.knosys.2022.110094_b45 article-title: Typicality in random matrix product states publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.81.032336 – ident: 10.1016/j.knosys.2022.110094_b10 doi: 10.1109/CVPR.2006.141 – volume: 435 start-page: 641 issue: 3 year: 2011 ident: 10.1016/j.knosys.2022.110094_b35 article-title: Factorization strategies for third-order tensors publication-title: Linear Algebra Appl. doi: 10.1016/j.laa.2010.09.020 – ident: 10.1016/j.knosys.2022.110094_b17 doi: 10.1609/aaai.v29i1.9158 – volume: 222 year: 2021 ident: 10.1016/j.knosys.2022.110094_b2 article-title: Robust online rain removal for surveillance videos with dynamic rains publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2021.107006 – volume: 60 start-page: 1 issue: 6 year: 2013 ident: 10.1016/j.knosys.2022.110094_b23 article-title: Most tensor problems are NP-hard publication-title: J. ACM doi: 10.1145/2512329 – volume: 37 start-page: 1751 issue: 9 year: 2015 ident: 10.1016/j.knosys.2022.110094_b26 article-title: Bayesian CP factorization of incomplete tensors with automatic rank determination publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2015.2392756 – volume: 92 start-page: 1 issue: 3 year: 2022 ident: 10.1016/j.knosys.2022.110094_b11 article-title: Nonlinear transform induced tensor nuclear norm for tensor completion publication-title: J. Sci. Comput. doi: 10.1007/s10915-022-01937-1 – volume: 6 start-page: 164 issue: 1–4 year: 1927 ident: 10.1016/j.knosys.2022.110094_b22 article-title: The expression of a tensor or a polyadic as a sum of products publication-title: J. Math. Phys. doi: 10.1002/sapm192761164 – volume: 65 start-page: 1511 issue: 6 year: 2016 ident: 10.1016/j.knosys.2022.110094_b36 article-title: Exact tensor completion using t-SVD publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2016.2639466 – volume: 27 issue: 3 year: 2020 ident: 10.1016/j.knosys.2022.110094_b40 article-title: Robust tensor completion using transformed tensor singular value decomposition publication-title: Numer. Linear Algebra Appl. doi: 10.1002/nla.2299 – ident: 10.1016/j.knosys.2022.110094_b9 doi: 10.1145/344779.344972 – volume: 80 start-page: 1437 issue: 4 year: 2019 ident: 10.1016/j.knosys.2022.110094_b44 article-title: Alternating iterative methods for solving tensor equations with applications publication-title: Numer. Algorithms doi: 10.1007/s11075-018-0601-4 – volume: 15 start-page: 641 issue: 3 year: 2021 ident: 10.1016/j.knosys.2022.110094_b4 article-title: Hyperspectral super-resolution via interpretable block-term tensor modeling publication-title: IEEE J. Sel. Top. Sign. Proces. doi: 10.1109/JSTSP.2020.3045965 – volume: 6 start-page: 111 issue: 1 year: 1955 ident: 10.1016/j.knosys.2022.110094_b59 article-title: Some metric inequalities in the space of matrices publication-title: Proc. Amer. Math. Soc. doi: 10.1090/S0002-9939-1955-0067841-7 – volume: 20 start-page: 2316 issue: 9 year: 2018 ident: 10.1016/j.knosys.2022.110094_b33 article-title: Field-of-experts filters guided tensor completion publication-title: IEEE Trans. Multimed. doi: 10.1109/TMM.2018.2806225 – volume: 29 start-page: 7889 year: 2020 ident: 10.1016/j.knosys.2022.110094_b54 article-title: Enhanced 3DTV regularization and its applications on HSI denoising and compressed sensing publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2020.3007840 – volume: 13 start-page: 600 issue: 4 year: 2004 ident: 10.1016/j.knosys.2022.110094_b62 article-title: Image quality assessment: from error visibility to structural similarity publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2003.819861 – year: 2016 ident: 10.1016/j.knosys.2022.110094_b49 – ident: 10.1016/j.knosys.2022.110094_b37 doi: 10.24963/ijcai.2018/347 – volume: 93 start-page: 1 issue: 2 year: 2022 ident: 10.1016/j.knosys.2022.110094_b7 article-title: Multi-dimensional image recovery via fully-connected tensor network decomposition under the learnable transforms publication-title: J. Sci. Comput. doi: 10.1007/s10915-022-02009-0 – ident: 10.1016/j.knosys.2022.110094_b16 doi: 10.1609/aaai.v29i1.9564 – volume: 27 issue: 2 year: 2011 ident: 10.1016/j.knosys.2022.110094_b30 article-title: Tensor completion and low-n-rank tensor recovery via convex optimization publication-title: Inverse Problems doi: 10.1088/0266-5611/27/2/025010 – volume: 58 start-page: 734 issue: 1 year: 2020 ident: 10.1016/j.knosys.2022.110094_b8 article-title: Mixed noise removal in hyperspectral image via low-fibered-rank regularization publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2019.2940534 – volume: 29 start-page: 7233 year: 2020 ident: 10.1016/j.knosys.2022.110094_b41 article-title: Framelet representation of tensor nuclear norm for third-order tensor completion publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2020.3000349 – volume: 65 start-page: 3551 issue: 13 year: 2017 ident: 10.1016/j.knosys.2022.110094_b3 article-title: Tensor decomposition for signal processing and machine learning publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2017.2690524 – ident: 10.1016/j.knosys.2022.110094_b27 doi: 10.1137/1.9781611973440.99 – volume: 23 start-page: 1678 issue: 4 year: 2014 ident: 10.1016/j.knosys.2022.110094_b38 article-title: Tensor-based formulation and nuclear norm regularization for multienergy computed tomography publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2014.2305840 – volume: 28 start-page: 1255 year: 2021 ident: 10.1016/j.knosys.2022.110094_b52 article-title: Hierarchical factorization strategy for high-order tensor and application for data completion publication-title: IEEE Signal Process. Lett. doi: 10.1109/LSP.2021.3084511 – volume: 137 start-page: 91 issue: 1 year: 2013 ident: 10.1016/j.knosys.2022.110094_b56 article-title: Convergence of descent methods for semi-algebraic and tame problems: Proximal algorithms, forward-backward splitting, and regularized Gauss-Seidel methods publication-title: Math. Program. doi: 10.1007/s10107-011-0484-9 – ident: 10.1016/j.knosys.2022.110094_b51 doi: 10.1609/aaai.v33i01.33019151 – ident: 10.1016/j.knosys.2022.110094_b50 doi: 10.1109/ICCV.2017.607 – volume: 243 year: 2022 ident: 10.1016/j.knosys.2022.110094_b6 article-title: Enhanced tensor low-rank representation for clustering and denoising publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2022.108468 – volume: 92 start-page: 1 year: 2022 ident: 10.1016/j.knosys.2022.110094_b57 article-title: Tensor completion via fully-connected tensor network decomposition with regularized factors publication-title: J. Sci. Comput. doi: 10.1007/s10915-022-01841-8 – start-page: 620 year: 1993 ident: 10.1016/j.knosys.2022.110094_b63 article-title: Determination of semi-arid landscape endmembers and seasonal trends using convex geometry spectral unmixing techniques – volume: 31 start-page: 984 year: 2022 ident: 10.1016/j.knosys.2022.110094_b14 article-title: Tensor completion via complementary global, local, and nonlocal priors publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2021.3138325 – volume: 45 start-page: 2437 issue: 11 year: 2014 ident: 10.1016/j.knosys.2022.110094_b24 article-title: Trace norm regularized CANDECOMP/PARAFAC decomposition with missing data publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2014.2374695 – volume: 58 start-page: 8450 issue: 12 year: 2020 ident: 10.1016/j.knosys.2022.110094_b32 article-title: Double-factor-regularized low-rank tensor factorization for mixed noise removal in hyperspectral image publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2020.2987954 – volume: 9 start-page: 601 issue: 2 year: 2015 ident: 10.1016/j.knosys.2022.110094_b31 article-title: Parallel matrix factorization for low-rank tensor completion publication-title: Inverse Probl. Imaging doi: 10.3934/ipi.2015.9.601 – ident: 10.1016/j.knosys.2022.110094_b61 doi: 10.1109/CVPR.2018.00334 |
| SSID | ssj0002218 |
| Score | 2.4574764 |
| Snippet | Tensor ring (TR) decomposition, which factorizes a tensor into a sequence of cyclically interconnected third-order TR factors, is a powerful tool to capture... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 110094 |
| SubjectTerms | Interpretable gradient factors Proximal alternating minimization Tensor completion Tensor ring decomposition |
| Title | Tensor ring decomposition-based model with interpretable gradient factors regularization for tensor completion |
| URI | https://dx.doi.org/10.1016/j.knosys.2022.110094 |
| Volume | 259 |
| WOSCitedRecordID | wos000933581900005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1872-7409 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002218 issn: 0950-7051 databaseCode: AIEXJ dateStart: 19950201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaWlgMX3ojykg_ckFFiZ-34WKCIR1UhUaRwihzbqbZU2SrdrXrjrzP2ONktW_GS2EO0suI46_l2PDP6ZoaQ53lT6FYIywxImBWtEqxx4KVw68D8t8LlDptNqIODsqr0p8nk-5ALc36iuq68uNCn_1XUMAbCDqmzfyHu8aEwAN9B6HAFscP1zwQPjum8fxF5dc4HynjiZbFwYjnsfYPx19nIOAz5U0d9pH8txh48fexT36dMTSQk4sMjEd2PMk3G7cchPpdWOlurhh70_hIJwd0R2x8OTAxZx3BtNWP7I8repFYrgXS7utHj4Ncle2XSeApY8EDXYom6GqNoG5k0KRyZMZWl4rMelXGpwPovMr2urTkWEN_Q_BiEOH75rZvDrwPHn_OQ4pBhC-Wfamp_DsuF1Xiwf3RWXSPbXE01aPbt3fd71YfxMOc8hojH1xuyLyNFcHOtq62bNYvl8Da5mVwNuosQuUMmvrtLbg1tPGjS6vdIh4ihATH0CsTQiBgaEEMvIYYOiKEJMfQyYigghiJi6Aox98mXt3uHr9-x1IaDWfAnFyyX4HVOS99YLa3LM1PwRpaZaVQr2zJT3nJpTaGMLlzW6Fx4adq2FKYtpoX2jXhAtrp55x8SCu6z9a3JpeSuMLI0wrVcNGrqeAOfcoeIYftqm2rUh1YpJ_VARjyucdPrsOk1bvoOYeOsU6zR8pv71SCZOtmZaD_WAKZfznz0zzMfkxur_8ITsrXol_4puW7PF7Oz_llC3Q_q3Kqy |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tensor+ring+decomposition-based+model+with+interpretable+gradient+factors+regularization+for+tensor+completion&rft.jtitle=Knowledge-based+systems&rft.au=Wu%2C+Peng-Ling&rft.au=Zhao%2C+Xi-Le&rft.au=Ding%2C+Meng&rft.au=Zheng%2C+Yu-Bang&rft.date=2023-01-10&rft.pub=Elsevier+B.V&rft.issn=0950-7051&rft.eissn=1872-7409&rft.volume=259&rft_id=info:doi/10.1016%2Fj.knosys.2022.110094&rft.externalDocID=S095070512201190X |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-7051&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-7051&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-7051&client=summon |