A survey of deep neural network architectures and their applications

Since the proposal of a fast learning algorithm for deep belief networks in 2006, the deep learning techniques have drawn ever-increasing research interests because of their inherent capability of overcoming the drawback of traditional algorithms dependent on hand-designed features. Deep learning ap...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Neurocomputing (Amsterdam) Ročník 234; s. 11 - 26
Hlavní autoři: Liu, Weibo, Wang, Zidong, Liu, Xiaohui, Zeng, Nianyin, Liu, Yurong, Alsaadi, Fuad E.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 19.04.2017
Témata:
ISSN:0925-2312, 1872-8286
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Since the proposal of a fast learning algorithm for deep belief networks in 2006, the deep learning techniques have drawn ever-increasing research interests because of their inherent capability of overcoming the drawback of traditional algorithms dependent on hand-designed features. Deep learning approaches have also been found to be suitable for big data analysis with successful applications to computer vision, pattern recognition, speech recognition, natural language processing, and recommendation systems. In this paper, we discuss some widely-used deep learning architectures and their practical applications. An up-to-date overview is provided on four deep learning architectures, namely, autoencoder, convolutional neural network, deep belief network, and restricted Boltzmann machine. Different types of deep neural networks are surveyed and recent progresses are summarized. Applications of deep learning techniques on some selected areas (speech recognition, pattern recognition and computer vision) are highlighted. A list of future research topics are finally given with clear justifications.
AbstractList Since the proposal of a fast learning algorithm for deep belief networks in 2006, the deep learning techniques have drawn ever-increasing research interests because of their inherent capability of overcoming the drawback of traditional algorithms dependent on hand-designed features. Deep learning approaches have also been found to be suitable for big data analysis with successful applications to computer vision, pattern recognition, speech recognition, natural language processing, and recommendation systems. In this paper, we discuss some widely-used deep learning architectures and their practical applications. An up-to-date overview is provided on four deep learning architectures, namely, autoencoder, convolutional neural network, deep belief network, and restricted Boltzmann machine. Different types of deep neural networks are surveyed and recent progresses are summarized. Applications of deep learning techniques on some selected areas (speech recognition, pattern recognition and computer vision) are highlighted. A list of future research topics are finally given with clear justifications.
Author Zeng, Nianyin
Alsaadi, Fuad E.
Liu, Weibo
Liu, Yurong
Wang, Zidong
Liu, Xiaohui
Author_xml – sequence: 1
  givenname: Weibo
  surname: Liu
  fullname: Liu, Weibo
  organization: Department of Computer Science, Brunel University London, Uxbridge, Middlesex, UB8 3PH, United Kingdom
– sequence: 2
  givenname: Zidong
  orcidid: 0000-0002-9576-7401
  surname: Wang
  fullname: Wang, Zidong
  email: Zidong.Wang@brunel.ac.uk
  organization: Department of Computer Science, Brunel University London, Uxbridge, Middlesex, UB8 3PH, United Kingdom
– sequence: 3
  givenname: Xiaohui
  surname: Liu
  fullname: Liu, Xiaohui
  organization: Department of Computer Science, Brunel University London, Uxbridge, Middlesex, UB8 3PH, United Kingdom
– sequence: 4
  givenname: Nianyin
  surname: Zeng
  fullname: Zeng, Nianyin
  organization: Department of Instrumental and Electrical Engineering, Xiamen University, Xiamen 361005, Fujian, China
– sequence: 5
  givenname: Yurong
  surname: Liu
  fullname: Liu, Yurong
  organization: Department of Mathematics, Yangzhou University, Yangzhou 225002, China
– sequence: 6
  givenname: Fuad E.
  surname: Alsaadi
  fullname: Alsaadi, Fuad E.
  organization: Communication Systems and Networks (CSN) Research Group, Faculty of Engineering, King Abdulaziz University, Jeddah 21589, Saudi Arabia
BookMark eNqFkE1LAzEQhoNUsK3-Aw_5A7tmknY39SCU-gkFL3oO2WRCU7e7JUkr_fem1pMHPQ0D87y884zIoOs7JOQaWAkMqpt12eHO9JuS560EXjIhz8gQZM0LyWU1IEM249OCC-AXZBTjmjGogc-G5H5O4y7s8UB7Ry3iluaooNs80mcfPqgOZuUTmrQLGKnuLE0r9IHq7bb1Riffd_GSnDvdRrz6mWPy_vjwtngulq9PL4v5sjCCVanIXQVzojZQTRsw3NQahGQSpXW6qYRtbIWywVmFOEFnwDru8q2VDgG4EGMyOeWa0McY0Klt8BsdDgqYOppQa3UyoY4mFHCVTWTs9hdmfPpunoL27X_w3QnG_NjeY1DReOwMWh-yFWV7_3fAF6IDgCc
CitedBy_id crossref_primary_10_1016_j_ribaf_2022_101844
crossref_primary_10_1016_j_dsp_2023_104205
crossref_primary_10_1016_j_jisa_2019_102419
crossref_primary_10_1039_D0NR01671C
crossref_primary_10_1016_j_inffus_2021_09_012
crossref_primary_10_1016_j_neucom_2021_04_076
crossref_primary_10_1038_s41598_022_12634_2
crossref_primary_10_3389_fpls_2024_1342123
crossref_primary_10_1016_j_neucom_2020_09_056
crossref_primary_10_1016_j_neucom_2018_12_041
crossref_primary_10_1016_j_ecoenv_2025_118134
crossref_primary_10_1186_s12859_022_04582_5
crossref_primary_10_1007_s00521_021_05893_z
crossref_primary_10_1007_s40745_020_00300_1
crossref_primary_10_1088_1755_1315_1428_1_012017
crossref_primary_10_1016_j_jdent_2022_104115
crossref_primary_10_3390_infrastructures6090129
crossref_primary_10_1016_j_neucom_2023_126904
crossref_primary_10_1016_j_conengprac_2020_104458
crossref_primary_10_3390_app9224976
crossref_primary_10_3390_sym17060950
crossref_primary_10_1038_s41598_025_89639_0
crossref_primary_10_1145_3604550
crossref_primary_10_1016_j_neucom_2021_11_018
crossref_primary_10_1063_5_0272178
crossref_primary_10_1016_j_rse_2022_113357
crossref_primary_10_1109_TNSE_2025_3534834
crossref_primary_10_1007_s11265_020_01546_x
crossref_primary_10_1007_s40313_021_00868_w
crossref_primary_10_1109_TCYB_2017_2671032
crossref_primary_10_3390_app11135868
crossref_primary_10_1109_COMST_2021_3086296
crossref_primary_10_3389_fphy_2025_1563756
crossref_primary_10_1145_3626314
crossref_primary_10_2196_23586
crossref_primary_10_1007_s40995_023_01562_z
crossref_primary_10_1111_peps_12587
crossref_primary_10_1190_geo2021_0621_1
crossref_primary_10_1016_j_mri_2024_110277
crossref_primary_10_1016_j_neucom_2021_11_005
crossref_primary_10_1016_j_procs_2019_08_236
crossref_primary_10_1007_s10946_021_09999_6
crossref_primary_10_1007_s13202_024_01889_2
crossref_primary_10_1016_j_neucom_2017_08_016
crossref_primary_10_1155_2021_6961343
crossref_primary_10_1016_j_ejro_2023_100484
crossref_primary_10_1007_s42452_022_05246_y
crossref_primary_10_1007_s00371_024_03477_1
crossref_primary_10_1016_j_neucom_2025_129723
crossref_primary_10_1007_s00330_020_07417_0
crossref_primary_10_1109_ACCESS_2020_2994290
crossref_primary_10_1155_2022_5596676
crossref_primary_10_3389_fvets_2022_836043
crossref_primary_10_1016_j_neucom_2018_09_102
crossref_primary_10_1016_j_neucom_2018_09_105
crossref_primary_10_1109_ACCESS_2021_3114306
crossref_primary_10_1016_j_petrol_2021_109089
crossref_primary_10_1155_2020_7268963
crossref_primary_10_1016_j_neucom_2018_05_083
crossref_primary_10_1109_TBDATA_2019_2918807
crossref_primary_10_1109_ACCESS_2020_3042839
crossref_primary_10_1016_j_aiia_2025_01_005
crossref_primary_10_1016_j_neucom_2017_08_027
crossref_primary_10_1016_j_procs_2018_05_117
crossref_primary_10_3390_electronics14051034
crossref_primary_10_1016_j_cosrev_2023_100568
crossref_primary_10_1016_j_neucom_2020_07_004
crossref_primary_10_1016_j_compbiomed_2020_104097
crossref_primary_10_1117_1_JRS_16_048506
crossref_primary_10_3390_ma16206804
crossref_primary_10_1007_s10489_025_06458_6
crossref_primary_10_1016_j_ifacol_2020_12_2303
crossref_primary_10_1016_j_nucengdes_2025_113969
crossref_primary_10_1109_TCYB_2020_3009582
crossref_primary_10_1109_TGRS_2019_2928715
crossref_primary_10_1109_JIOT_2022_3211889
crossref_primary_10_1016_j_ijleo_2020_165341
crossref_primary_10_1016_j_knosys_2023_110729
crossref_primary_10_1186_s13638_020_01677_6
crossref_primary_10_3390_app10165466
crossref_primary_10_1016_j_neucom_2025_129701
crossref_primary_10_1016_j_watres_2025_124058
crossref_primary_10_3390_ijgi10070442
crossref_primary_10_1007_s10462_023_10556_7
crossref_primary_10_1109_TKDE_2021_3130903
crossref_primary_10_1109_ACCESS_2025_3584461
crossref_primary_10_1016_j_ins_2023_119668
crossref_primary_10_1016_j_csl_2020_101180
crossref_primary_10_1016_j_media_2023_102919
crossref_primary_10_1016_j_neucom_2017_08_046
crossref_primary_10_1016_j_eswa_2022_118045
crossref_primary_10_1016_j_neucom_2017_08_041
crossref_primary_10_1007_s12021_024_09675_5
crossref_primary_10_1109_LGRS_2018_2861218
crossref_primary_10_1016_j_neucom_2017_08_040
crossref_primary_10_1016_j_neucom_2023_126986
crossref_primary_10_1007_s00530_024_01349_1
crossref_primary_10_1016_j_psep_2023_08_011
crossref_primary_10_1016_j_asoc_2022_109554
crossref_primary_10_1016_j_neucom_2021_11_030
crossref_primary_10_1080_19479832_2019_1655489
crossref_primary_10_1038_s41598_023_34298_2
crossref_primary_10_3390_app9194180
crossref_primary_10_1007_s11042_020_10170_7
crossref_primary_10_1109_ACCESS_2022_3155879
crossref_primary_10_1186_s13007_021_00722_9
crossref_primary_10_1109_ACCESS_2024_3524257
crossref_primary_10_1016_j_compag_2019_104898
crossref_primary_10_3390_su142215353
crossref_primary_10_1016_j_neucom_2018_05_040
crossref_primary_10_1016_j_imavis_2020_103981
crossref_primary_10_1109_TC_2021_3106496
crossref_primary_10_1016_j_ress_2023_109550
crossref_primary_10_1155_2020_7917353
crossref_primary_10_3390_f13050677
crossref_primary_10_1016_j_mtcomm_2020_101145
crossref_primary_10_3390_e24040440
crossref_primary_10_1002_nem_2146
crossref_primary_10_1109_ACCESS_2024_3448410
crossref_primary_10_1016_j_atech_2023_100216
crossref_primary_10_1016_j_knosys_2019_105201
crossref_primary_10_3390_sym17050768
crossref_primary_10_1016_j_iot_2024_101343
crossref_primary_10_1016_j_neucom_2023_126520
crossref_primary_10_1051_matecconf_201929201012
crossref_primary_10_1007_s00521_021_06540_3
crossref_primary_10_1109_TGRS_2021_3075968
crossref_primary_10_3390_en13143517
crossref_primary_10_7717_peerj_cs_1677
crossref_primary_10_1007_s10462_022_10283_5
crossref_primary_10_1007_s13748_020_00214_2
crossref_primary_10_1142_S0218001425580030
crossref_primary_10_33889_IJMEMS_2022_7_5_042
crossref_primary_10_3390_s19092025
crossref_primary_10_1109_ACCESS_2023_3330789
crossref_primary_10_1186_s40537_020_00382_x
crossref_primary_10_1109_ACCESS_2024_3407097
crossref_primary_10_1016_j_cosrev_2021_100374
crossref_primary_10_1016_j_artmed_2024_102865
crossref_primary_10_1016_j_ins_2021_01_064
crossref_primary_10_4103_jmp_jmp_140_24
crossref_primary_10_1016_j_compind_2020_103378
crossref_primary_10_1016_j_techfore_2022_121757
crossref_primary_10_1016_j_compchemeng_2023_108560
crossref_primary_10_1007_s00521_024_10158_6
crossref_primary_10_1109_JPHOTOV_2020_2973448
crossref_primary_10_1016_j_compag_2019_104878
crossref_primary_10_1109_TCSII_2021_3107535
crossref_primary_10_1190_geo2020_0159_1
crossref_primary_10_1007_s00500_021_06177_3
crossref_primary_10_1109_TETC_2024_3404551
crossref_primary_10_1109_TDSC_2018_2874243
crossref_primary_10_1007_s10489_021_02416_0
crossref_primary_10_1145_3674839
crossref_primary_10_3390_s21113862
crossref_primary_10_1016_j_inffus_2019_05_004
crossref_primary_10_1016_j_neucom_2017_06_002
crossref_primary_10_1016_j_neucom_2021_02_049
crossref_primary_10_1007_s00521_023_08957_4
crossref_primary_10_1007_s11036_025_02458_5
crossref_primary_10_3390_signals2040042
crossref_primary_10_1038_s41380_023_02047_6
crossref_primary_10_1177_0036850419850394
crossref_primary_10_1016_j_micron_2021_103023
crossref_primary_10_1109_ACCESS_2019_2907729
crossref_primary_10_1016_j_microrel_2020_113969
crossref_primary_10_1109_TIM_2022_3220302
crossref_primary_10_1117_1_JEI_32_3_031803
crossref_primary_10_3390_su13158600
crossref_primary_10_3390_rs10071066
crossref_primary_10_1109_ACCESS_2020_2991183
crossref_primary_10_1109_ACCESS_2020_3042000
crossref_primary_10_1016_j_neucom_2018_07_072
crossref_primary_10_1016_j_enbuild_2019_06_034
crossref_primary_10_1016_j_jbi_2020_103500
crossref_primary_10_1016_j_bspc_2024_106095
crossref_primary_10_1162_neco_a_01139
crossref_primary_10_1002_cpe_7142
crossref_primary_10_1007_s00521_021_06780_3
crossref_primary_10_3390_s21093279
crossref_primary_10_1016_j_jvcir_2018_10_029
crossref_primary_10_1007_s00521_020_05077_1
crossref_primary_10_1016_j_neucom_2017_06_026
crossref_primary_10_1016_j_neucom_2017_06_025
crossref_primary_10_1016_j_neucom_2021_02_025
crossref_primary_10_1186_s13638_022_02193_5
crossref_primary_10_3390_pr8111365
crossref_primary_10_3390_rs11242898
crossref_primary_10_1016_j_eswa_2025_128785
crossref_primary_10_1002_er_7797
crossref_primary_10_1007_s12652_022_03786_0
crossref_primary_10_1080_08927022_2020_1804564
crossref_primary_10_1016_j_neucom_2018_07_057
crossref_primary_10_1007_s00500_022_07074_z
crossref_primary_10_1109_JIOT_2023_3296116
crossref_primary_10_1007_s11340_021_00787_6
crossref_primary_10_3390_technologies11010024
crossref_primary_10_1007_s00287_020_01299_8
crossref_primary_10_1016_j_knosys_2017_09_023
crossref_primary_10_1016_j_neucom_2020_09_017
crossref_primary_10_1007_s42979_020_00392_9
crossref_primary_10_1016_j_neucom_2017_06_032
crossref_primary_10_1155_2022_5104464
crossref_primary_10_1007_s12652_023_04594_w
crossref_primary_10_1016_j_neucom_2017_06_037
crossref_primary_10_1016_j_neucom_2021_02_034
crossref_primary_10_1016_j_neucom_2018_12_010
crossref_primary_10_1038_s41598_025_15894_w
crossref_primary_10_3390_geosciences13040115
crossref_primary_10_3390_app122010344
crossref_primary_10_1109_TII_2018_2870879
crossref_primary_10_1109_ACCESS_2020_3004188
crossref_primary_10_1007_s11063_022_10869_8
crossref_primary_10_1007_s10489_020_01928_5
crossref_primary_10_3390_s20164367
crossref_primary_10_1016_j_envsoft_2021_105122
crossref_primary_10_1109_JIOT_2021_3070042
crossref_primary_10_1016_j_jenvman_2025_126413
crossref_primary_10_1080_21642583_2024_2362169
crossref_primary_10_3390_s23187791
crossref_primary_10_1155_2021_5519033
crossref_primary_10_1016_j_engappai_2024_109183
crossref_primary_10_3390_app112411853
crossref_primary_10_1016_j_neucom_2018_07_038
crossref_primary_10_7717_peerj_cs_860
crossref_primary_10_26634_jcom_8_1_17490
crossref_primary_10_1016_j_envsoft_2021_105112
crossref_primary_10_1007_s11042_020_09995_z
crossref_primary_10_1016_j_csbj_2021_08_004
crossref_primary_10_1007_s11423_023_10323_z
crossref_primary_10_1016_j_oceaneng_2024_117923
crossref_primary_10_1016_j_engappai_2019_03_026
crossref_primary_10_1109_ACCESS_2020_3036990
crossref_primary_10_1007_s11042_018_7076_0
crossref_primary_10_1007_s11042_024_20258_z
crossref_primary_10_3390_appliedmath5030076
crossref_primary_10_1016_j_ast_2019_105539
crossref_primary_10_1109_COMST_2021_3127267
crossref_primary_10_1121_10_0021333
crossref_primary_10_1016_j_bspc_2021_103463
crossref_primary_10_1038_s41467_022_32884_y
crossref_primary_10_1109_ACCESS_2021_3116131
crossref_primary_10_1177_17442591231219025
crossref_primary_10_1007_s00521_021_06873_z
crossref_primary_10_1080_21642583_2021_1992684
crossref_primary_10_1007_s12021_021_09524_9
crossref_primary_10_1038_s41380_019_0365_9
crossref_primary_10_1186_s12911_024_02548_6
crossref_primary_10_3390_brainsci12010094
crossref_primary_10_3390_ijgi11030162
crossref_primary_10_1186_s12880_023_01176_2
crossref_primary_10_1109_ACCESS_2018_2888882
crossref_primary_10_1016_j_asoc_2020_106688
crossref_primary_10_1016_j_jnca_2025_104214
crossref_primary_10_1007_s00521_023_09279_1
crossref_primary_10_1016_j_infrared_2025_106059
crossref_primary_10_3390_diagnostics12020518
crossref_primary_10_1109_TIM_2022_3216669
crossref_primary_10_1299_transjsme_25_00020
crossref_primary_10_1007_s00466_020_01952_9
crossref_primary_10_1109_ACCESS_2025_3566252
crossref_primary_10_1016_j_scitotenv_2023_164968
crossref_primary_10_1016_j_jlp_2023_105185
crossref_primary_10_1109_LAWP_2024_3430557
crossref_primary_10_1016_j_inffus_2024_102447
crossref_primary_10_1016_j_compmedimag_2019_04_001
crossref_primary_10_1016_j_cviu_2019_04_004
crossref_primary_10_1007_s00034_019_01041_0
crossref_primary_10_3390_s22218263
crossref_primary_10_1007_s11831_018_9257_4
crossref_primary_10_1109_ACCESS_2025_3559981
crossref_primary_10_1016_j_future_2019_01_035
crossref_primary_10_1016_j_jhydrol_2021_127043
crossref_primary_10_3390_biom12040508
crossref_primary_10_1109_TNNLS_2021_3054867
crossref_primary_10_1016_j_dajour_2021_100010
crossref_primary_10_1049_itr2_12464
crossref_primary_10_1109_ACCESS_2020_3024558
crossref_primary_10_3390_computers13070174
crossref_primary_10_1093_jamiaopen_ooaf083
crossref_primary_10_1049_sfw2_12064
crossref_primary_10_1109_TNSM_2020_2995900
crossref_primary_10_3390_info14070397
crossref_primary_10_1016_j_neucom_2025_131117
crossref_primary_10_1109_ACCESS_2019_2925569
crossref_primary_10_1145_3648609
crossref_primary_10_1007_s40846_020_00538_3
crossref_primary_10_1016_j_ifacol_2020_12_582
crossref_primary_10_1007_s00530_023_01232_5
crossref_primary_10_3390_diagnostics11010011
crossref_primary_10_3390_en16186608
crossref_primary_10_3390_rs16183522
crossref_primary_10_62347_YQHQ1079
crossref_primary_10_1177_03019233241301144
crossref_primary_10_1016_j_ins_2025_122623
crossref_primary_10_1109_ACCESS_2019_2925561
crossref_primary_10_1016_j_neucom_2020_04_157
crossref_primary_10_1016_j_neucom_2020_04_159
crossref_primary_10_1016_j_image_2018_01_007
crossref_primary_10_1155_2019_7816154
crossref_primary_10_1186_s43093_025_00515_9
crossref_primary_10_3390_jmse9010047
crossref_primary_10_1007_s13735_023_00279_4
crossref_primary_10_1007_s10207_024_00891_3
crossref_primary_10_1016_j_ufug_2024_128390
crossref_primary_10_1016_j_measurement_2018_05_098
crossref_primary_10_1109_TCYB_2022_3169210
crossref_primary_10_1016_j_apenergy_2023_121703
crossref_primary_10_1109_TITS_2025_3564642
crossref_primary_10_3390_rs13142686
crossref_primary_10_1109_IOTM_0001_1900046
crossref_primary_10_1007_s10462_019_09744_1
crossref_primary_10_1007_s13369_023_08686_9
crossref_primary_10_3390_make3020017
crossref_primary_10_1145_3446390
crossref_primary_10_1177_0278364919884141
crossref_primary_10_3390_electronics8020209
crossref_primary_10_32604_cmc_2022_014637
crossref_primary_10_1109_TNET_2024_3390416
crossref_primary_10_1016_j_apacoust_2024_110261
crossref_primary_10_1080_09540091_2021_2024509
crossref_primary_10_3390_jimaging5050052
crossref_primary_10_1155_2020_1373087
crossref_primary_10_1080_10298436_2023_2257852
crossref_primary_10_3390_app11083662
crossref_primary_10_1016_j_oceaneng_2025_122384
crossref_primary_10_1080_10408398_2022_2131725
crossref_primary_10_4271_2021_01_0550
crossref_primary_10_1016_j_enganabound_2023_06_010
crossref_primary_10_3390_min11101089
crossref_primary_10_1007_s40435_025_01624_7
crossref_primary_10_1109_TIFS_2022_3217389
crossref_primary_10_1109_TVLSI_2020_3046075
crossref_primary_10_1007_s42452_019_1538_5
crossref_primary_10_3389_fchem_2019_00782
crossref_primary_10_1016_j_neucom_2022_01_006
crossref_primary_10_1016_j_jclepro_2021_127672
crossref_primary_10_1109_TDSC_2021_3139201
crossref_primary_10_1016_j_bbe_2022_03_001
crossref_primary_10_1016_j_neucom_2020_06_118
crossref_primary_10_3390_app12168140
crossref_primary_10_1155_2022_1042737
crossref_primary_10_1080_16843703_2021_1992072
crossref_primary_10_1016_j_neucom_2022_01_099
crossref_primary_10_1038_s41598_025_96875_x
crossref_primary_10_3390_rs12050795
crossref_primary_10_1038_s41598_023_45486_5
crossref_primary_10_1109_TVT_2019_2925562
crossref_primary_10_1109_ACCESS_2021_3112612
crossref_primary_10_1190_geo2023_0129_1
crossref_primary_10_1016_j_compbiomed_2022_106073
crossref_primary_10_1109_TMI_2021_3101616
crossref_primary_10_1016_j_talanta_2020_121444
crossref_primary_10_1016_j_spasta_2020_100442
crossref_primary_10_3390_app9235254
crossref_primary_10_1109_ACCESS_2023_3258399
crossref_primary_10_3390_designs2020013
crossref_primary_10_1109_TVT_2023_3242433
crossref_primary_10_1007_s12530_025_09668_y
crossref_primary_10_1016_j_chemolab_2020_104214
crossref_primary_10_1016_j_neucom_2024_127345
crossref_primary_10_1016_j_teler_2023_100053
crossref_primary_10_1109_ACCESS_2022_3205774
crossref_primary_10_1016_j_mtcomm_2025_112342
crossref_primary_10_1155_2021_6687146
crossref_primary_10_1016_j_health_2022_100104
crossref_primary_10_1016_j_conbuildmat_2020_118513
crossref_primary_10_3390_s23239570
crossref_primary_10_1109_JAS_2022_105464
crossref_primary_10_3390_electronics12010074
crossref_primary_10_1016_j_neucom_2025_131523
crossref_primary_10_1016_j_jsv_2023_117598
crossref_primary_10_1631_FITEE_1900236
crossref_primary_10_1049_iet_sen_2019_0045
crossref_primary_10_1177_18724981241306503
crossref_primary_10_1016_j_cmpb_2021_106007
crossref_primary_10_3390_rs13224712
crossref_primary_10_1016_j_neucom_2021_06_041
crossref_primary_10_1016_j_eswa_2022_118873
crossref_primary_10_1109_COMST_2019_2904897
crossref_primary_10_1093_bib_bbac075
crossref_primary_10_1016_j_comnet_2023_110114
crossref_primary_10_1016_j_oceaneng_2025_121084
crossref_primary_10_1016_j_jprocont_2021_07_012
crossref_primary_10_1007_s11042_024_20276_x
crossref_primary_10_3390_electronics10172052
crossref_primary_10_1016_j_eswa_2024_124465
crossref_primary_10_1038_s41598_022_23320_8
crossref_primary_10_1038_s41598_018_33516_6
crossref_primary_10_1155_2019_2537689
crossref_primary_10_3389_fgene_2020_540751
crossref_primary_10_1038_s44220_024_00237_x
crossref_primary_10_1016_j_neucom_2020_10_014
crossref_primary_10_1016_j_ipm_2022_102929
crossref_primary_10_1109_TBDATA_2023_3334648
crossref_primary_10_1016_j_optlaseng_2024_108645
crossref_primary_10_1109_ACCESS_2020_3001046
crossref_primary_10_1016_j_neucom_2019_11_041
crossref_primary_10_1016_j_neucom_2021_11_106
crossref_primary_10_1007_s44196_025_00842_3
crossref_primary_10_1016_j_sab_2024_106910
crossref_primary_10_1007_s40430_023_04200_2
crossref_primary_10_3390_app9122410
crossref_primary_10_2139_ssrn_5120580
crossref_primary_10_1007_s11063_022_10927_1
crossref_primary_10_1007_s40998_019_00177_8
crossref_primary_10_1016_j_solener_2023_112006
crossref_primary_10_1016_j_est_2021_102704
crossref_primary_10_1109_JSEN_2017_2780178
crossref_primary_10_1002_widm_1564
crossref_primary_10_1007_s13735_020_00195_x
crossref_primary_10_1016_j_neunet_2018_12_010
crossref_primary_10_1016_j_neucom_2025_130645
crossref_primary_10_3389_fphy_2020_618917
crossref_primary_10_1002_aelm_202100918
crossref_primary_10_1007_s10462_023_10551_y
crossref_primary_10_2478_amns_2024_3175
crossref_primary_10_1016_j_neucom_2018_03_068
crossref_primary_10_1016_j_neucom_2019_11_066
crossref_primary_10_1007_s10489_021_03152_1
crossref_primary_10_3233_IDA_184403
crossref_primary_10_1109_MDAT_2020_3031857
crossref_primary_10_1002_aisy_202000063
crossref_primary_10_1155_2021_6698249
crossref_primary_10_1016_j_ijinfomgt_2020_102142
crossref_primary_10_1016_j_engappai_2023_107127
crossref_primary_10_1016_j_isprsjprs_2019_04_016
crossref_primary_10_1007_s12652_022_03703_5
crossref_primary_10_1002_jim4_18
crossref_primary_10_1109_ACCESS_2022_3157651
crossref_primary_10_1061_NHREFO_NHENG_2004
crossref_primary_10_1016_j_neucom_2019_11_051
crossref_primary_10_3390_rs14225821
crossref_primary_10_3390_pr12030452
crossref_primary_10_1016_j_asoc_2021_107465
crossref_primary_10_3390_electronics11223647
crossref_primary_10_1016_j_microrel_2020_113893
crossref_primary_10_1016_j_bspc_2022_104273
crossref_primary_10_1109_LGRS_2021_3105448
crossref_primary_10_3389_fenrg_2023_1161401
crossref_primary_10_3390_w14193190
crossref_primary_10_1016_j_measurement_2020_107929
crossref_primary_10_1016_j_compind_2021_103394
crossref_primary_10_3233_JIFS_219059
crossref_primary_10_1016_j_simpat_2024_102916
crossref_primary_10_1007_s00500_021_06027_2
crossref_primary_10_1007_s10462_024_11049_x
crossref_primary_10_1016_j_jweia_2023_105534
crossref_primary_10_1016_j_neucom_2023_01_081
crossref_primary_10_3390_horticulturae10090899
crossref_primary_10_1016_j_conbuildmat_2023_132596
crossref_primary_10_3390_en18174564
crossref_primary_10_1109_ACCESS_2020_3028690
crossref_primary_10_1109_ACCESS_2024_3433455
crossref_primary_10_1177_09574565221139638
crossref_primary_10_1016_j_compbiolchem_2021_107536
crossref_primary_10_1016_j_neucom_2018_11_109
crossref_primary_10_1109_ACCESS_2021_3080310
crossref_primary_10_1109_ACCESS_2024_3476140
crossref_primary_10_1016_j_compag_2021_106285
crossref_primary_10_1016_j_patcog_2025_112334
crossref_primary_10_1002_dac_4665
crossref_primary_10_1109_ACCESS_2021_3079323
crossref_primary_10_1109_TCAD_2022_3221906
crossref_primary_10_1109_TITS_2019_2958624
crossref_primary_10_3390_electronics11132100
crossref_primary_10_1016_j_neucom_2017_10_027
crossref_primary_10_1016_j_jclepro_2022_131500
crossref_primary_10_1016_j_neucom_2020_07_103
crossref_primary_10_3390_brainsci10070431
crossref_primary_10_1016_j_pnucene_2024_105568
crossref_primary_10_1016_j_jag_2022_102926
crossref_primary_10_1007_s10462_021_10127_8
crossref_primary_10_3390_rs14030632
crossref_primary_10_3390_vehicles5040078
crossref_primary_10_1016_j_neucom_2017_03_063
crossref_primary_10_1002_dac_5988
crossref_primary_10_1016_j_neucom_2023_126809
crossref_primary_10_1007_s11412_023_09386_0
crossref_primary_10_1016_j_energy_2025_136546
crossref_primary_10_3390_ijerph192215293
crossref_primary_10_1111_ffe_14330
crossref_primary_10_1016_j_atech_2023_100395
crossref_primary_10_1007_s00500_023_08277_8
crossref_primary_10_1016_j_displa_2022_102225
crossref_primary_10_3390_s24051495
crossref_primary_10_1007_s10845_020_01715_6
crossref_primary_10_1007_s12083_023_01564_z
crossref_primary_10_1109_MIM_2023_10083000
crossref_primary_10_1007_s13198_022_01844_6
crossref_primary_10_3390_su151511803
crossref_primary_10_1016_j_neucom_2017_03_049
crossref_primary_10_1109_TIFS_2023_3274391
crossref_primary_10_1016_j_finel_2021_103572
crossref_primary_10_1007_s00034_023_02387_2
crossref_primary_10_1016_j_swevo_2021_100863
crossref_primary_10_1049_iet_ipr_2020_0491
crossref_primary_10_1093_mnras_staa4045
crossref_primary_10_1080_10589759_2024_2338187
crossref_primary_10_1109_MITS_2019_2953513
crossref_primary_10_1016_j_knosys_2021_107058
crossref_primary_10_1088_1742_6596_1770_1_012016
crossref_primary_10_1007_s11227_022_04936_z
crossref_primary_10_1177_1548512919898750
crossref_primary_10_1007_s40747_022_00866_8
crossref_primary_10_1016_j_compbiomed_2022_105610
crossref_primary_10_1016_j_drudis_2019_03_003
crossref_primary_10_1007_s10772_021_09850_y
crossref_primary_10_3390_rs17020333
crossref_primary_10_1016_j_asoc_2022_109401
crossref_primary_10_1016_j_jhydrol_2023_130350
crossref_primary_10_1007_s11042_023_16155_6
crossref_primary_10_1016_j_neucom_2017_03_056
crossref_primary_10_1016_j_ins_2022_05_104
crossref_primary_10_1016_j_neucom_2017_03_055
crossref_primary_10_1109_ACCESS_2020_3030960
crossref_primary_10_1016_j_jfranklin_2025_107575
crossref_primary_10_1016_j_neucom_2018_09_001
crossref_primary_10_1016_j_aei_2024_103070
crossref_primary_10_1109_JLT_2022_3184178
crossref_primary_10_1007_s12559_018_9577_6
crossref_primary_10_1109_TDSC_2020_2967724
crossref_primary_10_4018_IJBAN_2019040104
crossref_primary_10_1109_MITS_2018_2842040
crossref_primary_10_1038_s41467_024_48881_2
crossref_primary_10_1016_j_neucom_2021_10_110
crossref_primary_10_1016_j_neucom_2019_06_008
crossref_primary_10_1007_s11432_024_4310_7
crossref_primary_10_3390_biom10081123
crossref_primary_10_5897_JHMT2024_0342
crossref_primary_10_3390_ai3020029
crossref_primary_10_1007_s10015_020_00602_w
crossref_primary_10_1109_TMAG_2021_3058131
crossref_primary_10_3390_app10072204
crossref_primary_10_1016_j_ins_2022_05_121
crossref_primary_10_1109_ACCESS_2022_3186479
crossref_primary_10_1155_2021_3742536
crossref_primary_10_1371_journal_pone_0194889
crossref_primary_10_1016_j_neucom_2020_03_038
crossref_primary_10_1007_s00521_023_08778_5
crossref_primary_10_1016_j_cose_2022_102684
crossref_primary_10_1007_s40313_025_01181_6
crossref_primary_10_1007_s12652_021_03312_8
crossref_primary_10_1109_ACCESS_2023_3323038
crossref_primary_10_1016_j_ijmecsci_2025_110517
crossref_primary_10_1109_TG_2022_3217057
crossref_primary_10_1016_j_neucom_2018_09_028
crossref_primary_10_1109_JSTARS_2023_3275995
crossref_primary_10_1155_2023_3835297
crossref_primary_10_1109_MAES_2021_3053108
crossref_primary_10_3389_fpls_2024_1368885
crossref_primary_10_3390_app10103443
crossref_primary_10_3390_electronics8050554
crossref_primary_10_1007_s11042_019_7222_3
crossref_primary_10_1784_insi_2025_67_4_208
crossref_primary_10_1016_j_neucom_2017_12_040
crossref_primary_10_1016_j_neucom_2018_09_038
crossref_primary_10_1109_JLT_2024_3486718
crossref_primary_10_1007_s11554_023_01393_6
crossref_primary_10_1007_s10994_021_06052_0
crossref_primary_10_1016_j_petrol_2020_107906
crossref_primary_10_1155_2022_7662264
crossref_primary_10_2166_ws_2023_033
crossref_primary_10_1109_ACCESS_2023_3287490
crossref_primary_10_1016_j_enconman_2019_111793
crossref_primary_10_3390_app122312215
crossref_primary_10_1016_j_energy_2018_11_128
crossref_primary_10_1016_j_neucom_2022_04_084
crossref_primary_10_1109_MMUL_2023_3272513
crossref_primary_10_1016_j_cosrev_2025_100808
crossref_primary_10_1007_s11042_021_10707_4
crossref_primary_10_1016_j_neucom_2017_12_032
crossref_primary_10_3390_w17050756
crossref_primary_10_1109_ACCESS_2020_2995442
crossref_primary_10_1016_j_atech_2025_100917
crossref_primary_10_1016_j_neucom_2018_09_050
crossref_primary_10_1016_j_knosys_2021_107941
crossref_primary_10_1109_JIOT_2025_3573703
crossref_primary_10_3390_cancers15143608
crossref_primary_10_1016_j_compag_2024_108906
crossref_primary_10_3390_app11209703
crossref_primary_10_1016_j_engappai_2023_107835
crossref_primary_10_1016_j_neucom_2019_08_055
crossref_primary_10_1007_s12652_022_04351_5
crossref_primary_10_1109_ACCESS_2019_2959238
crossref_primary_10_3390_s24072340
crossref_primary_10_1016_j_imavis_2024_105337
crossref_primary_10_1051_e3sconf_202339605013
crossref_primary_10_1049_elp2_12262
crossref_primary_10_1098_rsos_190227
crossref_primary_10_1109_TCAD_2023_3344523
crossref_primary_10_1190_geo2021_0335_1
crossref_primary_10_1016_j_neucom_2017_05_071
crossref_primary_10_1109_JLT_2021_3098345
crossref_primary_10_3390_s20061762
crossref_primary_10_1088_1757_899X_608_1_012045
crossref_primary_10_1109_ACCESS_2019_2952616
crossref_primary_10_1007_s10044_025_01449_2
crossref_primary_10_1016_j_coco_2022_101400
crossref_primary_10_1016_j_ecolind_2021_108287
crossref_primary_10_1016_j_neunet_2019_04_024
crossref_primary_10_1016_j_oceaneng_2023_113670
crossref_primary_10_1016_j_jhazmat_2024_134392
crossref_primary_10_1080_14680629_2021_1886160
crossref_primary_10_3390_rs13020326
crossref_primary_10_1038_s41598_021_98387_w
crossref_primary_10_3390_math10081270
crossref_primary_10_1016_j_neucom_2017_05_061
crossref_primary_10_1016_j_saa_2021_119871
crossref_primary_10_1155_2022_2456550
crossref_primary_10_3390_ai5040127
crossref_primary_10_1016_j_cmpb_2020_105721
crossref_primary_10_3390_ijerph19053085
crossref_primary_10_1016_j_inffus_2023_101861
crossref_primary_10_1016_j_neucom_2023_126437
crossref_primary_10_1016_j_neucom_2022_10_020
crossref_primary_10_1038_s41598_025_94256_y
crossref_primary_10_1109_TETCI_2024_3369628
crossref_primary_10_1145_3711845
crossref_primary_10_1016_j_engstruct_2023_115950
crossref_primary_10_3390_electronics11233909
crossref_primary_10_1007_s11356_025_36581_3
crossref_primary_10_3390_s19153424
crossref_primary_10_1371_journal_pone_0218086
crossref_primary_10_1007_s11416_024_00517_1
crossref_primary_10_1080_14680629_2023_2230298
crossref_primary_10_1007_s11042_018_6323_8
crossref_primary_10_3390_rs13193988
crossref_primary_10_1016_j_measurement_2018_12_071
crossref_primary_10_3390_network3020013
crossref_primary_10_32604_jai_2024_054314
crossref_primary_10_1016_j_still_2021_105223
crossref_primary_10_5604_01_3001_0054_8929
crossref_primary_10_1109_LES_2024_3514920
crossref_primary_10_1007_s10694_020_01056_z
crossref_primary_10_1016_j_compbiomed_2022_105210
crossref_primary_10_1016_j_neucom_2023_126436
crossref_primary_10_3233_THC_220771
crossref_primary_10_1016_j_measurement_2021_110565
crossref_primary_10_1016_j_neucom_2023_126434
crossref_primary_10_1039_D2NH00536K
crossref_primary_10_1016_j_neucom_2017_12_072
crossref_primary_10_1109_TCAD_2024_3444708
crossref_primary_10_1177_01423312221077755
crossref_primary_10_1007_s11042_019_08252_2
crossref_primary_10_1109_ACCESS_2020_3019307
crossref_primary_10_1016_j_cnsns_2022_106968
crossref_primary_10_1016_j_neucom_2020_01_036
crossref_primary_10_3390_diagnostics12081916
crossref_primary_10_3390_jimaging7020026
crossref_primary_10_1016_j_neucom_2022_04_015
crossref_primary_10_1109_TNSE_2023_3244864
crossref_primary_10_1177_15485129211049782
crossref_primary_10_23919_JSEE_2024_000054
crossref_primary_10_1109_JBHI_2022_3203454
crossref_primary_10_1155_2022_6348424
crossref_primary_10_1145_3635165
crossref_primary_10_1007_s11042_019_07784_x
crossref_primary_10_3390_en15155719
crossref_primary_10_1109_ACCESS_2019_2891576
crossref_primary_10_1016_j_scitotenv_2021_149861
crossref_primary_10_2478_jee_2023_0022
crossref_primary_10_3390_rs13051003
crossref_primary_10_1016_j_ins_2020_09_038
crossref_primary_10_32604_cmc_2022_024272
crossref_primary_10_1016_j_neucom_2022_10_010
crossref_primary_10_1007_s11042_022_12242_2
crossref_primary_10_1016_j_aquaeng_2023_102368
crossref_primary_10_1145_3648471
crossref_primary_10_1016_j_enconman_2024_119291
crossref_primary_10_3390_app14156774
crossref_primary_10_1007_s11063_023_11223_2
crossref_primary_10_1109_ACCESS_2020_3034942
crossref_primary_10_1007_s43069_023_00286_5
crossref_primary_10_22430_22565337_1626
crossref_primary_10_1109_TDSC_2022_3141391
crossref_primary_10_1016_j_knosys_2021_107402
crossref_primary_10_1109_TSP_2023_3303648
crossref_primary_10_1016_j_biopsych_2022_02_005
crossref_primary_10_3390_photonics7040105
crossref_primary_10_1016_j_neucom_2020_05_036
crossref_primary_10_1109_ACCESS_2022_3210183
crossref_primary_10_1109_TPAMI_2023_3294394
crossref_primary_10_3103_S8756699019060086
crossref_primary_10_1002_itl2_270
crossref_primary_10_3390_app15094813
crossref_primary_10_1016_j_susmat_2025_e01309
crossref_primary_10_1016_j_neucom_2018_07_020
crossref_primary_10_1002_widm_1490
crossref_primary_10_3389_fenvs_2022_840479
crossref_primary_10_1016_j_asoc_2020_106565
crossref_primary_10_1016_j_neucom_2019_02_056
crossref_primary_10_1016_j_patcog_2018_02_014
crossref_primary_10_2174_0129503779282967240315040931
crossref_primary_10_1007_s00170_022_09054_x
crossref_primary_10_1016_j_comcom_2022_04_009
crossref_primary_10_1007_s00500_020_05080_7
crossref_primary_10_1016_j_neucom_2020_05_049
crossref_primary_10_1007_s12553_021_00555_5
crossref_primary_10_1155_2020_9356165
crossref_primary_10_1016_j_jacr_2022_02_024
crossref_primary_10_3389_fninf_2021_663592
crossref_primary_10_1007_s11042_017_5385_3
crossref_primary_10_1016_j_infsof_2025_107719
crossref_primary_10_1016_j_neucom_2019_08_101
crossref_primary_10_1007_s11356_024_32807_y
crossref_primary_10_1007_s11063_022_11055_6
crossref_primary_10_1016_j_neucom_2019_08_108
crossref_primary_10_3390_s21103523
crossref_primary_10_1016_j_jobe_2023_107107
crossref_primary_10_3390_s21134284
crossref_primary_10_1016_j_csite_2025_106505
crossref_primary_10_3390_app14062334
crossref_primary_10_3390_en11081988
crossref_primary_10_1007_s11042_018_7031_0
crossref_primary_10_1049_smt2_12143
crossref_primary_10_1016_j_knosys_2023_111205
crossref_primary_10_1016_j_neucom_2023_03_043
crossref_primary_10_1029_2020JB021473
crossref_primary_10_1007_s10044_022_01095_y
crossref_primary_10_69882_adba_csai_2025074
crossref_primary_10_1038_s41598_024_76968_9
crossref_primary_10_1016_j_infrared_2022_104048
crossref_primary_10_1007_s00202_024_02522_5
crossref_primary_10_3390_sym15020545
crossref_primary_10_1080_0952813X_2021_1908431
crossref_primary_10_1002_aic_16473
crossref_primary_10_1016_j_cja_2024_05_009
crossref_primary_10_1016_j_pmcj_2022_101736
crossref_primary_10_1016_j_inffus_2017_04_004
crossref_primary_10_1016_j_inffus_2024_102582
crossref_primary_10_1016_j_neucom_2017_05_103
crossref_primary_10_1109_ACCESS_2019_2945488
crossref_primary_10_1155_2020_3793740
crossref_primary_10_1109_MNET_011_2000684
crossref_primary_10_1007_s11042_023_17112_z
crossref_primary_10_1109_ACCESS_2022_3154061
crossref_primary_10_3390_bs13080618
crossref_primary_10_3390_s20154300
crossref_primary_10_1016_j_neucom_2020_05_078
crossref_primary_10_3390_rs12223706
crossref_primary_10_1016_j_automatica_2024_111907
crossref_primary_10_1016_j_elerap_2023_101263
crossref_primary_10_1016_j_neucom_2019_04_093
crossref_primary_10_1016_j_neucom_2017_12_006
crossref_primary_10_3390_electronics10202470
crossref_primary_10_1109_ACCESS_2020_3017076
crossref_primary_10_3390_s19061333
crossref_primary_10_1007_s11042_020_10419_1
crossref_primary_10_3390_atmos13101616
crossref_primary_10_1109_TNNLS_2024_3403155
crossref_primary_10_1007_s00165_021_00553_4
crossref_primary_10_1016_j_neucom_2019_04_087
crossref_primary_10_1186_s13040_022_00308_8
crossref_primary_10_1016_j_neucom_2019_04_089
crossref_primary_10_1016_j_oceaneng_2023_114069
crossref_primary_10_1145_3494569
crossref_primary_10_1016_j_jhydrol_2019_124296
crossref_primary_10_1007_s12065_019_00344_0
crossref_primary_10_1016_j_chroma_2020_461680
crossref_primary_10_3390_s18010292
crossref_primary_10_1016_j_energy_2019_04_075
crossref_primary_10_1016_j_cviu_2023_103915
crossref_primary_10_1007_s10661_024_13092_1
crossref_primary_10_1016_j_neucom_2019_02_024
crossref_primary_10_1109_ACCESS_2022_3140289
crossref_primary_10_3389_fmars_2025_1596325
crossref_primary_10_1109_ACCESS_2019_2936564
crossref_primary_10_1016_j_jfoodeng_2022_111137
crossref_primary_10_3389_fchem_2019_00895
crossref_primary_10_1016_j_anucene_2020_107969
crossref_primary_10_3390_s22010153
crossref_primary_10_1016_j_ymssp_2023_110101
crossref_primary_10_1007_s00044_025_03465_7
crossref_primary_10_3390_app10010319
crossref_primary_10_1109_ACCESS_2019_2929816
crossref_primary_10_3390_molecules25194480
crossref_primary_10_1190_geo2019_0468_1
crossref_primary_10_1016_j_neucom_2019_02_038
crossref_primary_10_1016_j_ocecoaman_2020_105478
crossref_primary_10_1007_s00521_018_3777_6
crossref_primary_10_1007_s11042_023_16751_6
crossref_primary_10_1145_3596498
crossref_primary_10_1007_s11042_023_14382_5
crossref_primary_10_1016_j_cosrev_2020_100254
crossref_primary_10_1007_s11227_018_2714_x
crossref_primary_10_1007_s00521_020_04819_5
crossref_primary_10_1016_j_asoc_2022_108912
crossref_primary_10_1177_03611981241302335
crossref_primary_10_1007_s11042_023_15224_0
crossref_primary_10_1016_j_neucom_2017_01_078
crossref_primary_10_1007_s11023_019_09512_8
crossref_primary_10_1007_s11042_024_19817_1
crossref_primary_10_1016_j_rse_2020_112093
crossref_primary_10_1109_ACCESS_2022_3163380
crossref_primary_10_1016_j_procs_2020_02_243
crossref_primary_10_1002_we_2425
crossref_primary_10_1007_s00521_022_07234_0
crossref_primary_10_3390_diagnostics15151883
crossref_primary_10_3390_app14166955
crossref_primary_10_1186_s40537_021_00444_8
crossref_primary_10_1016_j_jmsy_2022_09_010
crossref_primary_10_1109_JIOT_2020_3038273
crossref_primary_10_3390_jmse12061013
crossref_primary_10_1016_j_jfranklin_2024_107196
crossref_primary_10_3390_electronics12010166
crossref_primary_10_32604_sdhm_2024_055265
crossref_primary_10_1109_TKDE_2022_3187455
crossref_primary_10_1109_JSEN_2025_3583256
crossref_primary_10_7717_peerj_6842
crossref_primary_10_1016_j_neucom_2021_04_108
crossref_primary_10_1002_ecs2_2960
crossref_primary_10_1016_j_apacoust_2020_107691
crossref_primary_10_3390_rs16091562
crossref_primary_10_1016_j_jag_2023_103382
crossref_primary_10_1016_j_neucom_2019_10_106
crossref_primary_10_1109_TC_2023_3236872
crossref_primary_10_1016_j_oregeorev_2022_105242
crossref_primary_10_1016_j_neucom_2020_03_009
crossref_primary_10_1088_1742_6596_1168_6_062032
crossref_primary_10_1007_s11047_020_09791_6
crossref_primary_10_1007_s12273_020_0664_8
crossref_primary_10_1109_ACCESS_2022_3180740
crossref_primary_10_3389_fmed_2023_1264659
crossref_primary_10_1016_j_chemolab_2020_104103
crossref_primary_10_1016_j_neucom_2018_11_067
crossref_primary_10_1016_j_compag_2023_108146
crossref_primary_10_1016_j_ins_2023_01_099
crossref_primary_10_1109_TAFFC_2023_3286351
crossref_primary_10_1002_adma_202107325
crossref_primary_10_1016_j_neucom_2021_08_157
crossref_primary_10_1177_01655515241244497
crossref_primary_10_1145_3494987
crossref_primary_10_3390_s21062180
crossref_primary_10_1016_j_cmpb_2019_105162
crossref_primary_10_1007_s11063_023_11361_7
crossref_primary_10_1016_j_neucom_2021_08_153
crossref_primary_10_1016_j_eswa_2020_113790
crossref_primary_10_1007_s00521_024_10960_2
crossref_primary_10_1109_ACCESS_2020_3024277
crossref_primary_10_1111_ffe_13889
crossref_primary_10_1016_j_neucom_2020_07_056
crossref_primary_10_1016_j_neucom_2018_11_075
crossref_primary_10_1109_ACCESS_2020_2975030
crossref_primary_10_3390_s20020342
crossref_primary_10_3390_app9214678
crossref_primary_10_1007_s11042_022_12963_4
crossref_primary_10_1016_j_compag_2022_106911
crossref_primary_10_3390_app112210829
crossref_primary_10_1088_1755_1315_143_1_012025
crossref_primary_10_1007_s10489_021_02474_4
crossref_primary_10_1007_s11042_019_07988_1
crossref_primary_10_1007_s41870_024_01869_z
crossref_primary_10_1016_j_jclepro_2023_139771
crossref_primary_10_1016_j_neucom_2023_03_069
crossref_primary_10_3390_sym13061096
crossref_primary_10_1002_int_22590
crossref_primary_10_1109_ACCESS_2022_3177595
crossref_primary_10_1016_j_compag_2023_108127
crossref_primary_10_1038_s41598_024_56502_7
crossref_primary_10_1109_ACCESS_2019_2923663
crossref_primary_10_1134_S1061830922060109
crossref_primary_10_1093_jcde_qwad072
crossref_primary_10_3390_app13010398
crossref_primary_10_3390_s21020343
crossref_primary_10_3390_ma15103727
crossref_primary_10_1109_TR_2019_2907402
crossref_primary_10_1016_j_neucom_2022_08_033
crossref_primary_10_1177_15589250211005088
crossref_primary_10_1007_s00521_024_09529_w
crossref_primary_10_1109_ACCESS_2020_3022039
crossref_primary_10_1109_JIOT_2025_3579940
crossref_primary_10_1007_s11042_021_10885_1
crossref_primary_10_1049_csy2_12006
crossref_primary_10_1007_s40095_022_00501_9
crossref_primary_10_1016_j_rineng_2023_100984
crossref_primary_10_1002_rse2_245
crossref_primary_10_1016_j_chemolab_2022_104750
crossref_primary_10_1016_j_procir_2020_04_158
crossref_primary_10_1007_s10596_020_09940_x
crossref_primary_10_1016_j_neucom_2020_05_017
crossref_primary_10_3390_e23010083
crossref_primary_10_1016_j_engappai_2025_112186
crossref_primary_10_1016_j_imu_2023_101284
crossref_primary_10_1109_TGRS_2022_3183114
crossref_primary_10_1021_acsomega_5c04335
crossref_primary_10_1016_j_csbj_2020_02_007
crossref_primary_10_1016_j_ultramic_2019_03_017
crossref_primary_10_4018_IJIIT_2019100105
crossref_primary_10_1007_s00500_020_05245_4
crossref_primary_10_1016_j_cie_2024_110660
crossref_primary_10_1142_S1793984425300067
crossref_primary_10_1145_3458885
crossref_primary_10_1016_j_energy_2022_125368
crossref_primary_10_1016_j_neunet_2023_10_006
crossref_primary_10_3390_buildings14113519
crossref_primary_10_2478_acss_2020_0005
crossref_primary_10_26634_jip_10_1_19382
crossref_primary_10_1088_1402_4896_acf2cd
crossref_primary_10_1109_ACCESS_2021_3097969
crossref_primary_10_1016_j_ejcon_2025_101360
crossref_primary_10_1155_2021_9927151
crossref_primary_10_1007_s10462_024_11100_x
crossref_primary_10_3233_IDT_190160
crossref_primary_10_3390_electronics12244925
crossref_primary_10_1039_D5NR01509J
crossref_primary_10_1155_2021_3950981
crossref_primary_10_3390_s19204599
crossref_primary_10_1108_JERER_03_2024_0013
crossref_primary_10_1111_agec_12531
crossref_primary_10_1038_s41598_022_24417_w
crossref_primary_10_1109_TFUZZ_2024_3388091
crossref_primary_10_1007_s11042_020_09455_8
crossref_primary_10_1007_s10462_020_09819_4
crossref_primary_10_7717_peerj_cs_1831
crossref_primary_10_1109_ACCESS_2023_3301139
crossref_primary_10_1080_21681163_2024_2330524
crossref_primary_10_1002_cpe_6937
crossref_primary_10_1063_5_0124010
crossref_primary_10_1038_s41598_024_57026_w
crossref_primary_10_1016_j_rineng_2023_101029
crossref_primary_10_1109_ACCESS_2019_2921832
crossref_primary_10_1109_ACCESS_2023_3326447
crossref_primary_10_1016_j_engfracmech_2025_111026
crossref_primary_10_1016_j_neucom_2021_12_056
crossref_primary_10_3390_a11090132
crossref_primary_10_1109_ACCESS_2020_2985127
crossref_primary_10_1016_j_isprsjprs_2022_08_012
crossref_primary_10_1016_j_ijepes_2024_110195
crossref_primary_10_1038_s41598_022_07054_1
crossref_primary_10_1007_s00371_022_02443_z
crossref_primary_10_1155_2017_1895897
crossref_primary_10_1016_j_media_2021_102147
crossref_primary_10_1109_TVCG_2022_3165347
crossref_primary_10_1007_s10334_023_01142_7
crossref_primary_10_1109_TIA_2021_3126272
crossref_primary_10_1088_1361_6463_ac4723
crossref_primary_10_1007_s12555_021_0231_9
crossref_primary_10_1515_nanoph_2023_0569
crossref_primary_10_3390_agriculture13020357
crossref_primary_10_1002_cpe_6951
crossref_primary_10_1016_j_neucom_2018_04_034
crossref_primary_10_1093_bib_bbac364
crossref_primary_10_1016_j_bspc_2023_104653
crossref_primary_10_1016_j_bspc_2023_104652
crossref_primary_10_1109_TWC_2023_3327372
crossref_primary_10_1016_j_techfore_2022_121584
crossref_primary_10_1063_5_0147592
crossref_primary_10_3390_molecules24152738
crossref_primary_10_3390_electronics9030425
crossref_primary_10_5572_KOSAE_2025_41_3_531
crossref_primary_10_1016_j_neucom_2017_09_056
crossref_primary_10_1016_j_neucom_2020_01_126
crossref_primary_10_1109_JTEHM_2021_3134106
crossref_primary_10_3390_plants14152402
crossref_primary_10_1007_s10664_024_10520_1
crossref_primary_10_1016_j_neucom_2017_09_041
crossref_primary_10_1080_00423114_2019_1638947
crossref_primary_10_1007_s10462_020_09904_8
crossref_primary_10_3390_en15249347
crossref_primary_10_1007_s10462_022_10289_z
crossref_primary_10_1109_ACCESS_2021_3069882
crossref_primary_10_1002_adfm_202112155
crossref_primary_10_1007_s42979_021_00815_1
crossref_primary_10_1016_j_neucom_2017_09_046
crossref_primary_10_1080_17457300_2020_1819341
crossref_primary_10_1007_s42979_019_0059_z
crossref_primary_10_1016_j_cemconcomp_2021_104159
crossref_primary_10_1109_JSEN_2024_3382720
crossref_primary_10_1007_s11760_019_01629_8
crossref_primary_10_3847_1538_4357_ad0e6c
crossref_primary_10_1109_TWC_2020_3004386
crossref_primary_10_1016_j_knosys_2020_105932
crossref_primary_10_1016_j_robot_2019_03_005
crossref_primary_10_1016_j_jvcir_2017_09_007
crossref_primary_10_3390_s20061626
crossref_primary_10_3390_rs14010088
crossref_primary_10_1007_s12633_021_01548_9
crossref_primary_10_1109_ACCESS_2021_3058772
crossref_primary_10_1016_j_neucom_2023_126709
crossref_primary_10_1016_j_eswa_2020_113699
crossref_primary_10_1007_s12553_020_00509_3
crossref_primary_10_1016_j_neucom_2019_12_144
crossref_primary_10_1177_1748006X19867776
crossref_primary_10_2208_jscejj_24_20108
crossref_primary_10_1007_s11276_020_02444_7
crossref_primary_10_1109_MNET_2018_1800078
crossref_primary_10_1109_TVT_2021_3080134
crossref_primary_10_1002_rnc_3855
crossref_primary_10_1088_1361_6501_ac4a18
crossref_primary_10_3390_app13064006
crossref_primary_10_1016_j_neucom_2021_05_059
crossref_primary_10_1016_j_neucom_2018_06_082
crossref_primary_10_1109_ACCESS_2021_3118095
crossref_primary_10_1007_s00024_024_03586_x
crossref_primary_10_3390_atmos9110426
crossref_primary_10_1016_j_neucom_2019_12_118
crossref_primary_10_1007_s12083_024_01627_9
crossref_primary_10_1016_j_optlaseng_2022_107010
crossref_primary_10_1016_j_dib_2021_107723
crossref_primary_10_1016_j_asoc_2022_109314
crossref_primary_10_1016_j_comnet_2022_109144
crossref_primary_10_1038_s41598_024_56522_3
crossref_primary_10_3390_rs15102589
crossref_primary_10_1016_j_neucom_2017_07_016
crossref_primary_10_1016_j_neucom_2017_07_017
crossref_primary_10_1016_j_neucom_2017_09_080
crossref_primary_10_3390_en13010142
crossref_primary_10_1088_1742_6596_1399_2_022046
crossref_primary_10_1016_j_infrared_2017_08_015
crossref_primary_10_1109_MCAS_2020_3027222
crossref_primary_10_1016_j_snb_2025_137575
crossref_primary_10_1007_s12206_018_1205_6
crossref_primary_10_1016_j_gmod_2021_101122
crossref_primary_10_3390_e22030334
crossref_primary_10_1109_ACCESS_2023_3328210
crossref_primary_10_1016_j_neucom_2021_10_054
crossref_primary_10_1016_j_envpol_2022_120962
crossref_primary_10_1002_ecs2_3384
crossref_primary_10_1049_iet_bmt_2019_0017
crossref_primary_10_1007_s00500_021_05995_9
crossref_primary_10_1016_j_ibmed_2025_100220
crossref_primary_10_1016_j_neucom_2017_07_021
crossref_primary_10_1177_07356331231165099
crossref_primary_10_1002_lpor_202401178
crossref_primary_10_1016_j_measurement_2021_109663
crossref_primary_10_1109_ACCESS_2019_2947160
crossref_primary_10_3390_asi7010011
crossref_primary_10_1049_trit_2018_1016
crossref_primary_10_1109_TITS_2023_3304452
crossref_primary_10_1016_j_procs_2023_01_283
crossref_primary_10_1111_cbdd_14137
crossref_primary_10_1016_j_gexplo_2025_107695
crossref_primary_10_3390_rs15030798
crossref_primary_10_1016_j_knosys_2020_106417
crossref_primary_10_1109_TCE_2024_3371440
crossref_primary_10_1117_1_JRS_16_034519
crossref_primary_10_1016_j_neucom_2017_07_030
crossref_primary_10_1016_j_geothermics_2021_102262
crossref_primary_10_1016_j_neucom_2017_07_032
crossref_primary_10_3390_electronics12020438
crossref_primary_10_1186_s12859_021_04485_x
crossref_primary_10_1016_j_phycom_2024_102460
crossref_primary_10_1007_s10845_020_01649_z
crossref_primary_10_1016_j_jag_2020_102215
crossref_primary_10_1016_j_neucom_2021_10_037
crossref_primary_10_3390_min12040461
crossref_primary_10_1007_s10489_021_02262_0
crossref_primary_10_3389_fpls_2023_1158933
crossref_primary_10_1109_TNNLS_2020_3045146
crossref_primary_10_1109_TNNLS_2022_3155478
crossref_primary_10_1007_s10044_024_01297_6
crossref_primary_10_1007_s11063_019_09981_z
crossref_primary_10_1016_j_chiabu_2024_106754
crossref_primary_10_1007_s10586_023_04161_0
crossref_primary_10_1016_j_asoc_2020_106942
crossref_primary_10_1080_15325008_2021_1937401
crossref_primary_10_1007_s11042_017_5360_z
crossref_primary_10_1016_j_psep_2020_09_038
crossref_primary_10_1016_j_neucom_2021_10_045
crossref_primary_10_1109_ACCESS_2023_3257767
crossref_primary_10_1016_j_asoc_2018_10_035
crossref_primary_10_1016_j_ejor_2019_11_007
crossref_primary_10_1016_j_compstruc_2021_106484
crossref_primary_10_3389_fpubh_2023_1025746
crossref_primary_10_1016_j_neucom_2017_07_050
crossref_primary_10_1109_JSTARS_2021_3104726
crossref_primary_10_1016_j_neucom_2017_07_051
crossref_primary_10_1109_LSP_2018_2885511
crossref_primary_10_1109_TGRS_2022_3192614
crossref_primary_10_1007_s42979_023_02159_4
crossref_primary_10_1109_ACCESS_2024_3379906
crossref_primary_10_1109_JSYST_2020_3002428
crossref_primary_10_3390_brainsci11010075
crossref_primary_10_1002_adma_202300848
crossref_primary_10_3390_electronics10040449
crossref_primary_10_1016_j_neucom_2018_06_025
crossref_primary_10_3390_app12052677
crossref_primary_10_3390_smartcities5040085
crossref_primary_10_1007_s11709_024_1060_8
crossref_primary_10_1016_j_enconman_2019_02_032
crossref_primary_10_1016_j_neucom_2017_07_061
crossref_primary_10_1007_s44163_024_00134_3
crossref_primary_10_1007_s11334_023_00541_2
crossref_primary_10_1155_2022_5841630
crossref_primary_10_3390_electronics13101893
crossref_primary_10_1016_j_infsof_2025_107876
crossref_primary_10_1109_TGRS_2022_3167644
crossref_primary_10_1007_s00138_022_01291_0
crossref_primary_10_1007_s00521_022_08100_9
crossref_primary_10_34133_2019_9209727
crossref_primary_10_1016_j_jmsy_2023_06_005
crossref_primary_10_1088_1361_6420_abb51d
crossref_primary_10_1016_j_neucom_2018_08_093
crossref_primary_10_1016_j_istruc_2021_05_031
crossref_primary_10_1002_hsr2_70859
crossref_primary_10_1108_DTA_03_2020_0066
crossref_primary_10_3390_electronics9101742
crossref_primary_10_1049_ipr2_12154
crossref_primary_10_3390_math13050849
crossref_primary_10_1016_j_renene_2021_01_143
crossref_primary_10_1109_ACCESS_2019_2938227
crossref_primary_10_1016_j_enbuild_2024_114068
crossref_primary_10_1016_j_jfranklin_2021_08_023
crossref_primary_10_1109_TCAD_2020_2966451
crossref_primary_10_1051_bioconf_202411801003
crossref_primary_10_1016_j_ymssp_2025_113259
crossref_primary_10_1016_j_compbiomed_2021_105042
crossref_primary_10_1016_j_neucom_2019_01_097
crossref_primary_10_1049_ipr2_13010
crossref_primary_10_1109_TIFS_2022_3219287
crossref_primary_10_1109_TPAMI_2022_3202765
crossref_primary_10_1155_2020_8899478
crossref_primary_10_1016_j_neucom_2018_08_078
crossref_primary_10_1016_j_cose_2022_103016
crossref_primary_10_1002_itl2_260
crossref_primary_10_1109_JIOT_2019_2935442
crossref_primary_10_1186_s13677_020_00167_w
crossref_primary_10_1007_s00500_018_3644_5
crossref_primary_10_1016_j_neucom_2018_08_073
crossref_primary_10_1109_TPDS_2024_3480115
crossref_primary_10_1007_s11633_022_1348_x
crossref_primary_10_1002_er_6679
crossref_primary_10_1016_j_engappai_2021_104182
crossref_primary_10_1063_5_0214881
crossref_primary_10_1016_j_neucom_2017_05_016
crossref_primary_10_1109_ACCESS_2020_3013631
crossref_primary_10_1016_j_ipm_2018_01_010
crossref_primary_10_1016_j_jvcir_2018_08_011
crossref_primary_10_1109_TCAD_2024_3447210
crossref_primary_10_1016_j_jfranklin_2020_04_033
crossref_primary_10_1016_j_cjca_2018_04_032
crossref_primary_10_1177_0361198120907283
crossref_primary_10_1016_j_jvcir_2018_08_005
crossref_primary_10_1016_j_neucom_2019_01_117
crossref_primary_10_1016_j_apenergy_2024_124329
crossref_primary_10_1177_0142331220966425
crossref_primary_10_1109_ACCESS_2023_3318486
crossref_primary_10_1007_s10845_024_02488_y
crossref_primary_10_1016_j_ijheatfluidflow_2024_109498
crossref_primary_10_1016_j_comcom_2020_08_011
crossref_primary_10_3389_fdata_2022_1025806
crossref_primary_10_1109_JPHOT_2019_2947705
crossref_primary_10_3390_ijerph17072586
crossref_primary_10_3390_a15020071
crossref_primary_10_1016_j_uclim_2022_101390
crossref_primary_10_3390_technologies9040094
crossref_primary_10_1007_s00366_020_01272_9
crossref_primary_10_1016_j_knosys_2023_111327
crossref_primary_10_1108_EC_12_2020_0695
crossref_primary_10_1109_ACCESS_2020_3026968
crossref_primary_10_1016_j_compind_2019_103182
crossref_primary_10_3390_s18082640
crossref_primary_10_3390_s20133739
crossref_primary_10_1007_s12559_021_09844_7
crossref_primary_10_1109_JIOT_2022_3205410
crossref_primary_10_1109_ACCESS_2019_2947536
crossref_primary_10_12944_CARJ_12_3_38
crossref_primary_10_3390_jmse12091524
crossref_primary_10_1080_10543406_2025_2511194
crossref_primary_10_3390_jpm13091338
crossref_primary_10_1016_j_imed_2023_04_001
crossref_primary_10_1088_2632_2153_ad6be8
crossref_primary_10_1145_3529318
crossref_primary_10_1109_TMAG_2023_3281842
crossref_primary_10_3390_diagnostics14131334
crossref_primary_10_1016_j_rser_2020_109792
crossref_primary_10_1049_cit2_12180
crossref_primary_10_1371_journal_pone_0310356
crossref_primary_10_1007_s10489_022_03351_4
crossref_primary_10_3390_electronics9122193
crossref_primary_10_3390_e24030398
crossref_primary_10_1007_s10489_020_01900_3
crossref_primary_10_1109_TGRS_2025_3574080
crossref_primary_10_1016_j_patrec_2021_10_023
crossref_primary_10_1109_ACCESS_2020_2984768
crossref_primary_10_1109_JSTARS_2022_3187730
crossref_primary_10_1016_j_neucom_2018_02_083
crossref_primary_10_1109_ACCESS_2019_2913349
crossref_primary_10_1007_s10681_022_02992_3
crossref_primary_10_1007_s11740_022_01113_2
crossref_primary_10_1016_j_socscimed_2025_117690
crossref_primary_10_3389_fbinf_2025_1628724
crossref_primary_10_1089_big_2019_0007
crossref_primary_10_1007_s10462_020_09855_0
crossref_primary_10_1109_TCOMM_2022_3180069
crossref_primary_10_1016_j_jhydrol_2021_126371
crossref_primary_10_1016_j_neucom_2019_10_077
crossref_primary_10_1109_TWC_2024_3371226
crossref_primary_10_1016_j_neucom_2019_10_079
crossref_primary_10_1109_ACCESS_2022_3159651
crossref_primary_10_1007_s11277_023_10198_6
crossref_primary_10_1016_j_compbiomed_2022_106267
crossref_primary_10_1109_ACCESS_2024_3509774
crossref_primary_10_1109_TSTE_2022_3213992
crossref_primary_10_1016_j_optlaseng_2021_106695
crossref_primary_10_1016_j_oceaneng_2024_119928
crossref_primary_10_1016_j_patrec_2021_10_004
crossref_primary_10_3390_rs15174264
crossref_primary_10_3390_rs15143523
crossref_primary_10_1111_coin_70124
crossref_primary_10_1155_2018_4613935
crossref_primary_10_1038_s41598_024_72125_4
crossref_primary_10_1007_s12206_019_1003_9
crossref_primary_10_2174_1874447802115010081
crossref_primary_10_1016_j_eswa_2024_125963
crossref_primary_10_1007_s00521_019_04699_4
crossref_primary_10_1016_j_neucom_2019_10_094
crossref_primary_10_1109_TAI_2021_3067574
crossref_primary_10_3389_fnins_2021_651141
crossref_primary_10_1093_bib_bbae050
crossref_primary_10_1155_2022_2415726
crossref_primary_10_1177_03611981241281730
crossref_primary_10_3390_app9071437
crossref_primary_10_1016_j_cmpb_2021_106284
crossref_primary_10_1007_s00521_025_11125_5
crossref_primary_10_1016_j_procs_2017_09_040
crossref_primary_10_3390_app11125458
crossref_primary_10_1016_j_chemolab_2022_104693
crossref_primary_10_1016_j_apenergy_2021_116812
crossref_primary_10_1016_j_biosystemseng_2022_05_011
crossref_primary_10_1016_j_procs_2022_12_088
crossref_primary_10_1007_s13369_025_10478_2
crossref_primary_10_1016_j_future_2018_07_006
crossref_primary_10_1016_j_neunet_2023_06_016
crossref_primary_10_1109_TIE_2017_2764861
crossref_primary_10_1007_s00521_019_04557_3
crossref_primary_10_1016_j_tifs_2025_105029
crossref_primary_10_1016_j_osnem_2021_100140
crossref_primary_10_1016_j_compag_2024_109414
crossref_primary_10_1016_j_rico_2025_100589
crossref_primary_10_1109_TIFS_2022_3176191
crossref_primary_10_1016_j_measurement_2025_118167
crossref_primary_10_3390_app11157046
crossref_primary_10_1016_j_optlastec_2024_111321
crossref_primary_10_1016_j_neucom_2020_11_036
crossref_primary_10_1016_j_neucom_2020_11_037
crossref_primary_10_1016_j_jag_2023_103269
crossref_primary_10_1515_itit_2022_0007
crossref_primary_10_1145_3524497
crossref_primary_10_3390_math11081926
crossref_primary_10_11121_ijocta_1424
crossref_primary_10_1109_ACCESS_2023_3252499
crossref_primary_10_1109_LAWP_2019_2916369
crossref_primary_10_3389_frobt_2020_522141
crossref_primary_10_1016_j_neucom_2018_02_062
crossref_primary_10_1016_j_geoderma_2025_117222
crossref_primary_10_1016_j_neucom_2019_12_039
crossref_primary_10_1002_widm_1306
crossref_primary_10_1007_s11042_020_08782_0
crossref_primary_10_1007_s10915_022_02078_1
crossref_primary_10_1587_nolta_16_13
crossref_primary_10_3390_make3030028
crossref_primary_10_1016_j_neucom_2022_06_104
crossref_primary_10_1016_j_ifacol_2022_07_051
crossref_primary_10_1007_s00500_022_06755_z
crossref_primary_10_1007_s13369_020_04430_9
crossref_primary_10_3390_info14010053
crossref_primary_10_1371_journal_pone_0285563
crossref_primary_10_4018_IJSKD_2020010103
crossref_primary_10_1016_j_neuri_2022_100084
crossref_primary_10_1016_j_dajour_2022_100153
crossref_primary_10_1016_j_procs_2021_05_037
crossref_primary_10_1109_TPDS_2020_3001593
crossref_primary_10_3390_w12051369
crossref_primary_10_3390_environments6020025
crossref_primary_10_1007_s12083_021_01262_8
crossref_primary_10_1016_j_amc_2019_02_071
crossref_primary_10_1016_j_eswa_2025_128098
crossref_primary_10_1007_s00521_023_09153_0
crossref_primary_10_1007_s12652_022_03901_1
crossref_primary_10_1007_s00466_022_02251_1
crossref_primary_10_1016_j_ress_2025_111374
crossref_primary_10_3390_rs15123095
crossref_primary_10_1038_s41467_022_31148_z
crossref_primary_10_1145_3447866
crossref_primary_10_3390_agriculture14081225
crossref_primary_10_1016_j_image_2023_117009
crossref_primary_10_1016_j_neucom_2020_05_114
crossref_primary_10_1016_j_neucom_2020_03_103
crossref_primary_10_1109_ACCESS_2018_2877932
crossref_primary_10_1145_3467476
crossref_primary_10_1016_j_buildenv_2022_109687
crossref_primary_10_1016_j_foodcont_2018_09_027
crossref_primary_10_1007_s00521_017_3050_4
crossref_primary_10_3390_electronics8101065
crossref_primary_10_1080_09507116_2023_2233889
crossref_primary_10_1088_2040_8986_ad7156
crossref_primary_10_1016_j_eswa_2021_114800
crossref_primary_10_1007_s11227_020_03362_3
crossref_primary_10_1109_ACCESS_2019_2907071
crossref_primary_10_1109_COMST_2020_2988293
crossref_primary_10_1155_2022_8951961
crossref_primary_10_1111_mice_13411
crossref_primary_10_1016_j_applthermaleng_2018_12_048
crossref_primary_10_1016_j_neucom_2021_07_016
crossref_primary_10_1007_s13042_022_01743_z
crossref_primary_10_3390_app15063177
crossref_primary_10_1016_j_psep_2021_06_019
crossref_primary_10_1038_s41598_021_95957_w
crossref_primary_10_1016_j_ins_2025_121924
crossref_primary_10_3390_rs15010272
crossref_primary_10_1002_srin_202400713
crossref_primary_10_1108_COMPEL_12_2021_0508
crossref_primary_10_1029_2025SW004492
crossref_primary_10_1109_JSEN_2020_3006009
crossref_primary_10_1109_JIOT_2021_3099028
crossref_primary_10_1016_j_renene_2024_120218
crossref_primary_10_1155_2022_4878684
crossref_primary_10_3390_land12040879
crossref_primary_10_3390_cells10112924
crossref_primary_10_1108_JAAR_05_2022_0116
crossref_primary_10_1371_journal_pone_0240656
crossref_primary_10_3390_app15105666
crossref_primary_10_1177_15485129211022857
crossref_primary_10_1016_j_cherd_2024_12_028
crossref_primary_10_1016_j_engappai_2023_106032
crossref_primary_10_1016_j_eswa_2024_125571
crossref_primary_10_1007_s11831_023_09898_w
crossref_primary_10_1016_j_iot_2022_100556
crossref_primary_10_1016_j_neucom_2017_09_012
crossref_primary_10_1016_j_neucom_2018_02_011
crossref_primary_10_1002_cpe_6500
crossref_primary_10_1109_ACCESS_2023_3322101
crossref_primary_10_3390_e21100988
crossref_primary_10_3390_en13051169
crossref_primary_10_1109_ACCESS_2024_3465511
crossref_primary_10_3390_s21092958
crossref_primary_10_1109_ACCESS_2021_3096513
crossref_primary_10_1111_jfpp_17232
crossref_primary_10_1155_2022_6785642
crossref_primary_10_1051_wujns_2025302195
crossref_primary_10_1155_2018_6934825
crossref_primary_10_1016_j_future_2020_07_020
crossref_primary_10_1109_TAI_2020_3046167
crossref_primary_10_3390_su131810018
crossref_primary_10_1016_j_neucom_2021_03_140
crossref_primary_10_1109_JSEN_2021_3066037
crossref_primary_10_1109_TIP_2022_3170727
crossref_primary_10_1145_3617508
crossref_primary_10_3390_en18010045
crossref_primary_10_1016_j_artmed_2022_102349
crossref_primary_10_3390_app10228189
crossref_primary_10_1007_s10489_021_02846_w
crossref_primary_10_1287_ijoc_2021_1117
crossref_primary_10_1002_asmb_2757
crossref_primary_10_1016_j_neucom_2019_05_007
crossref_primary_10_3389_fpls_2025_1538163
crossref_primary_10_1016_j_jpdc_2019_10_004
crossref_primary_10_1109_JBHI_2020_3037366
crossref_primary_10_1016_j_neucom_2020_02_053
crossref_primary_10_1515_jisys_2024_0185
crossref_primary_10_1007_s13369_022_07086_9
crossref_primary_10_1109_TIFS_2020_3036242
crossref_primary_10_1007_s11227_022_04348_z
crossref_primary_10_1007_s00603_023_03698_1
crossref_primary_10_2196_14755
crossref_primary_10_1016_j_jmsy_2020_11_018
crossref_primary_10_1063_5_0218516
crossref_primary_10_1109_JIOT_2023_3331736
crossref_primary_10_1016_j_neucom_2022_05_019
crossref_primary_10_1016_j_neunet_2022_10_011
crossref_primary_10_1007_s42235_021_00142_4
crossref_primary_10_1016_j_neucom_2020_02_042
crossref_primary_10_1155_2024_6632801
crossref_primary_10_3390_electronics10101187
crossref_primary_10_1007_s13369_022_06769_7
crossref_primary_10_1016_j_neucom_2017_02_029
crossref_primary_10_1109_MCAS_2023_3325496
crossref_primary_10_1007_s00138_021_01251_0
crossref_primary_10_3389_fcomp_2023_997159
crossref_primary_10_3390_s23229159
crossref_primary_10_1049_rsn2_12280
crossref_primary_10_3390_math11081777
crossref_primary_10_4028_p_b3BQUG
crossref_primary_10_1007_s00521_021_06080_w
crossref_primary_10_1016_j_agrformet_2025_110550
crossref_primary_10_1007_s11042_022_13843_7
crossref_primary_10_1016_j_neucom_2019_05_020
crossref_primary_10_1016_j_neucom_2017_11_059
crossref_primary_10_1007_s00521_019_04601_2
crossref_primary_10_1007_s00530_022_00992_w
crossref_primary_10_1080_00207543_2019_1602744
crossref_primary_10_1109_ACCESS_2018_2872769
crossref_primary_10_1007_s11063_021_10591_x
crossref_primary_10_1109_TITS_2022_3207281
crossref_primary_10_1371_journal_pone_0212137
crossref_primary_10_1007_s11042_024_20262_3
crossref_primary_10_1080_21681163_2021_1922315
crossref_primary_10_1109_ACCESS_2020_3026222
crossref_primary_10_1007_s10994_021_06050_2
crossref_primary_10_1016_j_neunet_2025_107490
crossref_primary_10_1007_s10044_020_00899_0
crossref_primary_10_1109_TNNLS_2023_3316551
crossref_primary_10_1007_s10009_023_00711_4
crossref_primary_10_1007_s13369_021_05401_4
crossref_primary_10_1016_j_neucom_2017_04_083
crossref_primary_10_3390_s25133904
crossref_primary_10_1016_j_future_2018_11_011
crossref_primary_10_1007_s12626_023_00151_1
crossref_primary_10_1007_s00521_018_3441_1
crossref_primary_10_1016_j_softx_2025_102357
crossref_primary_10_1109_TPAMI_2024_3417451
crossref_primary_10_3390_app12073641
crossref_primary_10_1016_j_jbi_2020_103442
crossref_primary_10_1007_s11540_025_09846_0
crossref_primary_10_1016_j_enbuild_2020_110026
crossref_primary_10_3390_biology11121727
crossref_primary_10_1109_ACCESS_2019_2918136
crossref_primary_10_1016_j_procs_2020_03_341
crossref_primary_10_1088_1755_1315_632_4_042055
crossref_primary_10_3390_agronomy14020349
crossref_primary_10_1016_j_eswa_2023_122945
crossref_primary_10_3233_ICA_200632
crossref_primary_10_1016_j_engappai_2025_110165
crossref_primary_10_1109_TETC_2019_2901272
crossref_primary_10_1007_s11042_018_6151_x
crossref_primary_10_1016_j_ress_2023_109664
crossref_primary_10_3390_agriculture15080847
crossref_primary_10_1016_j_neucom_2020_02_008
crossref_primary_10_1155_2021_8444858
crossref_primary_10_1109_TASLP_2021_3082307
crossref_primary_10_1016_j_engappai_2019_06_001
crossref_primary_10_1016_j_neucom_2019_12_005
crossref_primary_10_1016_j_isprsjprs_2024_05_011
crossref_primary_10_3233_ICA_200620
crossref_primary_10_1007_s11063_019_09991_x
crossref_primary_10_3390_app12104882
crossref_primary_10_3390_act14010016
crossref_primary_10_1109_TNNLS_2023_3259016
crossref_primary_10_1109_JSTARS_2020_3043628
crossref_primary_10_1109_TCAD_2024_3514778
crossref_primary_10_1016_j_knosys_2019_105327
crossref_primary_10_1109_ACCESS_2020_2985414
crossref_primary_10_1007_s10489_020_02122_3
crossref_primary_10_3390_atmos15080890
crossref_primary_10_3390_su12229707
crossref_primary_10_1089_tmj_2023_0155
crossref_primary_10_1016_j_envc_2025_101123
crossref_primary_10_1109_TCAD_2020_2986128
crossref_primary_10_1016_j_asoc_2022_109697
crossref_primary_10_1016_j_cscm_2023_e02800
crossref_primary_10_3390_photonics9010030
crossref_primary_10_1007_s11042_022_14225_9
crossref_primary_10_1007_s44163_025_00317_6
crossref_primary_10_1016_j_compag_2025_110491
crossref_primary_10_3390_brainsci11050615
crossref_primary_10_1111_bjet_13283
crossref_primary_10_1155_2019_7081073
crossref_primary_10_1007_s11042_020_10025_1
crossref_primary_10_3390_data3030028
crossref_primary_10_1007_s11042_018_6005_6
crossref_primary_10_1177_14759217211065009
crossref_primary_10_1080_01431161_2021_1954261
crossref_primary_10_1016_j_eswa_2020_114078
crossref_primary_10_1155_2020_9606908
crossref_primary_10_1109_THMS_2022_3148339
crossref_primary_10_1016_j_neucom_2017_04_030
crossref_primary_10_1016_j_apenergy_2023_122048
crossref_primary_10_1016_j_neucom_2017_04_039
crossref_primary_10_1016_j_cities_2019_04_012
crossref_primary_10_1109_JIOT_2022_3206585
crossref_primary_10_1109_TMBMC_2020_3035383
crossref_primary_10_1109_TSP_2020_3019655
crossref_primary_10_1109_TCAD_2023_3264786
crossref_primary_10_3390_agronomy15051079
crossref_primary_10_1109_TDSC_2022_3174569
crossref_primary_10_1016_j_heliyon_2023_e22203
crossref_primary_10_1016_j_biombioe_2020_105673
crossref_primary_10_3390_rs14030461
crossref_primary_10_1016_j_neucom_2023_126656
crossref_primary_10_1007_s11356_024_33290_1
crossref_primary_10_1080_17455030_2021_1880669
crossref_primary_10_1007_s11042_022_14247_3
crossref_primary_10_1007_s12652_020_02014_x
crossref_primary_10_1109_TIFS_2022_3233777
crossref_primary_10_1109_TII_2018_2886048
crossref_primary_10_3390_jmse8110924
crossref_primary_10_1016_j_jksuci_2023_03_016
crossref_primary_10_1016_j_techfore_2021_120759
crossref_primary_10_1016_j_neucom_2022_05_074
crossref_primary_10_1063_5_0007821
crossref_primary_10_1177_2158244020920701
crossref_primary_10_1016_j_neucom_2017_04_010
crossref_primary_10_1016_j_compag_2024_109182
crossref_primary_10_1109_JLT_2018_2850801
crossref_primary_10_1109_LSENS_2021_3074958
crossref_primary_10_1002_ecj_12224
crossref_primary_10_1109_TCI_2020_3041092
crossref_primary_10_1109_JPROC_2021_3117472
crossref_primary_10_32604_cmc_2023_026952
crossref_primary_10_1080_21642583_2020_1836526
crossref_primary_10_3389_fbioe_2020_605132
crossref_primary_10_1007_s00521_024_09882_w
crossref_primary_10_1007_s00521_025_11192_8
crossref_primary_10_1016_j_compag_2021_106478
crossref_primary_10_3390_app8091575
crossref_primary_10_1007_s11517_022_02637_6
crossref_primary_10_1016_j_neucom_2018_05_103
crossref_primary_10_1109_JETCAS_2020_3015294
crossref_primary_10_1016_j_aquaeng_2022_102288
crossref_primary_10_1007_s10489_023_05155_6
crossref_primary_10_1007_s42979_020_0070_4
crossref_primary_10_3390_philosophies7030046
crossref_primary_10_1016_j_neucom_2017_11_034
crossref_primary_10_1016_j_procs_2024_04_048
crossref_primary_10_1109_ACCESS_2022_3180073
crossref_primary_10_1162_neco_a_01491
crossref_primary_10_1016_j_neucom_2022_11_078
crossref_primary_10_3390_app10176077
crossref_primary_10_1109_JLT_2024_3400286
crossref_primary_10_1007_s11277_021_08766_9
crossref_primary_10_1111_ffe_14121
crossref_primary_10_1016_j_neucom_2022_03_007
crossref_primary_10_1021_acsapm_5c01616
crossref_primary_10_1109_ACCESS_2024_3508735
crossref_primary_10_1016_j_asoc_2023_110534
crossref_primary_10_1007_s11280_024_01277_0
crossref_primary_10_1016_j_neucom_2017_11_022
crossref_primary_10_1109_TNNLS_2020_3007943
crossref_primary_10_1016_j_neucom_2021_01_108
crossref_primary_10_1016_j_neucom_2022_11_052
crossref_primary_10_1016_j_neucom_2022_11_053
crossref_primary_10_1088_1742_6596_1302_2_022023
crossref_primary_10_1049_iet_gtd_2019_0743
crossref_primary_10_1109_ACCESS_2021_3087136
crossref_primary_10_3390_e25101467
crossref_primary_10_3390_inventions8030076
crossref_primary_10_1109_TPAMI_2022_3174574
crossref_primary_10_2196_37808
crossref_primary_10_1007_s11063_021_10462_5
crossref_primary_10_1016_j_ijmedinf_2020_104131
crossref_primary_10_3390_drones7050327
crossref_primary_10_1109_JPHOTOV_2019_2920732
crossref_primary_10_1007_s11831_021_09542_5
crossref_primary_10_3390_agronomy11010174
crossref_primary_10_1016_j_scs_2025_106626
crossref_primary_10_1109_TIP_2023_3266161
crossref_primary_10_1109_TPAMI_2020_2979450
crossref_primary_10_1109_JSTARS_2025_3593380
crossref_primary_10_1016_j_autcon_2022_104332
crossref_primary_10_1007_s00261_025_04891_2
crossref_primary_10_1016_j_isprsjprs_2024_01_015
crossref_primary_10_1016_j_jvoice_2023_03_018
crossref_primary_10_1016_j_neucom_2017_06_066
crossref_primary_10_32604_cmc_2022_024975
crossref_primary_10_1007_s00521_022_07178_5
crossref_primary_10_1016_j_ins_2024_121338
crossref_primary_10_1109_TITS_2025_3552739
crossref_primary_10_1016_j_ins_2022_03_006
crossref_primary_10_3390_cancers13092162
crossref_primary_10_1002_jmri_26534
crossref_primary_10_1007_s00521_019_04236_3
crossref_primary_10_1109_JSEN_2024_3462493
crossref_primary_10_1016_j_matchar_2024_114003
crossref_primary_10_1186_s40537_022_00650_y
crossref_primary_10_1016_j_jvoice_2020_05_029
crossref_primary_10_1109_JAS_2021_1004051
crossref_primary_10_1007_s11128_023_04239_z
crossref_primary_10_1016_j_eswa_2019_04_030
crossref_primary_10_1016_j_amc_2018_05_059
crossref_primary_10_3389_fmars_2021_629485
crossref_primary_10_1007_s11063_022_11079_y
crossref_primary_10_1051_bioconf_20249700024
crossref_primary_10_1007_s11042_023_16344_3
crossref_primary_10_1016_j_neucom_2020_04_003
crossref_primary_10_1016_j_neucom_2019_03_090
crossref_primary_10_1061__ASCE_CP_1943_5487_0001039
crossref_primary_10_1007_s11042_021_11092_8
crossref_primary_10_1016_j_imavis_2024_105021
crossref_primary_10_1016_j_neucom_2019_03_096
crossref_primary_10_3390_sym12071065
crossref_primary_10_3390_info10100308
crossref_primary_10_1016_j_ress_2023_109192
crossref_primary_10_1088_1757_899X_1055_1_012088
crossref_primary_10_1007_s11042_019_07839_z
crossref_primary_10_1007_s42979_021_00535_6
crossref_primary_10_1007_s12046_020_01484_1
crossref_primary_10_1016_j_jobe_2025_113345
crossref_primary_10_1007_s00530_021_00847_w
crossref_primary_10_1016_j_compag_2019_105098
crossref_primary_10_1016_j_neucom_2022_09_079
crossref_primary_10_1016_j_eswa_2018_11_025
crossref_primary_10_1002_cjce_23753
crossref_primary_10_1016_j_datak_2024_102277
crossref_primary_10_1109_TCSI_2021_3065332
crossref_primary_10_1007_s13735_018_0162_2
crossref_primary_10_1016_j_ress_2019_106731
crossref_primary_10_1080_03019233_2019_1699358
crossref_primary_10_1007_s11042_023_14634_4
crossref_primary_10_1617_s11527_023_02262_1
crossref_primary_10_1109_JAS_2023_123450
crossref_primary_10_1007_s10751_024_02135_1
crossref_primary_10_3390_su13126527
crossref_primary_10_1109_ACCESS_2020_3036882
crossref_primary_10_1016_j_cmpb_2022_106664
crossref_primary_10_1016_j_commatsci_2020_109792
crossref_primary_10_1109_TNNLS_2020_3015992
crossref_primary_10_1177_00491241221122603
crossref_primary_10_1007_s12652_022_04025_2
crossref_primary_10_1007_s00607_021_00992_0
crossref_primary_10_1007_s11227_021_03903_4
crossref_primary_10_3389_fenrg_2021_763977
crossref_primary_10_1093_ppmgov_gvz014
crossref_primary_10_1016_j_csl_2023_101500
crossref_primary_10_7717_peerj_cs_1361
crossref_primary_10_1016_j_rsase_2024_101243
crossref_primary_10_1109_TGRS_2024_3493415
crossref_primary_10_3390_math10162867
crossref_primary_10_1016_j_jfranklin_2024_106998
crossref_primary_10_1109_JBHI_2025_3555596
crossref_primary_10_1016_j_cogsys_2021_07_005
crossref_primary_10_1007_s10639_023_11588_w
crossref_primary_10_3390_s22062346
crossref_primary_10_1016_j_neucom_2018_08_025
crossref_primary_10_1016_j_rcim_2021_102281
crossref_primary_10_1016_j_neucom_2018_08_023
crossref_primary_10_1016_j_eswa_2022_117650
crossref_primary_10_1016_j_neucom_2024_128741
crossref_primary_10_1016_j_bspc_2020_102170
crossref_primary_10_1109_JIOT_2023_3280843
crossref_primary_10_3390_electronics9050851
crossref_primary_10_1016_j_patcog_2018_03_008
crossref_primary_10_1016_j_smhl_2021_100221
crossref_primary_10_1109_TNANO_2019_2932271
crossref_primary_10_4316_AECE_2023_02011
crossref_primary_10_1016_j_compbiomed_2025_110547
crossref_primary_10_3390_en16010112
crossref_primary_10_1016_j_infrared_2025_106133
crossref_primary_10_1109_ACCESS_2023_3312616
crossref_primary_10_1109_TVCG_2019_2940580
crossref_primary_10_1016_j_patcog_2024_110504
crossref_primary_10_3390_sym14010140
crossref_primary_10_1121_1_5067389
crossref_primary_10_1109_TNSM_2023_3342716
crossref_primary_10_1016_j_neucom_2023_126277
crossref_primary_10_1016_j_neucom_2020_04_048
crossref_primary_10_1088_1742_6596_1933_1_012045
crossref_primary_10_1109_ACCESS_2020_3033312
crossref_primary_10_1007_s00521_021_05964_1
crossref_primary_10_1145_3555768
crossref_primary_10_1007_s11760_024_03603_5
crossref_primary_10_1016_j_ins_2018_10_041
crossref_primary_10_1016_j_neucom_2021_01_078
crossref_primary_10_1111_raq_12726
crossref_primary_10_1007_s12652_020_02642_3
crossref_primary_10_1186_s12859_020_03896_6
crossref_primary_10_1111_mice_12806
crossref_primary_10_1016_j_cnsns_2023_107177
crossref_primary_10_2196_32508
crossref_primary_10_1016_j_neucom_2020_04_059
crossref_primary_10_3390_mi16080902
crossref_primary_10_3390_math9233130
crossref_primary_10_1109_TVT_2021_3099797
crossref_primary_10_1109_LPT_2018_2852601
crossref_primary_10_5194_acp_19_13383_2019
crossref_primary_10_1080_15583058_2022_2134062
crossref_primary_10_1109_MCOM_001_2000598
crossref_primary_10_1007_s11761_024_00423_w
crossref_primary_10_1007_s11227_023_05300_5
crossref_primary_10_1007_s13369_020_05112_2
crossref_primary_10_1016_j_petlm_2019_11_009
crossref_primary_10_1364_JOCN_449009
crossref_primary_10_3390_sym15061251
crossref_primary_10_1155_2022_5323327
crossref_primary_10_1007_s12530_024_09606_4
crossref_primary_10_1155_2019_6434578
crossref_primary_10_1016_j_neucom_2019_03_072
crossref_primary_10_1016_j_physrep_2021_10_005
crossref_primary_10_1038_s41746_022_00566_0
crossref_primary_10_1007_s00521_021_05955_2
crossref_primary_10_3390_electronics12194179
crossref_primary_10_1016_j_eswa_2019_06_012
crossref_primary_10_1145_3394112
crossref_primary_10_1007_s42835_019_00215_9
crossref_primary_10_1177_0954407020907818
crossref_primary_10_1016_j_engappai_2020_103647
crossref_primary_10_33012_navi_518
crossref_primary_10_1007_s12650_025_01077_2
crossref_primary_10_1016_j_neucom_2019_05_081
crossref_primary_10_1016_j_cose_2021_102515
crossref_primary_10_1016_j_neucom_2019_11_110
crossref_primary_10_1007_s11042_018_6561_9
crossref_primary_10_1007_s00371_025_04122_1
crossref_primary_10_3390_info13090410
crossref_primary_10_1109_TPAMI_2023_3286121
crossref_primary_10_1108_ECAM_11_2024_1595
crossref_primary_10_1155_2020_8454327
crossref_primary_10_1016_j_neucom_2019_03_028
crossref_primary_10_1016_j_knosys_2025_112984
crossref_primary_10_1109_ACCESS_2021_3110336
crossref_primary_10_1016_j_gmod_2018_01_001
crossref_primary_10_1038_s41598_025_93418_2
crossref_primary_10_3390_genes10110924
crossref_primary_10_1109_JIOT_2022_3163892
crossref_primary_10_1109_ACCESS_2020_2968508
crossref_primary_10_1111_exsy_12759
crossref_primary_10_4236_vp_2025_111003
crossref_primary_10_1088_1757_899X_767_1_012067
crossref_primary_10_1007_s10586_022_03769_y
crossref_primary_10_1016_j_cmpb_2021_106369
crossref_primary_10_1007_s11042_020_09409_0
crossref_primary_10_1016_j_neucom_2020_08_094
crossref_primary_10_1007_s40747_021_00477_9
crossref_primary_10_1007_s10462_020_09825_6
crossref_primary_10_1109_LSENS_2018_2886427
crossref_primary_10_1016_j_ress_2022_108881
crossref_primary_10_3390_app132111980
crossref_primary_10_3390_fi10070060
crossref_primary_10_1007_s11554_019_00937_z
crossref_primary_10_1108_IJICC_11_2021_0257
crossref_primary_10_3390_en18030533
crossref_primary_10_3390_s20010311
crossref_primary_10_1016_j_neucom_2021_12_022
crossref_primary_10_3390_electronics11193241
crossref_primary_10_1093_bib_bbab054
crossref_primary_10_1109_ACCESS_2020_3002666
crossref_primary_10_1109_JSTARS_2022_3162387
crossref_primary_10_1007_s11760_024_03464_y
crossref_primary_10_1109_TSE_2022_3150788
crossref_primary_10_1109_JSTARS_2024_3402114
crossref_primary_10_1038_s41598_021_96751_4
crossref_primary_10_1007_s11390_023_1902_1
crossref_primary_10_1007_s42486_020_00039_x
crossref_primary_10_1109_ACCESS_2025_3555044
crossref_primary_10_1007_s12145_025_01716_0
crossref_primary_10_1016_j_conbuildmat_2017_09_110
crossref_primary_10_1007_s10462_021_09975_1
crossref_primary_10_1007_s11063_023_11163_x
crossref_primary_10_1109_TMTT_2021_3075689
crossref_primary_10_1016_j_neucom_2024_128353
crossref_primary_10_1007_s00704_022_04103_7
crossref_primary_10_1016_j_neucom_2017_02_066
crossref_primary_10_1177_1748006X20969465
crossref_primary_10_1049_iet_gtd_2019_1161
crossref_primary_10_1088_1742_6596_1706_1_012068
crossref_primary_10_1002_fld_5217
crossref_primary_10_1016_j_inffus_2021_02_008
crossref_primary_10_1016_j_icte_2025_02_002
crossref_primary_10_1016_j_neucom_2020_10_113
crossref_primary_10_1109_TFUZZ_2020_3007442
crossref_primary_10_1109_TCAD_2022_3197500
crossref_primary_10_1002_asi_24655
crossref_primary_10_1007_s00226_021_01309_2
crossref_primary_10_1016_j_compbiomed_2025_110926
crossref_primary_10_1007_s11227_020_03178_1
crossref_primary_10_1016_j_neucom_2024_129214
crossref_primary_10_1002_ldr_70164
crossref_primary_10_1007_s42452_021_04162_x
crossref_primary_10_1007_s00500_019_03901_y
crossref_primary_10_1016_j_neucom_2019_05_075
crossref_primary_10_1016_j_measurement_2021_109806
crossref_primary_10_1007_s11227_024_06473_3
crossref_primary_10_1016_j_neucom_2018_10_076
crossref_primary_10_1016_j_aei_2022_101818
crossref_primary_10_1007_s10586_019_02963_9
crossref_primary_10_1109_TRO_2025_3588449
crossref_primary_10_1109_TNNLS_2022_3202752
crossref_primary_10_1007_s10639_023_12292_5
crossref_primary_10_1016_j_heliyon_2024_e30954
crossref_primary_10_1016_j_patrec_2019_10_022
crossref_primary_10_1016_j_jhydrol_2020_124631
crossref_primary_10_1109_TSC_2021_3133673
crossref_primary_10_1109_TPDS_2021_3094364
crossref_primary_10_3390_healthcare10122504
Cites_doi 10.1093/bioinformatics/btu703
10.3389/fncom.2015.00146
10.1145/1390156.1390294
10.1145/2835487
10.1109/TPAMI.2015.2439281
10.1162/neco.2008.11-07-647
10.1080/00207179.2012.756149
10.1016/j.patrec.2015.07.037
10.1016/j.neunet.2012.02.023
10.1016/j.asoc.2015.06.048
10.1109/EMBC.2015.7318462
10.1080/02564602.2015.1010611
10.1109/TPAMI.2009.167
10.1214/08-AOS604
10.1145/2699343.2699349
10.1038/nature14539
10.1016/j.neunet.2014.09.006
10.1016/j.renene.2015.06.034
10.1016/j.neucom.2015.05.086
10.1016/j.neucom.2016.02.062
10.1109/TPAMI.2013.50
10.1126/science.7761831
10.1016/j.neunet.2014.08.006
10.1109/MSP.2014.2359987
10.1109/MSP.2010.939038
10.1109/EMBC.2015.7318454
10.1016/j.neucom.2016.06.016
10.1109/LSP.2015.2420092
10.1109/TAC.2015.2390554
10.1109/TASLP.2015.2457612
10.1109/EMBC.2015.7318458
10.1049/iet-cta.2013.0854
10.1016/j.csl.2015.02.003
10.1016/j.biosystemseng.2015.06.002
10.1080/02564602.2015.1015631
10.1016/j.neucom.2015.10.064
10.1016/j.neucom.2015.07.093
10.1134/S0005117916010033
10.1109/TGRS.2014.2335751
10.1016/j.neunet.2014.09.003
10.1109/MCI.2010.938364
10.1109/TNNLS.2015.2435783
10.1080/03081079.2014.892251
10.1109/TCYB.2015.2404432
10.1016/j.neucom.2012.09.040
10.1007/BF00344251
10.1016/j.neucom.2015.10.076
10.1109/5.726791
10.1109/MSP.2009.932166
10.1109/ASRU.2013.6707746
10.1145/1390156.1390177
10.1109/ICASSP.2015.7178918
10.1109/TASL.2011.2109382
10.1109/MSP.2012.2205597
10.1109/JPROC.2015.2444094
10.1109/LGRS.2015.2491329
10.1162/NECO_a_00142
10.1007/978-3-642-21735-7_7
10.1016/j.neunet.2014.08.005
10.1109/CVPR.2012.6247936
10.1080/03081079.2015.1106730
10.1007/s12555-014-0261-7
10.1109/TASLP.2014.2346313
10.1007/s10489-014-0629-7
10.1145/2647868.2654902
10.1109/CVPRW.2014.78
10.1109/TIP.2015.2487860
10.1162/neco.2006.18.7.1527
10.1109/CVPR.2004.1315150
10.1145/1553374.1553453
10.1109/ICCV.2011.6126555
10.1109/CVPR.2009.5206848
10.1007/s12559-016-9396-6
10.1080/02564602.2014.890840
10.1016/j.neucom.2014.07.087
10.1109/ICASSP.2013.6639345
10.1016/j.neucom.2015.11.089
10.21437/Interspeech.2010-304
10.1145/1778765.1778839
10.1109/78.134406
10.1109/ICASSP.2013.6639081
10.1109/ICASSP.2011.5947700
10.1007/s10032-014-0229-4
10.1016/j.neucom.2015.11.079
10.1007/BF00332918
10.1109/LSP.2014.2354456
10.1109/LGRS.2015.2483680
10.1145/1390156.1390224
10.1109/ICCV.2009.5459469
10.1016/j.neucom.2015.10.071
10.1016/j.eswa.2015.10.015
10.1109/TASL.2011.2116010
10.1145/2766959
10.1145/2157689.2157740
10.1113/jphysiol.1962.sp006837
10.21437/Interspeech.2011-607
10.1109/TAC.2015.2394872
10.1162/089976602760128018
10.1017/atsip.2013.9
10.1109/TIT.1986.1057145
10.1109/CVPR.2012.6248076
10.1016/j.csi.2015.06.004
10.1016/j.patcog.2015.03.017
10.1038/nature16961
10.1016/j.neucom.2016.08.020
10.1109/ICASSP.2011.5947494
10.1016/j.csl.2014.11.008
10.1109/TSP.2016.2634541
10.3390/rs71114680
10.1109/TASLP.2015.2498101
10.1126/science.1127647
10.1007/s11432-016-0280-9
10.1007/s11042-014-2183-z
10.1016/j.automatica.2015.11.008
10.1007/s11042-014-2156-2
10.3390/ijms160817315
10.1109/TASLP.2015.2438544
10.1186/s40537-014-0007-7
10.1109/CVPR.2015.7298640
10.1007/s12559-016-9404-x
10.1016/j.inffus.2016.01.001
10.1145/2508363.2508364
10.1016/j.neuroimage.2015.05.018
10.1109/5.18626
10.1016/j.neucom.2015.06.054
10.1109/CVPR.2012.6248110
10.1016/0885-2308(90)90015-X
10.1007/s11432-016-5579-8
10.1109/EMBC.2015.7318984
10.1109/TII.2016.2542208
10.1109/TASL.2011.2134090
10.1561/2200000006
ContentType Journal Article
Copyright 2016 Elsevier B.V.
Copyright_xml – notice: 2016 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.neucom.2016.12.038
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-8286
EndPage 26
ExternalDocumentID 10_1016_j_neucom_2016_12_038
S0925231216315533
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61329301; 61374010; 61403319
– fundername: Alexander von Humboldt Foundation of Germany
– fundername: Royal Society of the UK
GroupedDBID ---
--K
--M
.DC
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AADPK
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXLA
AAXUO
AAYFN
ABBOA
ABCQJ
ABFNM
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGWIK
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
KOM
LG9
M41
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSN
SSV
SSZ
T5K
ZMT
~G-
29N
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FEDTE
FGOYB
HLZ
HVGLF
HZ~
R2-
SBC
SEW
WUQ
XPP
~HD
ID FETCH-LOGICAL-c306t-10130f37c165b1c2c7a13808e8dfab63dbd6e8be96ee4efc1df2f165d8fe11233
ISICitedReferencesCount 2252
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000395221800002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0925-2312
IngestDate Sat Nov 29 07:50:04 EST 2025
Tue Nov 18 21:08:38 EST 2025
Fri Feb 23 02:30:25 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Restricted Boltzmann machine
Deep belief network
Autoencoder
Convolutional neural network
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c306t-10130f37c165b1c2c7a13808e8dfab63dbd6e8be96ee4efc1df2f165d8fe11233
ORCID 0000-0002-9576-7401
PageCount 16
ParticipantIDs crossref_primary_10_1016_j_neucom_2016_12_038
crossref_citationtrail_10_1016_j_neucom_2016_12_038
elsevier_sciencedirect_doi_10_1016_j_neucom_2016_12_038
PublicationCentury 2000
PublicationDate 2017-04-19
PublicationDateYYYYMMDD 2017-04-19
PublicationDate_xml – month: 04
  year: 2017
  text: 2017-04-19
  day: 19
PublicationDecade 2010
PublicationTitle Neurocomputing (Amsterdam)
PublicationYear 2017
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References M.D. Zeiler, R. Fergus, Stochastic pooling for regularization of deep convolutional neural networks
Yuan, Sun, Liu, Yang (bib168) 2015; 9
Miao, Zhang, Metze (bib114) 2015; 23
Ma, Wang, Lam (bib109) 2016
Zeng, Wang, Zhang (bib174) 2016; 59
Bengio (bib10) 2009; 2
Silver, Huang, Maddison, Guez, Sifre, Van Den Driessche, Schrittwieser, Antonoglou, Panneershelvam, Lanctot, Dieleman, Grewe, Nham, Kalchbrenner, Sutskever, Lillicrap, Leach, Kavukcuoglu, Graepel, Hassabis (bib140) 2016; 529
Hu, Liu, Ji, Li (bib65) 2016; 45
N. Srivastava, R. Salakhutdinov, Learning representations for multimodal data with deep belief nets, in: Proceedings of International Conference on Machine Learning Workshop, 2012.
Kang, Kwon, Shin, Kim (bib81) 2015; 22
Bourlard, Kamp (bib15) 1988; 59
I. Sutskever, T. Tieleman, On the convergence properties of contrastive divergence, in: Proceedings of International Conference on Artificial Intelligence and Statistics, vol. 9, (2010) pp. 789–795.
Szegedy, Toshev, Erhan (bib148) 2013
Yu, Dong, Wang, Ren, Alsaadi (bib166) 2016; 182
Fukushima (bib46) 1980; 36
Abdel Zaher, Eldeib (bib1) 2016; 46
Hong, Yu, Wan, Tao, Wang (bib62) 2015; 24
Hinton (bib56) 2002; 14
Noda, Yamaguchi, Nakadai, Okuno, Ogata (bib125) 2015; 42
P. Hamel, D. Eck, Learning features from music audio with deep belief networks, in: ISMIR, 2010, pp. 339–344.
Deng (bib30) 2012
Hinton, Deng, Yu, Dahl, Mohamed, Jaitly, Senior, Vanhoucke, Nguyen, Sainath (bib58) 2012; 29
Kim, Xie (bib84) 2015; 18
Mohamed, Dahl, Hinton (bib116) 2012; 20
Song, Niu (bib143) 2016; 171
L. Deng, D. Yu, Deep convex net: A scalable architecture for speech pattern classification, in: Proceedings of the Interspeech, 2011.
Najafabadi, Villanustre, Khoshgoftaar, Seliya, Wald, Muharemagic (bib122) 2015; 2
Schmidhuber (bib137) 2015; 61
.
LeCun, Bottou, Bengio, Haffner (bib92) 1998; 86
Zeng, Wang, Zhang, Liu, Alsaadi (bib173) 2016; 8
F. Feng, X. Wang, R. Li, Cross-modal retrieval with correspondence autoencoder, in: Proceedings of the ACM International Conference on Multimedia, 2014, pp. 7–16.
M. Henderson, B. Thomson, S. Young, Deep neural network approach for the dialog state tracking challenge, in: Proceedings of the SIGDIAL 2013 Conference, 2013, pp. 467–471.
Dong, Wu (bib39) 2015; 42
Liao, Xu, Lv, Zhou (bib100) 2015; 32
Hu, Wang, Shen, Gao (bib69) 2013; 86
D. Ciresan, U. Meier, J. Schmidhuber, Multi-column deep neural networks for image classification, in: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2012, pp. 3642–3649.
LeCun, Bengio (bib90) 1995; 3361
Aryal, Gutierrez Osuna (bib6) 2016; 36
Arel, Rose, Karnowski (bib3) 2010; 5
J.T. Huang, J. Li, D. Yu, L. Deng, Y. Gong, Cross-language knowledge transfer using multilingual deep neural network with shared hidden layers, in: Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2013, pp. 7304–7308.
Hu, Chen, Du (bib64) 2014; 43
Baker, Deng, Glass, Khudanpur, Lee, Morgan, Shaughnessy (bib7) 2009; 26
Yuan, Sun, Zhu (bib169) 2015; 13
H. Larochelle, Y. Bengio, Classification using discriminative restricted Boltzmann machines, in: Proceedings of the 25th international conference on Machine learning, 2008, pp. 536–543.
Liu, Wang, He, Zhou (bib103) 2015; 60
Singh, Tripathy, Anand (bib141) 2014; 31
Wang, Weng, Ma, Tang (bib157) 2015; 16
Felzenszwalb, Girshick, McAllester, Ramanan (bib43) 2010; 32
Li, Yang, Pang, Wu (bib99) 2015; 170
Poultney, Chopra, Cun (bib128) 2006
O. Emad, I.A. Yassine, A.S. Fahmy, Automatic localization of the left ventricle in cardiac mri images using deep learning, in: Engineering in Medicine and Biology Society (EMBC), 2015 Proceedings of the 37th Annual International Conference of the IEEE, 2015, pp. 683–686.
Morgan (bib120) 2012; 20
A. Fischer, C. Igel, Training RBMs based on the signs of the CD approximation of the log-likelihood derivatives, in: ESANN, 2011.
Mohamed, Dahl, Hinton (bib117) 2009; 1
Y.L. Boureau, J. Ponce, Y. LeCun, A theoretical analysis of feature pooling in visual recognition, in: Proceedings of the 27th International Conference on Machine Learning (ICML-10), 2010, pp. 111–118.
Hu, Wang, Chen, Alsaadi (bib67) 2016; 31
Ballard, Brown (bib8) 1982
Kim, Moon (bib85) 2015; 13
Tang, Deng, Huang, Zhao (bib150) 2015; 53
Gonzalez-Dominguez, Lopez-Moreno, Moreno, Gonzalez-Rodriguez (bib49) 2015; 64
Kim, Calhoun, Shim, Lee (bib83) 2016; 124
Bishop (bib14) 2006
Lerouge, Herault, Chatelain, Jardin, Modzelewski (bib96) 2015; 48
Bengio, Delalleau (bib12) 2009; 21
G. Desjardins, Y. Bengio, Empirical evaluation of convolutional RBMs for vision, Département d′Informatique et de Recherche Opérationnelle, Université de Montréal, Tech. Rep. 1327, 2008.
Deng, Kenny, Lennig, Gupta, Seitz, Mermelstein (bib32) 1991; 39
Hinton (bib55) 2012
Han, Zhang, Wen, Guo, Liu, Li (bib52) 2015; 46
Ren, Deng, Dai (bib131) 2016; 175
H. Lee, R. Grosse, R. Ranganath, A.Y. Ng, Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations, in: Proceedings of the 26th Annual International Conference on Machine Learning, 2009, pp. 609–616.
Ding, Xie, Zhu (bib37) 2015; 74
Chen, Mak (bib20) 2015; 23
Chen, Liang, Wang (bib21) 2016; 59
Y. Yuan, H. Yuan, L. Guo, H. Yang, S. Sun, Robust control of networked control system under DoS attacks: a unified game approach, IEEE transactions on Industrial Informatics
Lee, Pham, Largman, Ng (bib95) 2009; 22
Taylor, Hinton, Roweis (bib153) 2011; 12
Arias Castro, Donoho (bib4) 2009; 37
Chen, Yang, Zhong, Pan, Chen, Zhang (bib22) 2016; 38
S. Rifai, P. Vincent, X. Muller, X. Glorot, Y. Bengio, Contractive auto-encoders: Explicit invariance during feature extraction, in: Proceedings of the 28th International Conference on Machine Learning (ICML-11), 2011, pp. 833–840.
Dahl, Yu, Deng, Acero (bib28) 2012; 20
Gong, Zhao, Liu, Miao, Jiao (bib48) 2016; 27
Li, Deng, Xu, Wen, Wang, Pei, Shi (bib97) 2016; 6
Deng (bib31) 2014; 3
Manor, Geva (bib111) 2015; 9
Wu, Lu, Gao, Zhao, Liu (bib159) 2016; 175
Padmanabhan, Johnson Premkumar (bib126) 2015; 32
Deng, Lennig, Seitz, Mermelstein (bib34) 1990; 4
Ling, Kang, Zen, Senior, Schuster, Qian, Meng, Deng (bib101) 2015; 32
Yu, Deng (bib165) 2011; 28
Zhang, Ma, Liu (bib175) 2016; 216
Mathieu, Henaff, LeCun (bib113) 2013
Kalogerakis, Hertzmann, Singh (bib80) 2010; 29
Yuan, Sun (bib167) 2014; 125
N. Jaitly, G. Hinton, Learning a better representation of speech soundwaves using restricted Boltzmann machines, in: Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2011, pp. 5884–5887.
Sainath, Kingsbury, Saon, Soltau, Mohamed, Dahl, Ramabhadran (bib134) 2015; 64
Hu, Xia, Hu, Zhang (bib66) 2015; 7
Elfwing, Uchibe, Doya (bib41) 2015; 64
S. Li, Z.Q. Liu, A. Chan, Heterogeneous multi-task learning for human pose estimation with deep convolutional neural network, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, 2014, pp. 482–489.
Indiveri, Liu (bib75) 2015; 103
P. Sermanet, S. Chintala, Y. LeCun, Convolutional neural networks applied to house numbers digit classification, in: Proceedings of the 21st International Conference on Pattern Recognition (ICPR), 2012, pp. 3288–3291.
A. Mohamed, T.N. Sainath, G. Dahl, B. Ramabhadran, G.E. Hinton, M.A. Picheny, Deep belief networks using discriminative features for phone recognition, in: Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2011, pp. 5060–5063.
Masci, Meier, Cireşan, Schmidhuber (bib112) 2011
R. Kelley, L. Wigand, B. Hamilton, K. Browne, M. Nicolescu, M. Nicolescu, Deep networks for predicting human intent with respect to objects, in: Proceedings of the Seventh Annual ACM/IEEE International Conference on Human-Robot Interaction, 2012, pp. 171–172.
R. Collobert, J. Weston, A unified architecture for natural language processing: Deep neural networks with multitask learning, in: Proceedings of the 25th international conference on Machine learning, 2008, pp. 160–167.
Rabiner (bib130) 1989; 77
X. Chen, Y. Xu, D.W.K. Wong, T.Y. Wong, J. Liu, Glaucoma detection based on deep convolutional neural network, in: Engineering in Medicine and Biology Society (EMBC), in: Proceedings of the 37th Annual International Conference of the IEEE, 2015, pp. 715–718.
X. Glorot, A. Bordes, Y. Bengio, Domain adaptation for large-scale sentiment classification: A deep learning approach, in: Proceedings of the 28th International Conference on Machine Learning (ICML-11), 2011, pp. 513–520.
Hubel, Wiesel (bib73) 1962; 160
Y. LeCun, F.J. Huang, L. Bottou, Learning methods for generic object recognition with invariance to pose and lighting, in: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2004, vol. 2, pp. 97–104.
2013.
V. Mnih, H. Larochelle, G.E. Hinton, Conditional restricted Boltzmann machines for structured output prediction
Hu, Zhang, Zhou (bib70) 2016; 85
Cui, Goel, Kingsbury (bib27) 2015; 23
Y. Tang, R. Salakhutdinov, G.E. Hinton, Deep lambertian networks
Zeng, Wang, Zhang, Alsaadi (bib172) 2016; 8
T. Shinozaki, S. Watanabe, Structure discovery of deep neural network based on evolutionary algorithms, in: Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2015, pp. 4979–4983.
N.D. Lane, P. Georgiev, Can deep learning revolutionize mobile sensing? in: Proceedings of the 16th International Workshop on Mobile Computing Systems and Applications, 2015, pp. 117–122.
Vincent (bib154) 2011; 23
Q. Liu, Z. Wang, X. He, G. Ghinea, F.E. Alsaadi, A resilient approach to distributed filter design for time-varying systems under stochastic nonlinearities and sensor degradation, IEEE Transactions on Signal Processing, accepted for publication.
Hinton, Osindero, Teh (bib59) 2006; 18
Hinton, Zemel (bib61) 1994
Hinton, Dayan, Frey, Neal (bib57) 1995; 268
L. Deng, J. Li, J.T. Huang, K. Yao, D. Yu, F. Seide, M. Seltzer, G. Zweig, X. He, J. Williams, Y. Gong, A. Acero, Recent advances in deep learning for speech research at microsoft, in: Pr
Deng (10.1016/j.neucom.2016.12.038_bib32) 1991; 39
Kang (10.1016/j.neucom.2016.12.038_bib81) 2015; 22
Yuan (10.1016/j.neucom.2016.12.038_bib168) 2015; 9
Hu (10.1016/j.neucom.2016.12.038_bib65) 2016; 45
Zhu (10.1016/j.neucom.2016.12.038_bib177) 2015; 65
Baker (10.1016/j.neucom.2016.12.038_bib7) 2009; 26
Hinton (10.1016/j.neucom.2016.12.038_bib58) 2012; 29
Dong (10.1016/j.neucom.2016.12.038_bib39) 2015; 42
10.1016/j.neucom.2016.12.038_bib104
Ding (10.1016/j.neucom.2016.12.038_bib37) 2015; 74
Ma (10.1016/j.neucom.2016.12.038_bib106) 2016
Tang (10.1016/j.neucom.2016.12.038_bib149) 2015; 6
Chen (10.1016/j.neucom.2016.12.038_bib21) 2016; 59
10.1016/j.neucom.2016.12.038_bib51
Liao (10.1016/j.neucom.2016.12.038_bib100) 2015; 32
10.1016/j.neucom.2016.12.038_bib53
Bourlard (10.1016/j.neucom.2016.12.038_bib15) 1988; 59
10.1016/j.neucom.2016.12.038_bib54
Kim (10.1016/j.neucom.2016.12.038_bib84) 2015; 18
Bengio (10.1016/j.neucom.2016.12.038_bib10) 2009; 2
Makhzani (10.1016/j.neucom.2016.12.038_bib110) 2013
Yu (10.1016/j.neucom.2016.12.038_bib165) 2011; 28
Hu (10.1016/j.neucom.2016.12.038_bib70) 2016; 85
10.1016/j.neucom.2016.12.038_bib170
10.1016/j.neucom.2016.12.038_bib171
Dong (10.1016/j.neucom.2016.12.038_bib38) 2015; 38
Xue (10.1016/j.neucom.2016.12.038_bib161) 2014; 22
Padmanabhan (10.1016/j.neucom.2016.12.038_bib126) 2015; 32
Silver (10.1016/j.neucom.2016.12.038_bib140) 2016; 529
Ma (10.1016/j.neucom.2016.12.038_bib109) 2016
Sainath (10.1016/j.neucom.2016.12.038_bib134) 2015; 64
Kim (10.1016/j.neucom.2016.12.038_bib83) 2016; 124
Wen (10.1016/j.neucom.2016.12.038_bib158) 2015; 136
Huang (10.1016/j.neucom.2016.12.038_bib72) 2013; 32
LeCun (10.1016/j.neucom.2016.12.038_bib92) 1998; 86
Nair (10.1016/j.neucom.2016.12.038_bib121) 2009
Vincent (10.1016/j.neucom.2016.12.038_bib154) 2011; 23
LeCun (10.1016/j.neucom.2016.12.038_bib91) 2015; 521
Fukushima (10.1016/j.neucom.2016.12.038_bib46) 1980; 36
Ballard (10.1016/j.neucom.2016.12.038_bib8) 1982
10.1016/j.neucom.2016.12.038_bib40
Hinton (10.1016/j.neucom.2016.12.038_bib61) 1994
Liu (10.1016/j.neucom.2016.12.038_bib102) 2015; 60
10.1016/j.neucom.2016.12.038_bib42
10.1016/j.neucom.2016.12.038_bib44
10.1016/j.neucom.2016.12.038_bib45
Kim (10.1016/j.neucom.2016.12.038_bib85) 2015; 13
10.1016/j.neucom.2016.12.038_bib47
Hinton (10.1016/j.neucom.2016.12.038_bib55) 2012
Miao (10.1016/j.neucom.2016.12.038_bib114) 2015; 23
Hu (10.1016/j.neucom.2016.12.038_bib64) 2014; 43
Luus (10.1016/j.neucom.2016.12.038_bib105) 2015; 12
Hinton (10.1016/j.neucom.2016.12.038_bib56) 2002; 14
10.1016/j.neucom.2016.12.038_bib123
10.1016/j.neucom.2016.12.038_bib124
10.1016/j.neucom.2016.12.038_bib127
Zeng (10.1016/j.neucom.2016.12.038_bib172) 2016; 8
Vincent (10.1016/j.neucom.2016.12.038_bib156) 2010; 11
Rabiner (10.1016/j.neucom.2016.12.038_bib130) 1989; 77
Gonzalez-Dominguez (10.1016/j.neucom.2016.12.038_bib49) 2015; 64
Hu (10.1016/j.neucom.2016.12.038_bib68) 2016; 64
Morgan (10.1016/j.neucom.2016.12.038_bib120) 2012; 20
10.1016/j.neucom.2016.12.038_bib33
10.1016/j.neucom.2016.12.038_bib35
10.1016/j.neucom.2016.12.038_bib36
Hou (10.1016/j.neucom.2016.12.038_bib63) 2016; 179
Lerouge (10.1016/j.neucom.2016.12.038_bib96) 2015; 48
Li (10.1016/j.neucom.2016.12.038_bib97) 2016; 6
Hu (10.1016/j.neucom.2016.12.038_bib67) 2016; 31
Sun (10.1016/j.neucom.2016.12.038_bib146) 2016; 24
Bengio (10.1016/j.neucom.2016.12.038_bib11) 2013; 35
Bengio (10.1016/j.neucom.2016.12.038_bib13) 2007; 19
10.1016/j.neucom.2016.12.038_bib26
Poultney (10.1016/j.neucom.2016.12.038_bib128) 2006
Yang (10.1016/j.neucom.2016.12.038_bib162) 2016; 197
Arias Castro (10.1016/j.neucom.2016.12.038_bib4) 2009; 37
10.1016/j.neucom.2016.12.038_bib29
10.1016/j.neucom.2016.12.038_bib115
10.1016/j.neucom.2016.12.038_bib119
Deng (10.1016/j.neucom.2016.12.038_bib30) 2012
LeCun (10.1016/j.neucom.2016.12.038_bib90) 1995; 3361
10.1016/j.neucom.2016.12.038_bib23
Yu (10.1016/j.neucom.2016.12.038_bib166) 2016; 182
10.1016/j.neucom.2016.12.038_bib25
Ma (10.1016/j.neucom.2016.12.038_bib107) 2016
Zeng (10.1016/j.neucom.2016.12.038_bib174) 2016; 59
Ciresan (10.1016/j.neucom.2016.12.038_bib24) 2012; 32
10.1016/j.neucom.2016.12.038_bib145
Gong (10.1016/j.neucom.2016.12.038_bib48) 2016; 27
Guo (10.1016/j.neucom.2016.12.038_bib50) 2015; 35
Bengio (10.1016/j.neucom.2016.12.038_bib12) 2009; 21
Li (10.1016/j.neucom.2016.12.038_bib99) 2015; 170
10.1016/j.neucom.2016.12.038_bib16
10.1016/j.neucom.2016.12.038_bib17
10.1016/j.neucom.2016.12.038_bib147
10.1016/j.neucom.2016.12.038_bib18
Taylor (10.1016/j.neucom.2016.12.038_bib153) 2011; 12
Bishop (10.1016/j.neucom.2016.12.038_bib14) 2006
10.1016/j.neucom.2016.12.038_bib98
Hinton (10.1016/j.neucom.2016.12.038_bib59) 2006; 18
Lee (10.1016/j.neucom.2016.12.038_bib95) 2009; 22
Singh (10.1016/j.neucom.2016.12.038_bib141) 2014; 31
Zeng (10.1016/j.neucom.2016.12.038_bib173) 2016; 8
Masci (10.1016/j.neucom.2016.12.038_bib112) 2011
10.1016/j.neucom.2016.12.038_bib93
10.1016/j.neucom.2016.12.038_bib94
Quang (10.1016/j.neucom.2016.12.038_bib129) 2014; 31
Sonka (10.1016/j.neucom.2016.12.038_bib144) 2014
Mathieu (10.1016/j.neucom.2016.12.038_bib113) 2013
Schmidhuber (10.1016/j.neucom.2016.12.038_bib137) 2015; 61
Yuan (10.1016/j.neucom.2016.12.038_bib167) 2014; 125
Zhang (10.1016/j.neucom.2016.12.038_bib175) 2016; 216
Arel (10.1016/j.neucom.2016.12.038_bib3) 2010; 5
Hu (10.1016/j.neucom.2016.12.038_bib69) 2013; 86
10.1016/j.neucom.2016.12.038_bib135
Zhou (10.1016/j.neucom.2016.12.038_bib176) 2015; 168
10.1016/j.neucom.2016.12.038_bib133
10.1016/j.neucom.2016.12.038_bib138
Mohamed (10.1016/j.neucom.2016.12.038_bib118) 2010
10.1016/j.neucom.2016.12.038_bib139
Arnold (10.1016/j.neucom.2016.12.038_bib5) 2011
10.1016/j.neucom.2016.12.038_bib136
Bell (10.1016/j.neucom.2016.12.038_bib9) 2015; 34
Yoshioka (10.1016/j.neucom.2016.12.038_bib164) 2015; 31
Han (10.1016/j.neucom.2016.12.038_bib52) 2015; 46
Manor (10.1016/j.neucom.2016.12.038_bib111) 2015; 9
Mohamed (10.1016/j.neucom.2016.12.038_bib117) 2009; 1
10.1016/j.neucom.2016.12.038_bib87
10.1016/j.neucom.2016.12.038_bib88
10.1016/j.neucom.2016.12.038_bib89
Yang (10.1016/j.neucom.2016.12.038_bib163) 2016; 175
Hinton (10.1016/j.neucom.2016.12.038_bib57) 1995; 268
Felzenszwalb (10.1016/j.neucom.2016.12.038_bib43) 2010; 32
Agostinelli (10.1016/j.neucom.2016.12.038_bib2) 2013; 26
Yuan (10.1016/j.neucom.2016.12.038_bib169) 2015; 13
10.1016/j.neucom.2016.12.038_bib82
Richardson (10.1016/j.neucom.2016.12.038_bib132) 2015; 22
Noda (10.1016/j.neucom.2016.12.038_bib125) 2015; 42
Song (10.1016/j.neucom.2016.12.038_bib142) 2016; 214
Wu (10.1016/j.neucom.2016.12.038_bib160) 2015; 74
Hubel (10.1016/j.neucom.2016.12.038_bib73) 1962; 160
Elfwing (10.1016/j.neucom.2016.12.038_bib41) 2015; 64
Ma (10.1016/j.neucom.2016.12.038_bib108) 2016; 77
Hong (10.1016/j.neucom.2016.12.038_bib62) 2015; 24
Najafabadi (10.1016/j.neucom.2016.12.038_bib122) 2015; 2
Hinton (10.1016/j.neucom.2016.12.038_bib60) 2006; 313
Mohamed (10.1016/j.neucom.2016.12.038_bib116) 2012; 20
10.1016/j.neucom.2016.12.038_bib74
10.1016/j.neucom.2016.12.038_bib76
Deng (10.1016/j.neucom.2016.12.038_bib34) 1990; 4
10.1016/j.neucom.2016.12.038_bib77
10.1016/j.neucom.2016.12.038_bib78
Deng (10.1016/j.neucom.2016.12.038_bib31) 2014; 3
Indiveri (10.1016/j.neucom.2016.12.038_bib75) 2015; 103
Abdel Zaher (10.1016/j.neucom.2016.12.038_bib1) 2016; 46
Chen (10.1016/j.neucom.2016.12.038_bib20) 2015; 23
10.1016/j.neucom.2016.12.038_bib71
Szegedy (10.1016/j.neucom.2016.12.038_bib148) 2013
Chandra (10.1016/j.neucom.2016.12.038_bib19) 2016; 171
Cui (10.1016/j.neucom.2016.12.038_bib27) 2015; 23
10.1016/j.neucom.2016.12.038_bib152
Song (10.1016/j.neucom.2016.12.038_bib143) 2016; 171
Kalogerakis (10.1016/j.neucom.2016.12.038_bib80) 2010; 29
Aryal (10.1016/j.neucom.2016.12.038_bib6) 2016; 36
10.1016/j.neucom.2016.12.038_bib151
Liu (10.1016/j.neucom.2016.12.038_bib103) 2015; 60
Tang (10.1016/j.neucom.2016.12.038_bib150) 2015; 53
10.1016/j.neucom.2016.12.038_bib155
Dahl (10.1016/j.neucom.2016.12.038_bib28) 2012; 20
Hu (10.1016/j.neucom.2016.12.038_bib66) 2015; 7
Ren (10.1016/j.neucom.2016.12.038_bib131) 2016; 175
Chen (10.1016/j.neucom.2016.12.038_bib22) 2016; 38
Juang (10.1016/j.neucom.2016.12.038_bib79) 1986; 32
Krizhevsky (10.1016/j.neucom.2016.12.038_bib86) 2012
Ling (10.1016/j.neucom.2016.12.038_bib101) 2015; 32
Wu (10.1016/j.neucom.2016.12.038_bib159) 2016; 175
Wang (10.1016/j.neucom.2016.12.038_bib157) 2015; 16
References_xml – volume: 46
  start-page: 487
  year: 2015
  end-page: 498
  ident: bib52
  article-title: Two-stage learning to predict human eye fixations via SADEs
  publication-title: IEEE Trans. Cybern.
– start-page: 1097
  year: 2012
  end-page: 1105
  ident: bib86
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Adv. Neural Inf. Process. Syst. 25
– volume: 23
  start-page: 1938
  year: 2015
  end-page: 1949
  ident: bib114
  article-title: Speaker adaptive training of deep neural network acoustic models using I-vectors
  publication-title: IEEE/ACM Trans. Audio, Speech, Lang. Process.
– volume: 64
  start-page: 49
  year: 2015
  end-page: 58
  ident: bib49
  article-title: Frame-by-frame language identification in short utterances using deep neural networks
  publication-title: Neural Netw.
– volume: 26
  start-page: 75
  year: 2009
  end-page: 80
  ident: bib7
  article-title: Developments and directions in speech recognition and understanding [dsp education]
  publication-title: IEEE Trans. Signal Process. Mag.
– volume: 13
  start-page: 1425
  year: 2015
  end-page: 1435
  ident: bib169
  article-title: Resilient control in the presence of DoS Attack: switched system approach
  publication-title: Int. J. Control, Autom., Syst.
– volume: 59
  start-page: 291
  year: 1988
  end-page: 294
  ident: bib15
  article-title: Auto-association by multilayer perceptrons and singular value decomposition
  publication-title: Biol. Cybern.
– volume: 14
  start-page: 1771
  year: 2002
  end-page: 1800
  ident: bib56
  article-title: Training products of experts by minimizing contrastive divergence
  publication-title: Neural Comput.
– volume: 74
  start-page: 9889
  year: 2015
  end-page: 9907
  ident: bib160
  article-title: Acoustic to articulatory mapping with deep neural network
  publication-title: Multimed. Tools Appl.
– year: 1982
  ident: bib8
  article-title: Computer Vision
– volume: 32
  start-page: 307
  year: 1986
  end-page: 309
  ident: bib79
  article-title: Maximum likelihood estimation for multivariate mixture observations of markov chains (corresp.)
  publication-title: IEEE Trans. Inf. Theory
– reference: P. Sermanet, S. Chintala, Y. LeCun, Convolutional neural networks applied to house numbers digit classification, in: Proceedings of the 21st International Conference on Pattern Recognition (ICPR), 2012, pp. 3288–3291.
– reference: Y. Jia, C. Huang, T. Darrell, Beyond spatial pyramids: Receptive field learning for pooled image features, in: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2012, pp. 3370–3377.
– volume: 39
  start-page: 1677
  year: 1991
  end-page: 1681
  ident: bib32
  article-title: Phonemic hidden markov models with continuous mixture output densities for large vocabulary word recognition
  publication-title: IEEE Trans. Signal Process.
– start-page: 599
  year: 2012
  end-page: 619
  ident: bib55
  article-title: A practical guide to training restricted Boltzmann machines
  publication-title: Neural Netw.: Tricks Trade
– volume: 35
  start-page: 3
  year: 2015
  ident: bib50
  article-title: 3D mesh labeling via deep convolutional neural networks
  publication-title: ACM Trans. Graph. (TOG)
– volume: 31
  start-page: 761
  year: 2014
  end-page: 763
  ident: bib129
  article-title: DANN: a deep learning approach for annotating the pathogenicity of genetic variants
  publication-title: Bioinformatics
– year: 2016
  ident: bib109
  article-title: Mean-square
  publication-title: IEEE Trans. Syst., Man Cybern.: Syst.
– volume: 16
  start-page: 17315
  year: 2015
  end-page: 17330
  ident: bib157
  article-title: DeepCNF-D: predicting protein order/disorder regions by weighted deep convolutional neural fields
  publication-title: Int. J. Mol. Sci.
– reference: , 2012.
– volume: 22
  start-page: 1671
  year: 2015
  end-page: 1675
  ident: bib132
  article-title: Deep neural network approaches to speaker and language recognition
  publication-title: IEEE Signal Process. Lett.
– reference: P. Vincent, H. Larochelle, Y. Bengio, P.A. Manzagol, Extracting and composing robust features with denoising autoencoders, in: Proceedings of the 25th International Conference on Machine Learning, 2008, pp. 1096–1103.
– volume: 61
  start-page: 85
  year: 2015
  end-page: 117
  ident: bib137
  article-title: Deep learning in neural networks: an overview
  publication-title: Neural Netw.
– start-page: 2553
  year: 2013
  end-page: 2561
  ident: bib148
  article-title: Deep neural networks for object detection
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 38
  start-page: 1088
  year: 2016
  end-page: 1098
  ident: bib22
  article-title: Cnntracker
  publication-title: Appl. Soft Comput.
– reference: R. Collobert, J. Weston, A unified architecture for natural language processing: Deep neural networks with multitask learning, in: Proceedings of the 25th international conference on Machine learning, 2008, pp. 160–167.
– reference: D. Ciresan, U. Meier, J. Schmidhuber, Multi-column deep neural networks for image classification, in: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2012, pp. 3642–3649.
– volume: 86
  start-page: 650
  year: 2013
  end-page: 663
  ident: bib69
  article-title: Quantised recursive filtering for a class of nonlinear systems with multiplicative noises and missing measurements
  publication-title: Int. J. Control
– volume: 12
  start-page: 1025
  year: 2011
  end-page: 1068
  ident: bib153
  article-title: Two distributed-state models for generating high-dimensional time series
  publication-title: J. Mach. Learn. Res.
– volume: 29
  start-page: 82
  year: 2012
  end-page: 97
  ident: bib58
  article-title: Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups
  publication-title: Signal Process. Mag., IEEE
– volume: 3
  start-page: e2
  year: 2014
  ident: bib31
  article-title: A tutorial survey of architectures, algorithms, and applications for deep learning
  publication-title: APSIPA Trans. Signal Inf. Process.
– reference: Y.L. Boureau, N.L. Roux, F. Bach, J. Ponce, Y. LeCun, Ask the locals: multi-way local pooling for image recognition, in: 2011 IEEE International Conference on Computer Vision (ICCV), 2011, pp. 2651–2658.
– volume: 170
  start-page: 251
  year: 2015
  end-page: 256
  ident: bib99
  article-title: A comparative study on selecting acoustic modeling units in deep neural networks based large vocabulary chinese speech recognition
  publication-title: Neurocomputing
– volume: 9
  start-page: 203
  year: 2015
  end-page: 210
  ident: bib168
  article-title: Finite frequency property-based robust control for singularly perturbed system
  publication-title: IET Control Theory Appl.
– volume: 65
  start-page: 103
  year: 2015
  end-page: 108
  ident: bib177
  article-title: Deep neural network based image annotation
  publication-title: Pattern Recognit. Lett.
– year: 2006
  ident: bib14
  article-title: Pattern Recognition and Machine Learning
– reference: H. Larochelle, Y. Bengio, Classification using discriminative restricted Boltzmann machines, in: Proceedings of the 25th international conference on Machine learning, 2008, pp. 536–543.
– volume: 42
  start-page: 722
  year: 2015
  end-page: 737
  ident: bib125
  article-title: Audio-visual speech recognition using deep learning
  publication-title: Appl. Intell.
– reference: Q. Liu, Z. Wang, X. He, G. Ghinea, F.E. Alsaadi, A resilient approach to distributed filter design for time-varying systems under stochastic nonlinearities and sensor degradation, IEEE Transactions on Signal Processing, accepted for publication.
– reference: J. Deng, W. Dong, R. Socher, L.J. Li, K. Li, L. Fei-Fei, Imagenet: A large-scale hierarchical image database, in: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2009, 2009, pp. 248–255.
– volume: 160
  start-page: 106
  year: 1962
  end-page: 154
  ident: bib73
  article-title: Receptive fields, binocular interaction and functional architecture in the cat's visual cortex
  publication-title: J. Physiol.
– volume: 77
  start-page: 257
  year: 1989
  end-page: 286
  ident: bib130
  article-title: A tutorial on hidden markov models and selected applications in speech recognition
  publication-title: Proc. IEEE
– volume: 31
  start-page: 65
  year: 2015
  end-page: 86
  ident: bib164
  article-title: Environmentally robust asr front-end for deep neural network acoustic models
  publication-title: Comput. Speech Lang.
– reference: N.D. Lane, P. Georgiev, Can deep learning revolutionize mobile sensing? in: Proceedings of the 16th International Workshop on Mobile Computing Systems and Applications, 2015, pp. 117–122.
– volume: 31
  start-page: 65
  year: 2016
  end-page: 75
  ident: bib67
  article-title: Estimation, filtering and fusion for networked systems with network-induced phenomena: New progress and prospects
  publication-title: Inf. Fusion
– volume: 64
  start-page: 155
  year: 2016
  end-page: 162
  ident: bib68
  article-title: A variance-constrained approach to recursive state estimation for time-varying complex networks with missing measurements
  publication-title: Automatica
– volume: 32
  start-page: 333
  year: 2012
  end-page: 338
  ident: bib24
  article-title: Multi-column deep neural network for traffic sign classification
  publication-title: Neural Netw.
– reference: O. Emad, I.A. Yassine, A.S. Fahmy, Automatic localization of the left ventricle in cardiac mri images using deep learning, in: Engineering in Medicine and Biology Society (EMBC), 2015 Proceedings of the 37th Annual International Conference of the IEEE, 2015, pp. 683–686.
– volume: 32
  start-page: 190
  year: 2013
  ident: bib72
  article-title: Fine-grained semi-supervised labeling of large shape collections
  publication-title: ACM Trans. Graph. (TOG)
– volume: 86
  start-page: 2278
  year: 1998
  end-page: 2324
  ident: bib92
  article-title: Gradient-based learning applied to document recognition
  publication-title: Proc. IEEE
– reference: V. Mnih, H. Larochelle, G.E. Hinton, Conditional restricted Boltzmann machines for structured output prediction,
– volume: 7
  start-page: 14680
  year: 2015
  end-page: 14707
  ident: bib66
  article-title: Transferring deep convolutional neural networks for the scene classification of high-resolution remote sensing imagery
  publication-title: Remote Sens.
– volume: 36
  start-page: 260
  year: 2016
  end-page: 273
  ident: bib6
  article-title: Data driven articulatory synthesis with deep neural networks
  publication-title: Comput. Speech Lang.
– reference: D. Eigen, J. Rolfe, R. Fergus, Y. LeCun, Understanding deep architectures using a recursive convolutional network,
– volume: 20
  start-page: 30
  year: 2012
  end-page: 42
  ident: bib28
  article-title: Context-dependent pre-trained deep neural networks for large-vocabulary speech recognition
  publication-title: IEEE Trans. Audio, Speech, Lang. Process.
– year: 2014
  ident: bib144
  article-title: Image processing, analysis, and machine vision
  publication-title: Cengage Learn.
– volume: 34
  start-page: 98
  year: 2015
  ident: bib9
  article-title: Learning visual similarity for product design with convolutional neural networks
  publication-title: ACM Trans. Graph. (TOG)
– volume: 216
  start-page: 657
  year: 2016
  end-page: 665
  ident: bib175
  article-title: Passivity analysis for discrete-time neural networks with mixed time-delays and randomly occurring quantization effects
  publication-title: Neurocomputing
– volume: 27
  start-page: 125
  year: 2016
  end-page: 138
  ident: bib48
  article-title: Change detection in synthetic aperture radar images based on deep neural networks
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– reference: M.D. Zeiler, R. Fergus, Stochastic pooling for regularization of deep convolutional neural networks,
– reference: M. Henderson, B. Thomson, S. Young, Deep neural network approach for the dialog state tracking challenge, in: Proceedings of the SIGDIAL 2013 Conference, 2013, pp. 467–471.
– volume: 85
  start-page: 83
  year: 2016
  end-page: 95
  ident: bib70
  article-title: Transfer learning for short-term wind speed prediction with deep neural networks
  publication-title: Renew. Energy
– volume: 529
  start-page: 484
  year: 2016
  end-page: 489
  ident: bib140
  article-title: Mastering the game of go with deep neural networks and tree search
  publication-title: Nature
– reference: X. Glorot, A. Bordes, Y. Bengio, Domain adaptation for large-scale sentiment classification: A deep learning approach, in: Proceedings of the 28th International Conference on Machine Learning (ICML-11), 2011, pp. 513–520.
– reference: T.N. Sainath, B. Kingsbury, A.r. Mohamed, B. Ramabhadran, Learning filter banks within a deep neural network framework, in: Proceedings of IEEE Workshop on Automatic Speech Recognition and Understanding (ASRU), 2013, pp. 297–302.
– volume: 59
  start-page: 1
  year: 2016
  end-page: 14
  ident: bib21
  article-title: Pinning controllability of autonomous Boolean control networks
  publication-title: Sci. China Inf. Sci.
– reference: J. Ngiam, A. Khosla, M. Kim, J. Nam, H. Lee, A.Y. Ng, Multimodal deep learning, in: Proceedings of the 28th international conference on machine learning (ICML-11), 2011, pp. 689–696.
– volume: 171
  start-page: 1205
  year: 2016
  end-page: 1215
  ident: bib19
  article-title: Fast learning in deep neural networks
  publication-title: Neurocomputing
– volume: 22
  start-page: 1096
  year: 2009
  end-page: 1104
  ident: bib95
  article-title: Unsupervised feature learning for audio classification using convolutional deep belief networks
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 175
  start-page: 392
  year: 2016
  end-page: 400
  ident: bib163
  article-title: Almost sure
  publication-title: Neurocomputing
– volume: 5
  start-page: 13
  year: 2010
  end-page: 18
  ident: bib3
  article-title: Deep machine learning-a new frontier in artificial intelligence research [research frontier]
  publication-title: IEEE Comput. Intell. Mag.
– volume: 214
  start-page: 340
  year: 2016
  end-page: 349
  ident: bib142
  article-title: Recursive approach to networked fault estimation with packet dropouts and randomly occurring uncertainties
  publication-title: Neurocomputing
– volume: 103
  start-page: 1379
  year: 2015
  end-page: 1397
  ident: bib75
  article-title: Memory and information processing in neuromorphic systems
  publication-title: Proc. IEEE
– reference: A. Fischer, C. Igel, Training RBMs based on the signs of the CD approximation of the log-likelihood derivatives, in: ESANN, 2011.
– reference: G. Desjardins, Y. Bengio, Empirical evaluation of convolutional RBMs for vision, Département d′Informatique et de Recherche Opérationnelle, Université de Montréal, Tech. Rep. 1327, 2008.
– reference: N. Jaitly, G. Hinton, Learning a better representation of speech soundwaves using restricted Boltzmann machines, in: Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2011, pp. 5884–5887.
– volume: 48
  start-page: 2847
  year: 2015
  end-page: 2858
  ident: bib96
  article-title: IODA: an input/output deep architecture for image labeling
  publication-title: Pattern Recognit.
– volume: 9
  year: 2015
  ident: bib111
  article-title: Convolutional neural network for multi-category rapid serial visual presentation BCI
  publication-title: Front. Comput. Neurosci.
– reference: A. Mohamed, T.N. Sainath, G. Dahl, B. Ramabhadran, G.E. Hinton, M.A. Picheny, Deep belief networks using discriminative features for phone recognition, in: Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2011, pp. 5060–5063.
– reference: X. Chen, Y. Xu, D.W.K. Wong, T.Y. Wong, J. Liu, Glaucoma detection based on deep convolutional neural network, in: Engineering in Medicine and Biology Society (EMBC), in: Proceedings of the 37th Annual International Conference of the IEEE, 2015, pp. 715–718.
– volume: 521
  start-page: 436
  year: 2015
  end-page: 444
  ident: bib91
  article-title: Deep learning
  publication-title: Nature
– reference: Y. Tang, R. Salakhutdinov, G.E. Hinton, Deep lambertian networks,
– volume: 13
  start-page: 8
  year: 2015
  end-page: 12
  ident: bib85
  article-title: Human detection and activity classification based on micro-doppler signatures using deep convolutional neural networks
  publication-title: IEEE Geosci. Remote Sens. Lett.
– volume: 3361
  year: 1995
  ident: bib90
  article-title: Convolutional networks for images, speech, and time series
  publication-title: Handb. brain Theory Neural Netw.
– volume: 37
  start-page: 1172
  year: 2009
  end-page: 1206
  ident: bib4
  article-title: Does median filtering truly preserve edges better than linear filtering?
  publication-title: Ann. Stat.
– volume: 19
  start-page: 153
  year: 2007
  end-page: 160
  ident: bib13
  article-title: Greedy layer-wise training of deep networks
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 12
  start-page: 2448
  year: 2015
  end-page: 2452
  ident: bib105
  article-title: Multiview deep learning for land-use classification
  publication-title: IEEE Geosci. Remote Sens. Lett.
– reference: Y. Pan, W. Huang, Z. Lin, W. Zhu, J. Zhou, J. Wong, Z. Ding, Brain tumor grading based on neural networks and convolutional neural networks, in: Proceedings of the 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2015, pp. 699–702.
– volume: 313
  start-page: 504
  year: 2006
  end-page: 507
  ident: bib60
  article-title: Reducing the dimensionality of data with neural networks
  publication-title: Science
– volume: 26
  start-page: 1493
  year: 2013
  end-page: 1501
  ident: bib2
  article-title: Adaptive multi-column deep neural networks with application to robust image denoising
  publication-title: Adv. Neural Inf. Process. Syst.
– reference: T. Shinozaki, S. Watanabe, Structure discovery of deep neural network based on evolutionary algorithms, in: Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2015, pp. 4979–4983.
– volume: 46
  start-page: 139
  year: 2016
  end-page: 144
  ident: bib1
  article-title: Breast cancer classification using deep belief networks
  publication-title: Exp. Syst. Appl.
– reference: K. Jarrett, K. Kavukcuoglu, M. Ranzato, Y. LeCun, What is the best multi-stage architecture for object recognition? in: Proceedings of IEEE Proceedings of the 12th International Conference on Computer Vision, 2009, pp. 2146–2153.
– year: 2016
  ident: bib107
  article-title: Distributed event-based set-membership filtering for a class of nonlinear systems with sensor saturations over sensor networks
  publication-title: IEEE Trans. Cybern.
– volume: 179
  start-page: 238
  year: 2016
  end-page: 245
  ident: bib63
  article-title: Non-fragile state estimation for discrete Markovian jumping neural networks
  publication-title: Neurocomputing
– reference: 2012.
– start-page: 1339
  year: 2009
  end-page: 1347
  ident: bib121
  article-title: 3D object recognition with deep belief nets
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 197
  start-page: 205
  year: 2016
  end-page: 211
  ident: bib162
  article-title: A new approach to non-fragile state estimation for continuous neural networks with time-delays
  publication-title: Neurocomputing
– volume: 32
  start-page: 35
  year: 2015
  end-page: 52
  ident: bib101
  article-title: Deep learning for acoustic modeling in parametric speech generation: a systematic review of existing techniques and future trends
  publication-title: IEEE Signal Process. Mag.
– volume: 32
  start-page: 1627
  year: 2010
  end-page: 1645
  ident: bib43
  article-title: Object detection with discriminatively trained part-based models
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 18
  start-page: 1527
  year: 2006
  end-page: 1554
  ident: bib59
  article-title: A fast learning algorithm for deep belief nets
  publication-title: Neural Comput.
– volume: 45
  start-page: 619
  year: 2016
  end-page: 632
  ident: bib65
  article-title: On co-design of filter and fault estimator against randomly occurring nonlinearities and randomly occurring deception attacks
  publication-title: Int. J. Gen. Syst.
– reference: R.G. Brown, P.Y. Hwang, Introduction to random signals and applied kalman filtering: with matlab exercises and solutions, Introduction to random signals and applied Kalman filtering: with MATLAB exercises and solutions, by Brown, Robert Grover.; Hwang, Patrick YC New York: Wiley, c1997, vol. 1, 1997.
– volume: 23
  start-page: 1469
  year: 2015
  end-page: 1477
  ident: bib27
  article-title: Data augmentation for deep neural network acoustic modeling
  publication-title: IEEE/ACM Trans. Audio, Speech Lang. Process. (TASLP)
– volume: 60
  start-page: 2553
  year: 2015
  end-page: 2558
  ident: bib102
  article-title: Event-based
  publication-title: IEEE Trans. Autom. Control
– volume: 22
  start-page: 1713
  year: 2014
  end-page: 1725
  ident: bib161
  article-title: Fast adaptation of deep neural network based on discriminant codes for speech recognition
  publication-title: IEEE/ACM Trans. Audio, Speech, Lang. Process.
– reference: A. Krizhevsky, G.E. Hinton, Convolutional deep belief networks on cifar-10, Unpublished manuscript, vol. 40, 2010.
– year: 2013
  ident: bib113
  publication-title: Fast Train. convolutional Netw. FFTs
– reference: I.G.Y. Bengio, A. Courville, Deep learning, book in preparation for MIT Press [Online], 2016.
– volume: 64
  start-page: 39
  year: 2015
  end-page: 48
  ident: bib134
  article-title: Deep convolutional neural networks for large-scale speech tasks
  publication-title: Neural Netw.
– volume: 1
  start-page: 39
  year: 2009
  ident: bib117
  article-title: Deep belief networks for phone recognition
  publication-title: Nips Workshop Deep Learn. Speech Recognit. Relat. Appl.
– volume: 32
  start-page: 240
  year: 2015
  end-page: 251
  ident: bib126
  article-title: Machine learning in automatic speech recognition: a survey
  publication-title: IETE Tech. Rev.
– reference: L. Deng, D. Yu, Deep convex net: A scalable architecture for speech pattern classification, in: Proceedings of the Interspeech, 2011.
– volume: 136
  start-page: 117
  year: 2015
  end-page: 128
  ident: bib158
  article-title: Pose estimation-dependent identification method for field moth images using deep learning architecture
  publication-title: Biosyst. Eng.
– reference: Y. LeCun, F.J. Huang, L. Bottou, Learning methods for generic object recognition with invariance to pose and lighting, in: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2004, vol. 2, pp. 97–104.
– volume: 168
  start-page: 408
  year: 2015
  end-page: 417
  ident: bib176
  article-title: Combining heterogeneous deep neural networks with conditional random fields for chinese dialogue act recognition
  publication-title: Neurocomputing
– volume: 20
  start-page: 7
  year: 2012
  end-page: 13
  ident: bib120
  article-title: Deep and wide: multiple layers in automatic speech recognition
  publication-title: IEEE Trans. Audio, Speech, Lang. Process.
– volume: 28
  start-page: 145
  year: 2011
  end-page: 154
  ident: bib165
  article-title: Deep learning and its applications to signal and information processing [exploratory dsp]
  publication-title: IEEE Signal Process. Mag.
– reference: A. Nguyen, J. Yosinski, J. Clune, Deep neural networks are easily fooled: High confidence predictions for unrecognizable images, in: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015, pp. 427–436.
– volume: 23
  start-page: 1172
  year: 2015
  end-page: 1183
  ident: bib20
  article-title: Multitask learning of deep neural networks for low-resource speech recognition
  publication-title: IEEE/ACM Trans. Audio, Speech, Lang. Process.
– start-page: 1137
  year: 2006
  end-page: 1144
  ident: bib128
  article-title: Efficient learning of sparse representations with an energy-based model
  publication-title: Adv. Neural Inf. Process. Syst.
– reference: S. Li, Z.Q. Liu, A. Chan, Heterogeneous multi-task learning for human pose estimation with deep convolutional neural network, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, 2014, pp. 482–489.
– volume: 124
  start-page: 127
  year: 2016
  end-page: 146
  ident: bib83
  article-title: Deep neural network with weight sparsity control and pre-training extracts hierarchical features and enhances classification performance: Evidence from whole-brain resting-state functional connectivity patterns of schizophrenia
  publication-title: NeuroImage
– reference: , 2013.
– reference: I. Sutskever, T. Tieleman, On the convergence properties of contrastive divergence, in: Proceedings of International Conference on Artificial Intelligence and Statistics, vol. 9, (2010) pp. 789–795.
– volume: 59
  start-page: 112204
  year: 2016
  ident: bib174
  article-title: Inferring nonlinear lateral flow immunoassay state-space models via an unscented Kalman filter
  publication-title: Sci. China Inf. Sci.
– volume: 20
  start-page: 14
  year: 2012
  end-page: 22
  ident: bib116
  article-title: Acoustic modeling using deep belief networks
  publication-title: IEEE Trans. Audio, Speech, Lang. Process.
– reference: L. Deng, J. Li, J.T. Huang, K. Yao, D. Yu, F. Seide, M. Seltzer, G. Zweig, X. He, J. Williams, Y. Gong, A. Acero, Recent advances in deep learning for speech research at microsoft, in: Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2013, pp. 8604–8608.
– volume: 60
  start-page: 2470
  year: 2015
  end-page: 2475
  ident: bib103
  article-title: Event-based recursive distributed filtering over wireless sensor networks
  publication-title: IEEE Trans. Autom. Control
– start-page: 477
  year: 2011
  end-page: 488
  ident: bib5
  article-title: An introduction to deep learning
  publication-title: ESANN
– volume: 8
  start-page: 684
  year: 2016
  end-page: 692
  ident: bib173
  article-title: Deep belief networks for quantitative analysis of a gold immunochromatographic strip
  publication-title: Cogn. Comput.
– volume: 4
  start-page: 345
  year: 1990
  end-page: 357
  ident: bib34
  article-title: Large vocabulary word recognition using context-dependent allophonic hidden markov models
  publication-title: Comput. Speech Lang.
– volume: 2
  start-page: 1
  year: 2015
  end-page: 21
  ident: bib122
  article-title: Deep learning applications and challenges in big data analytics
  publication-title: J. Big Data
– year: 2012
  ident: bib30
  article-title: Three classes of deep learning architectures and their applications: a tutorial survey
  publication-title: APSIPA Trans. Signal Inf. Process.
– reference: Y. Tang, R. Salakhutdinov, G.E. Hinton, Robust boltzmann machines for recognition and denoising, in: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2012, pp. 2264–2271.
– volume: 11
  start-page: 3371
  year: 2010
  end-page: 3408
  ident: bib156
  article-title: Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion
  publication-title: J. Mach. Learn. Res.
– reference: J. Hennrich, C. Herff, D. Heger, T. Schultz, Investigating deep learning for FNIRs based BCI, in: Engineering in Medicine and Biology Society (EMBC), 2015 Proceedings of the 37th Annual International Conference of the IEEE, 2015, pp. 2844–2847.
– volume: 42
  start-page: 105
  year: 2015
  end-page: 112
  ident: bib39
  article-title: Adaptive cascade deep convolutional neural networks for face alignment
  publication-title: Comput. Stand. Interfaces
– start-page: 52
  year: 2011
  end-page: 59
  ident: bib112
  article-title: Stacked convolutional auto-encoders for hierarchical feature extraction
  publication-title: Artif. Neural Netw. Mach. Learn.-ICANN 2011
– volume: 29
  start-page: 102
  year: 2010
  ident: bib80
  article-title: Learning 3D mesh segmentation and labeling
  publication-title: ACM Trans. Graph. (TOG)
– reference: N. Srivastava, R. Salakhutdinov, Learning representations for multimodal data with deep belief nets, in: Proceedings of International Conference on Machine Learning Workshop, 2012.
– volume: 175
  start-page: 310
  year: 2016
  end-page: 323
  ident: bib159
  article-title: Regional deep learning model for visual tracking
  publication-title: Neurocomputing
– volume: 6
  year: 2016
  ident: bib97
  article-title: Temperature based restricted Boltzmann machines
  publication-title: Sci. Rep.
– volume: 53
  start-page: 1174
  year: 2015
  end-page: 1185
  ident: bib150
  article-title: Compressed-domain ship detection on spaceborne optical image using deep neural network and extreme learning machine
  publication-title: IEEE Trans. Geosci. Remote Sens.
– reference: Y.L. Boureau, J. Ponce, Y. LeCun, A theoretical analysis of feature pooling in visual recognition, in: Proceedings of the 27th International Conference on Machine Learning (ICML-10), 2010, pp. 111–118.
– volume: 74
  start-page: 9871
  year: 2015
  end-page: 9888
  ident: bib37
  article-title: Head motion synthesis from speech using deep neural networks
  publication-title: Multimed. Tools Appl.
– volume: 18
  start-page: 1
  year: 2015
  end-page: 13
  ident: bib84
  article-title: Handwritten hangul recognition using deep convolutional neural networks
  publication-title: Int. J. Doc. Anal. Recognit. (IJDAR)
– volume: 23
  start-page: 1661
  year: 2011
  end-page: 1674
  ident: bib154
  article-title: A connection between score matching and denoising autoencoders
  publication-title: Neural Comput.
– reference: P. Hamel, D. Eck, Learning features from music audio with deep belief networks, in: ISMIR, 2010, pp. 339–344.
– volume: 22
  start-page: 229
  year: 2015
  end-page: 233
  ident: bib81
  article-title: NMF-based target source separation using deep neural network
  publication-title: IEEE Signal Process. Lett.
– volume: 21
  start-page: 1601
  year: 2009
  end-page: 1621
  ident: bib12
  article-title: Justifying and generalizing contrastive divergence
  publication-title: Neural Comput.
– volume: 32
  start-page: 294
  year: 2015
  end-page: 303
  ident: bib100
  article-title: An image retrieval method for binary images based on DBN and Softmax classifier
  publication-title: IETE Tech. Rev.
– volume: 6
  start-page: 21
  year: 2015
  ident: bib149
  article-title: A real-time hand posture recognition system using deep neural networks
  publication-title: ACM Trans. Intell. Syst. Technol. (TIST)
– start-page: 3
  year: 1994
  ident: bib61
  article-title: Autoencoders, minimum description length, and Helmholtz free energy
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 36
  start-page: 193
  year: 1980
  end-page: 202
  ident: bib46
  article-title: Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position
  publication-title: Biol. Cybern.
– volume: 125
  start-page: 17
  year: 2014
  end-page: 21
  ident: bib167
  article-title: Delay-dependent stability criteria for time-varying delay neural networks in the delta domain
  publication-title: Neurocomputing
– volume: 35
  start-page: 1798
  year: 2013
  end-page: 1828
  ident: bib11
  article-title: Representation learning: A review and new perspectives
  publication-title: IEEE Pattern Anal. Mach. Intell.
– volume: 24
  start-page: 93
  year: 2016
  end-page: 104
  ident: bib146
  article-title: Unseen noise estimation using separable deep auto encoder for speech enhancement
  publication-title: IEEE/ACM Trans. Audio, Speech, Lang. Process.
– year: 2016
  ident: bib106
  article-title: Event-triggered mean-square consensus control for time-varying stochastic multi-agent system with sensor saturations
  publication-title: IEEE Trans. Autom. Control
– reference: F. Feng, X. Wang, R. Li, Cross-modal retrieval with correspondence autoencoder, in: Proceedings of the ACM International Conference on Multimedia, 2014, pp. 7–16.
– volume: 24
  start-page: 5659
  year: 2015
  end-page: 5670
  ident: bib62
  article-title: Multimodal deep autoencoder for human pose recovery
  publication-title: IEEE Trans. Image Process.
– year: 2013
  ident: bib110
  publication-title: K.-sparse autoencoders
– volume: 171
  start-page: 444
  year: 2016
  end-page: 451
  ident: bib143
  article-title: Resilisent finite-time stabilization of fuzzy stochastic systems with randomly occurring uncertainities and randomly occurring gain fluctuations
  publication-title: Neurocomputing
– volume: 182
  start-page: 18
  year: 2016
  end-page: 24
  ident: bib166
  article-title: Design of non-fragile state estimators for discrete time-delayed neural networks with parameter uncertainties
  publication-title: Neurocomputing
– reference: R. Kelley, L. Wigand, B. Hamilton, K. Browne, M. Nicolescu, M. Nicolescu, Deep networks for predicting human intent with respect to objects, in: Proceedings of the Seventh Annual ACM/IEEE International Conference on Human-Robot Interaction, 2012, pp. 171–172.
– volume: 77
  start-page: 37
  year: 2016
  end-page: 54
  ident: bib108
  article-title: Robust filtering for a class of nonlinear stochastic systems with probability constraints
  publication-title: Autom. Remote Control
– reference: Y. Yuan, H. Yuan, L. Guo, H. Yang, S. Sun, Robust control of networked control system under DoS attacks: a unified game approach, IEEE transactions on Industrial Informatics,
– volume: 8
  start-page: 143
  year: 2016
  end-page: 152
  ident: bib172
  article-title: A novel switching delayed PSO algorithm for estimating unknown parameters of lateral flow immunoassay
  publication-title: Cogn. Comput.
– reference: .
– volume: 43
  start-page: 387
  year: 2014
  end-page: 401
  ident: bib64
  article-title: State estimation for a class of discrete nonlinear systems with randomly occurring uncertainties and distributed sensor delays
  publication-title: Int. J. Gen. Syst.
– start-page: 2846
  year: 2010
  end-page: 2849
  ident: bib118
  article-title: Investigation of full-sequence training of deep belief networks for speech recognition
  publication-title: INTERSPEECH
– volume: 64
  start-page: 29
  year: 2015
  end-page: 38
  ident: bib41
  article-title: Expected energy-based restricted boltzmann machine for classification
  publication-title: Neural Netw.
– volume: 2
  start-page: 1
  year: 2009
  end-page: 127
  ident: bib10
  article-title: Learning deep architectures for AI
  publication-title: Found. Trends Mach. Learn.
– reference: H. Lee, R. Grosse, R. Ranganath, A.Y. Ng, Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations, in: Proceedings of the 26th Annual International Conference on Machine Learning, 2009, pp. 609–616.
– reference: S. Rifai, P. Vincent, X. Muller, X. Glorot, Y. Bengio, Contractive auto-encoders: Explicit invariance during feature extraction, in: Proceedings of the 28th International Conference on Machine Learning (ICML-11), 2011, pp. 833–840.
– volume: 38
  start-page: 295
  year: 2015
  end-page: 307
  ident: bib38
  article-title: Image super-resolution using deep convolutional networks
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 268
  start-page: 1158
  year: 1995
  end-page: 1161
  ident: bib57
  article-title: The “wake-sleep” algorithm for unsupervised neural networks
  publication-title: Science
– reference: J.T. Huang, J. Li, D. Yu, L. Deng, Y. Gong, Cross-language knowledge transfer using multilingual deep neural network with shared hidden layers, in: Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2013, pp. 7304–7308.
– volume: 175
  start-page: 427
  year: 2016
  end-page: 432
  ident: bib131
  article-title: Local visual feature fusion via maximum margin multimodal deep neural network
  publication-title: Neurocomputing
– reference: R. Salakhutdinov, G.E. Hinton, Using deep belief nets to learn covariance kernels for gaussian processes, in: Proceedings of the Conference on Neural Information Processing Systems, 2007, pp. 1249–1256.
– volume: 31
  year: 2014
  ident: bib141
  article-title: Subjective and objective analysis of speech enhancement algorithms for single channel speech patterns of indian and english languages
  publication-title: IETE Tech. Rev.
– year: 2016
  ident: 10.1016/j.neucom.2016.12.038_bib107
  article-title: Distributed event-based set-membership filtering for a class of nonlinear systems with sensor saturations over sensor networks
  publication-title: IEEE Trans. Cybern.
– volume: 31
  start-page: 761
  year: 2014
  ident: 10.1016/j.neucom.2016.12.038_bib129
  article-title: DANN: a deep learning approach for annotating the pathogenicity of genetic variants
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btu703
– volume: 23
  start-page: 1172
  issue: 7
  year: 2015
  ident: 10.1016/j.neucom.2016.12.038_bib20
  article-title: Multitask learning of deep neural networks for low-resource speech recognition
  publication-title: IEEE/ACM Trans. Audio, Speech, Lang. Process.
– volume: 9
  year: 2015
  ident: 10.1016/j.neucom.2016.12.038_bib111
  article-title: Convolutional neural network for multi-category rapid serial visual presentation BCI
  publication-title: Front. Comput. Neurosci.
  doi: 10.3389/fncom.2015.00146
– volume: 19
  start-page: 153
  year: 2007
  ident: 10.1016/j.neucom.2016.12.038_bib13
  article-title: Greedy layer-wise training of deep networks
  publication-title: Adv. Neural Inf. Process. Syst.
– ident: 10.1016/j.neucom.2016.12.038_bib155
  doi: 10.1145/1390156.1390294
– volume: 35
  start-page: 3
  issue: 1
  year: 2015
  ident: 10.1016/j.neucom.2016.12.038_bib50
  article-title: 3D mesh labeling via deep convolutional neural networks
  publication-title: ACM Trans. Graph. (TOG)
  doi: 10.1145/2835487
– ident: 10.1016/j.neucom.2016.12.038_bib136
– volume: 38
  start-page: 295
  issue: 2
  year: 2015
  ident: 10.1016/j.neucom.2016.12.038_bib38
  article-title: Image super-resolution using deep convolutional networks
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2015.2439281
– year: 2016
  ident: 10.1016/j.neucom.2016.12.038_bib106
  article-title: Event-triggered mean-square consensus control for time-varying stochastic multi-agent system with sensor saturations
  publication-title: IEEE Trans. Autom. Control
– volume: 21
  start-page: 1601
  issue: 6
  year: 2009
  ident: 10.1016/j.neucom.2016.12.038_bib12
  article-title: Justifying and generalizing contrastive divergence
  publication-title: Neural Comput.
  doi: 10.1162/neco.2008.11-07-647
– volume: 86
  start-page: 650
  issue: 4
  year: 2013
  ident: 10.1016/j.neucom.2016.12.038_bib69
  article-title: Quantised recursive filtering for a class of nonlinear systems with multiplicative noises and missing measurements
  publication-title: Int. J. Control
  doi: 10.1080/00207179.2012.756149
– start-page: 1097
  year: 2012
  ident: 10.1016/j.neucom.2016.12.038_bib86
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Adv. Neural Inf. Process. Syst. 25
– volume: 65
  start-page: 103
  year: 2015
  ident: 10.1016/j.neucom.2016.12.038_bib177
  article-title: Deep neural network based image annotation
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2015.07.037
– volume: 32
  start-page: 333
  year: 2012
  ident: 10.1016/j.neucom.2016.12.038_bib24
  article-title: Multi-column deep neural network for traffic sign classification
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2012.02.023
– ident: 10.1016/j.neucom.2016.12.038_bib133
– volume: 38
  start-page: 1088
  year: 2016
  ident: 10.1016/j.neucom.2016.12.038_bib22
  article-title: Cnntracker
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2015.06.048
– ident: 10.1016/j.neucom.2016.12.038_bib171
– ident: 10.1016/j.neucom.2016.12.038_bib23
  doi: 10.1109/EMBC.2015.7318462
– volume: 32
  start-page: 240
  issue: 4
  year: 2015
  ident: 10.1016/j.neucom.2016.12.038_bib126
  article-title: Machine learning in automatic speech recognition: a survey
  publication-title: IETE Tech. Rev.
  doi: 10.1080/02564602.2015.1010611
– year: 2006
  ident: 10.1016/j.neucom.2016.12.038_bib14
– volume: 32
  start-page: 1627
  issue: 9
  year: 2010
  ident: 10.1016/j.neucom.2016.12.038_bib43
  article-title: Object detection with discriminatively trained part-based models
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2009.167
– volume: 37
  start-page: 1172
  issue: 3
  year: 2009
  ident: 10.1016/j.neucom.2016.12.038_bib4
  article-title: Does median filtering truly preserve edges better than linear filtering?
  publication-title: Ann. Stat.
  doi: 10.1214/08-AOS604
– ident: 10.1016/j.neucom.2016.12.038_bib88
  doi: 10.1145/2699343.2699349
– volume: 521
  start-page: 436
  issue: 7553
  year: 2015
  ident: 10.1016/j.neucom.2016.12.038_bib91
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 26
  start-page: 1493
  year: 2013
  ident: 10.1016/j.neucom.2016.12.038_bib2
  article-title: Adaptive multi-column deep neural networks with application to robust image denoising
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 64
  start-page: 29
  year: 2015
  ident: 10.1016/j.neucom.2016.12.038_bib41
  article-title: Expected energy-based restricted boltzmann machine for classification
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2014.09.006
– volume: 85
  start-page: 83
  year: 2016
  ident: 10.1016/j.neucom.2016.12.038_bib70
  article-title: Transfer learning for short-term wind speed prediction with deep neural networks
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2015.06.034
– volume: 168
  start-page: 408
  year: 2015
  ident: 10.1016/j.neucom.2016.12.038_bib176
  article-title: Combining heterogeneous deep neural networks with conditional random fields for chinese dialogue act recognition
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.05.086
– year: 2013
  ident: 10.1016/j.neucom.2016.12.038_bib113
  publication-title: Fast Train. convolutional Netw. FFTs
– volume: 197
  start-page: 205
  year: 2016
  ident: 10.1016/j.neucom.2016.12.038_bib162
  article-title: A new approach to non-fragile state estimation for continuous neural networks with time-delays
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.02.062
– volume: 35
  start-page: 1798
  issue: 8
  year: 2013
  ident: 10.1016/j.neucom.2016.12.038_bib11
  article-title: Representation learning: A review and new perspectives
  publication-title: IEEE Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2013.50
– volume: 268
  start-page: 1158
  issue: 5214
  year: 1995
  ident: 10.1016/j.neucom.2016.12.038_bib57
  article-title: The “wake-sleep” algorithm for unsupervised neural networks
  publication-title: Science
  doi: 10.1126/science.7761831
– ident: 10.1016/j.neucom.2016.12.038_bib147
– year: 2012
  ident: 10.1016/j.neucom.2016.12.038_bib30
  article-title: Three classes of deep learning architectures and their applications: a tutorial survey
  publication-title: APSIPA Trans. Signal Inf. Process.
– year: 2014
  ident: 10.1016/j.neucom.2016.12.038_bib144
  article-title: Image processing, analysis, and machine vision
  publication-title: Cengage Learn.
– volume: 64
  start-page: 49
  year: 2015
  ident: 10.1016/j.neucom.2016.12.038_bib49
  article-title: Frame-by-frame language identification in short utterances using deep neural networks
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2014.08.006
– volume: 32
  start-page: 35
  issue: 3
  year: 2015
  ident: 10.1016/j.neucom.2016.12.038_bib101
  article-title: Deep learning for acoustic modeling in parametric speech generation: a systematic review of existing techniques and future trends
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/MSP.2014.2359987
– volume: 28
  start-page: 145
  issue: 1
  year: 2011
  ident: 10.1016/j.neucom.2016.12.038_bib165
  article-title: Deep learning and its applications to signal and information processing [exploratory dsp]
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/MSP.2010.939038
– ident: 10.1016/j.neucom.2016.12.038_bib42
  doi: 10.1109/EMBC.2015.7318454
– volume: 214
  start-page: 340
  year: 2016
  ident: 10.1016/j.neucom.2016.12.038_bib142
  article-title: Recursive approach to networked fault estimation with packet dropouts and randomly occurring uncertainties
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.06.016
– start-page: 3
  year: 1994
  ident: 10.1016/j.neucom.2016.12.038_bib61
  article-title: Autoencoders, minimum description length, and Helmholtz free energy
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 22
  start-page: 1671
  issue: 10
  year: 2015
  ident: 10.1016/j.neucom.2016.12.038_bib132
  article-title: Deep neural network approaches to speaker and language recognition
  publication-title: IEEE Signal Process. Lett.
  doi: 10.1109/LSP.2015.2420092
– volume: 60
  start-page: 2470
  issue: 9
  year: 2015
  ident: 10.1016/j.neucom.2016.12.038_bib103
  article-title: Event-based recursive distributed filtering over wireless sensor networks
  publication-title: IEEE Trans. Autom. Control
  doi: 10.1109/TAC.2015.2390554
– volume: 3361
  issue: 10
  year: 1995
  ident: 10.1016/j.neucom.2016.12.038_bib90
  article-title: Convolutional networks for images, speech, and time series
  publication-title: Handb. brain Theory Neural Netw.
– year: 2013
  ident: 10.1016/j.neucom.2016.12.038_bib110
  publication-title: K.-sparse autoencoders
– volume: 23
  start-page: 1938
  issue: 11
  year: 2015
  ident: 10.1016/j.neucom.2016.12.038_bib114
  article-title: Speaker adaptive training of deep neural network acoustic models using I-vectors
  publication-title: IEEE/ACM Trans. Audio, Speech, Lang. Process.
  doi: 10.1109/TASLP.2015.2457612
– ident: 10.1016/j.neucom.2016.12.038_bib115
– ident: 10.1016/j.neucom.2016.12.038_bib138
– ident: 10.1016/j.neucom.2016.12.038_bib127
  doi: 10.1109/EMBC.2015.7318458
– volume: 9
  start-page: 203
  issue: 2
  year: 2015
  ident: 10.1016/j.neucom.2016.12.038_bib168
  article-title: Finite frequency property-based robust control for singularly perturbed system
  publication-title: IET Control Theory Appl.
  doi: 10.1049/iet-cta.2013.0854
– volume: 36
  start-page: 260
  year: 2016
  ident: 10.1016/j.neucom.2016.12.038_bib6
  article-title: Data driven articulatory synthesis with deep neural networks
  publication-title: Comput. Speech Lang.
  doi: 10.1016/j.csl.2015.02.003
– volume: 136
  start-page: 117
  year: 2015
  ident: 10.1016/j.neucom.2016.12.038_bib158
  article-title: Pose estimation-dependent identification method for field moth images using deep learning architecture
  publication-title: Biosyst. Eng.
  doi: 10.1016/j.biosystemseng.2015.06.002
– volume: 32
  start-page: 294
  issue: 4
  year: 2015
  ident: 10.1016/j.neucom.2016.12.038_bib100
  article-title: An image retrieval method for binary images based on DBN and Softmax classifier
  publication-title: IETE Tech. Rev.
  doi: 10.1080/02564602.2015.1015631
– volume: 175
  start-page: 310
  year: 2016
  ident: 10.1016/j.neucom.2016.12.038_bib159
  article-title: Regional deep learning model for visual tracking
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.10.064
– volume: 171
  start-page: 1205
  year: 2016
  ident: 10.1016/j.neucom.2016.12.038_bib19
  article-title: Fast learning in deep neural networks
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.07.093
– volume: 77
  start-page: 37
  issue: 1
  year: 2016
  ident: 10.1016/j.neucom.2016.12.038_bib108
  article-title: Robust filtering for a class of nonlinear stochastic systems with probability constraints
  publication-title: Autom. Remote Control
  doi: 10.1134/S0005117916010033
– volume: 53
  start-page: 1174
  issue: 3
  year: 2015
  ident: 10.1016/j.neucom.2016.12.038_bib150
  article-title: Compressed-domain ship detection on spaceborne optical image using deep neural network and extreme learning machine
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2014.2335751
– volume: 61
  start-page: 85
  year: 2015
  ident: 10.1016/j.neucom.2016.12.038_bib137
  article-title: Deep learning in neural networks: an overview
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2014.09.003
– year: 2016
  ident: 10.1016/j.neucom.2016.12.038_bib109
  article-title: Mean-square H∞ consensus control for a class of nonlinear time-varying stochastic multiagent systems: the finite-horizon case
  publication-title: IEEE Trans. Syst., Man Cybern.: Syst.
– volume: 5
  start-page: 13
  issue: 4
  year: 2010
  ident: 10.1016/j.neucom.2016.12.038_bib3
  article-title: Deep machine learning-a new frontier in artificial intelligence research [research frontier]
  publication-title: IEEE Comput. Intell. Mag.
  doi: 10.1109/MCI.2010.938364
– volume: 27
  start-page: 125
  issue: 1
  year: 2016
  ident: 10.1016/j.neucom.2016.12.038_bib48
  article-title: Change detection in synthetic aperture radar images based on deep neural networks
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2015.2435783
– volume: 43
  start-page: 387
  issue: 3–4
  year: 2014
  ident: 10.1016/j.neucom.2016.12.038_bib64
  article-title: State estimation for a class of discrete nonlinear systems with randomly occurring uncertainties and distributed sensor delays
  publication-title: Int. J. Gen. Syst.
  doi: 10.1080/03081079.2014.892251
– volume: 46
  start-page: 487
  issue: 2
  year: 2015
  ident: 10.1016/j.neucom.2016.12.038_bib52
  article-title: Two-stage learning to predict human eye fixations via SADEs
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2015.2404432
– volume: 125
  start-page: 17
  year: 2014
  ident: 10.1016/j.neucom.2016.12.038_bib167
  article-title: Delay-dependent stability criteria for time-varying delay neural networks in the delta domain
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2012.09.040
– volume: 36
  start-page: 193
  issue: 4
  year: 1980
  ident: 10.1016/j.neucom.2016.12.038_bib46
  article-title: Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position
  publication-title: Biol. Cybern.
  doi: 10.1007/BF00344251
– volume: 175
  start-page: 427
  year: 2016
  ident: 10.1016/j.neucom.2016.12.038_bib131
  article-title: Local visual feature fusion via maximum margin multimodal deep neural network
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.10.076
– volume: 86
  start-page: 2278
  issue: 11
  year: 1998
  ident: 10.1016/j.neucom.2016.12.038_bib92
  article-title: Gradient-based learning applied to document recognition
  publication-title: Proc. IEEE
  doi: 10.1109/5.726791
– volume: 26
  start-page: 75
  issue: 3
  year: 2009
  ident: 10.1016/j.neucom.2016.12.038_bib7
  article-title: Developments and directions in speech recognition and understanding [dsp education]
  publication-title: IEEE Trans. Signal Process. Mag.
  doi: 10.1109/MSP.2009.932166
– ident: 10.1016/j.neucom.2016.12.038_bib135
  doi: 10.1109/ASRU.2013.6707746
– ident: 10.1016/j.neucom.2016.12.038_bib26
  doi: 10.1145/1390156.1390177
– ident: 10.1016/j.neucom.2016.12.038_bib139
  doi: 10.1109/ICASSP.2015.7178918
– volume: 20
  start-page: 14
  issue: 1
  year: 2012
  ident: 10.1016/j.neucom.2016.12.038_bib116
  article-title: Acoustic modeling using deep belief networks
  publication-title: IEEE Trans. Audio, Speech, Lang. Process.
  doi: 10.1109/TASL.2011.2109382
– volume: 29
  start-page: 82
  issue: 6
  year: 2012
  ident: 10.1016/j.neucom.2016.12.038_bib58
  article-title: Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups
  publication-title: Signal Process. Mag., IEEE
  doi: 10.1109/MSP.2012.2205597
– volume: 103
  start-page: 1379
  issue: 8
  year: 2015
  ident: 10.1016/j.neucom.2016.12.038_bib75
  article-title: Memory and information processing in neuromorphic systems
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2015.2444094
– volume: 13
  start-page: 8
  issue: 1
  year: 2015
  ident: 10.1016/j.neucom.2016.12.038_bib85
  article-title: Human detection and activity classification based on micro-doppler signatures using deep convolutional neural networks
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2015.2491329
– volume: 23
  start-page: 1661
  issue: 7
  year: 2011
  ident: 10.1016/j.neucom.2016.12.038_bib154
  article-title: A connection between score matching and denoising autoencoders
  publication-title: Neural Comput.
  doi: 10.1162/NECO_a_00142
– start-page: 52
  year: 2011
  ident: 10.1016/j.neucom.2016.12.038_bib112
  article-title: Stacked convolutional auto-encoders for hierarchical feature extraction
  publication-title: Artif. Neural Netw. Mach. Learn.-ICANN 2011
  doi: 10.1007/978-3-642-21735-7_7
– volume: 64
  start-page: 39
  year: 2015
  ident: 10.1016/j.neucom.2016.12.038_bib134
  article-title: Deep convolutional neural networks for large-scale speech tasks
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2014.08.005
– ident: 10.1016/j.neucom.2016.12.038_bib152
  doi: 10.1109/CVPR.2012.6247936
– volume: 45
  start-page: 619
  issue: 5
  year: 2016
  ident: 10.1016/j.neucom.2016.12.038_bib65
  article-title: On co-design of filter and fault estimator against randomly occurring nonlinearities and randomly occurring deception attacks
  publication-title: Int. J. Gen. Syst.
  doi: 10.1080/03081079.2015.1106730
– volume: 6
  issue: 19133
  year: 2016
  ident: 10.1016/j.neucom.2016.12.038_bib97
  article-title: Temperature based restricted Boltzmann machines
  publication-title: Sci. Rep.
– volume: 13
  start-page: 1425
  issue: 6
  year: 2015
  ident: 10.1016/j.neucom.2016.12.038_bib169
  article-title: Resilient control in the presence of DoS Attack: switched system approach
  publication-title: Int. J. Control, Autom., Syst.
  doi: 10.1007/s12555-014-0261-7
– volume: 11
  start-page: 3371
  year: 2010
  ident: 10.1016/j.neucom.2016.12.038_bib156
  article-title: Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion
  publication-title: J. Mach. Learn. Res.
– volume: 22
  start-page: 1713
  issue: 12
  year: 2014
  ident: 10.1016/j.neucom.2016.12.038_bib161
  article-title: Fast adaptation of deep neural network based on discriminant codes for speech recognition
  publication-title: IEEE/ACM Trans. Audio, Speech, Lang. Process.
  doi: 10.1109/TASLP.2014.2346313
– volume: 42
  start-page: 722
  issue: 4
  year: 2015
  ident: 10.1016/j.neucom.2016.12.038_bib125
  article-title: Audio-visual speech recognition using deep learning
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-014-0629-7
– start-page: 1339
  year: 2009
  ident: 10.1016/j.neucom.2016.12.038_bib121
  article-title: 3D object recognition with deep belief nets
  publication-title: Adv. Neural Inf. Process. Syst.
– ident: 10.1016/j.neucom.2016.12.038_bib44
  doi: 10.1145/2647868.2654902
– ident: 10.1016/j.neucom.2016.12.038_bib98
  doi: 10.1109/CVPRW.2014.78
– volume: 6
  start-page: 21
  issue: 2
  year: 2015
  ident: 10.1016/j.neucom.2016.12.038_bib149
  article-title: A real-time hand posture recognition system using deep neural networks
  publication-title: ACM Trans. Intell. Syst. Technol. (TIST)
– volume: 24
  start-page: 5659
  issue: 12
  year: 2015
  ident: 10.1016/j.neucom.2016.12.038_bib62
  article-title: Multimodal deep autoencoder for human pose recovery
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2015.2487860
– volume: 18
  start-page: 1527
  issue: 7
  year: 2006
  ident: 10.1016/j.neucom.2016.12.038_bib59
  article-title: A fast learning algorithm for deep belief nets
  publication-title: Neural Comput.
  doi: 10.1162/neco.2006.18.7.1527
– ident: 10.1016/j.neucom.2016.12.038_bib93
  doi: 10.1109/CVPR.2004.1315150
– ident: 10.1016/j.neucom.2016.12.038_bib94
  doi: 10.1145/1553374.1553453
– ident: 10.1016/j.neucom.2016.12.038_bib16
  doi: 10.1109/ICCV.2011.6126555
– volume: 12
  start-page: 1025
  year: 2011
  ident: 10.1016/j.neucom.2016.12.038_bib153
  article-title: Two distributed-state models for generating high-dimensional time series
  publication-title: J. Mach. Learn. Res.
– ident: 10.1016/j.neucom.2016.12.038_bib29
  doi: 10.1109/CVPR.2009.5206848
– volume: 8
  start-page: 143
  issue: 2
  year: 2016
  ident: 10.1016/j.neucom.2016.12.038_bib172
  article-title: A novel switching delayed PSO algorithm for estimating unknown parameters of lateral flow immunoassay
  publication-title: Cogn. Comput.
  doi: 10.1007/s12559-016-9396-6
– ident: 10.1016/j.neucom.2016.12.038_bib123
– volume: 31
  issue: 1
  year: 2014
  ident: 10.1016/j.neucom.2016.12.038_bib141
  article-title: Subjective and objective analysis of speech enhancement algorithms for single channel speech patterns of indian and english languages
  publication-title: IETE Tech. Rev.
  doi: 10.1080/02564602.2014.890840
– volume: 22
  start-page: 1096
  year: 2009
  ident: 10.1016/j.neucom.2016.12.038_bib95
  article-title: Unsupervised feature learning for audio classification using convolutional deep belief networks
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 170
  start-page: 251
  year: 2015
  ident: 10.1016/j.neucom.2016.12.038_bib99
  article-title: A comparative study on selecting acoustic modeling units in deep neural networks based large vocabulary chinese speech recognition
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2014.07.087
– ident: 10.1016/j.neucom.2016.12.038_bib18
– ident: 10.1016/j.neucom.2016.12.038_bib33
  doi: 10.1109/ICASSP.2013.6639345
– volume: 179
  start-page: 238
  year: 2016
  ident: 10.1016/j.neucom.2016.12.038_bib63
  article-title: Non-fragile state estimation for discrete Markovian jumping neural networks
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.11.089
– ident: 10.1016/j.neucom.2016.12.038_bib47
– start-page: 2846
  year: 2010
  ident: 10.1016/j.neucom.2016.12.038_bib118
  article-title: Investigation of full-sequence training of deep belief networks for speech recognition
  publication-title: INTERSPEECH
  doi: 10.21437/Interspeech.2010-304
– volume: 29
  start-page: 102
  issue: 4
  year: 2010
  ident: 10.1016/j.neucom.2016.12.038_bib80
  article-title: Learning 3D mesh segmentation and labeling
  publication-title: ACM Trans. Graph. (TOG)
  doi: 10.1145/1778765.1778839
– volume: 39
  start-page: 1677
  issue: 7
  year: 1991
  ident: 10.1016/j.neucom.2016.12.038_bib32
  article-title: Phonemic hidden markov models with continuous mixture output densities for large vocabulary word recognition
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/78.134406
– ident: 10.1016/j.neucom.2016.12.038_bib74
– ident: 10.1016/j.neucom.2016.12.038_bib71
  doi: 10.1109/ICASSP.2013.6639081
– ident: 10.1016/j.neucom.2016.12.038_bib76
  doi: 10.1109/ICASSP.2011.5947700
– volume: 18
  start-page: 1
  issue: 1
  year: 2015
  ident: 10.1016/j.neucom.2016.12.038_bib84
  article-title: Handwritten hangul recognition using deep convolutional neural networks
  publication-title: Int. J. Doc. Anal. Recognit. (IJDAR)
  doi: 10.1007/s10032-014-0229-4
– volume: 182
  start-page: 18
  year: 2016
  ident: 10.1016/j.neucom.2016.12.038_bib166
  article-title: Design of non-fragile state estimators for discrete time-delayed neural networks with parameter uncertainties
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.11.079
– volume: 59
  start-page: 291
  issue: 4–5
  year: 1988
  ident: 10.1016/j.neucom.2016.12.038_bib15
  article-title: Auto-association by multilayer perceptrons and singular value decomposition
  publication-title: Biol. Cybern.
  doi: 10.1007/BF00332918
– volume: 22
  start-page: 229
  issue: 2
  year: 2015
  ident: 10.1016/j.neucom.2016.12.038_bib81
  article-title: NMF-based target source separation using deep neural network
  publication-title: IEEE Signal Process. Lett.
  doi: 10.1109/LSP.2014.2354456
– start-page: 2553
  year: 2013
  ident: 10.1016/j.neucom.2016.12.038_bib148
  article-title: Deep neural networks for object detection
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 12
  start-page: 2448
  issue: 12
  year: 2015
  ident: 10.1016/j.neucom.2016.12.038_bib105
  article-title: Multiview deep learning for land-use classification
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2015.2483680
– ident: 10.1016/j.neucom.2016.12.038_bib89
  doi: 10.1145/1390156.1390224
– ident: 10.1016/j.neucom.2016.12.038_bib77
  doi: 10.1109/ICCV.2009.5459469
– volume: 175
  start-page: 392
  year: 2016
  ident: 10.1016/j.neucom.2016.12.038_bib163
  article-title: Almost sure H∞ sliding mode control for nonlinear stochastic systems with Markovian switching and time-delays
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.10.071
– start-page: 599
  year: 2012
  ident: 10.1016/j.neucom.2016.12.038_bib55
  article-title: A practical guide to training restricted Boltzmann machines
  publication-title: Neural Netw.: Tricks Trade
– volume: 46
  start-page: 139
  year: 2016
  ident: 10.1016/j.neucom.2016.12.038_bib1
  article-title: Breast cancer classification using deep belief networks
  publication-title: Exp. Syst. Appl.
  doi: 10.1016/j.eswa.2015.10.015
– volume: 20
  start-page: 7
  issue: 1
  year: 2012
  ident: 10.1016/j.neucom.2016.12.038_bib120
  article-title: Deep and wide: multiple layers in automatic speech recognition
  publication-title: IEEE Trans. Audio, Speech, Lang. Process.
  doi: 10.1109/TASL.2011.2116010
– year: 1982
  ident: 10.1016/j.neucom.2016.12.038_bib8
– volume: 34
  start-page: 98
  issue: 4
  year: 2015
  ident: 10.1016/j.neucom.2016.12.038_bib9
  article-title: Learning visual similarity for product design with convolutional neural networks
  publication-title: ACM Trans. Graph. (TOG)
  doi: 10.1145/2766959
– ident: 10.1016/j.neucom.2016.12.038_bib82
  doi: 10.1145/2157689.2157740
– ident: 10.1016/j.neucom.2016.12.038_bib53
– volume: 160
  start-page: 106
  issue: 1
  year: 1962
  ident: 10.1016/j.neucom.2016.12.038_bib73
  article-title: Receptive fields, binocular interaction and functional architecture in the cat's visual cortex
  publication-title: J. Physiol.
  doi: 10.1113/jphysiol.1962.sp006837
– ident: 10.1016/j.neucom.2016.12.038_bib35
  doi: 10.21437/Interspeech.2011-607
– volume: 60
  start-page: 2553
  issue: 9
  year: 2015
  ident: 10.1016/j.neucom.2016.12.038_bib102
  article-title: Event-based H∞ consensus control of multi-agent systems with relative output feedback: the finite-horizon case
  publication-title: IEEE Trans. Autom. Control
  doi: 10.1109/TAC.2015.2394872
– ident: 10.1016/j.neucom.2016.12.038_bib36
– start-page: 477
  year: 2011
  ident: 10.1016/j.neucom.2016.12.038_bib5
  article-title: An introduction to deep learning
  publication-title: ESANN
– volume: 14
  start-page: 1771
  issue: 8
  year: 2002
  ident: 10.1016/j.neucom.2016.12.038_bib56
  article-title: Training products of experts by minimizing contrastive divergence
  publication-title: Neural Comput.
  doi: 10.1162/089976602760128018
– volume: 3
  start-page: e2
  year: 2014
  ident: 10.1016/j.neucom.2016.12.038_bib31
  article-title: A tutorial survey of architectures, algorithms, and applications for deep learning
  publication-title: APSIPA Trans. Signal Inf. Process.
  doi: 10.1017/atsip.2013.9
– volume: 32
  start-page: 307
  issue: 2
  year: 1986
  ident: 10.1016/j.neucom.2016.12.038_bib79
  article-title: Maximum likelihood estimation for multivariate mixture observations of markov chains (corresp.)
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.1986.1057145
– ident: 10.1016/j.neucom.2016.12.038_bib78
  doi: 10.1109/CVPR.2012.6248076
– volume: 42
  start-page: 105
  year: 2015
  ident: 10.1016/j.neucom.2016.12.038_bib39
  article-title: Adaptive cascade deep convolutional neural networks for face alignment
  publication-title: Comput. Stand. Interfaces
  doi: 10.1016/j.csi.2015.06.004
– volume: 48
  start-page: 2847
  issue: 9
  year: 2015
  ident: 10.1016/j.neucom.2016.12.038_bib96
  article-title: IODA: an input/output deep architecture for image labeling
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2015.03.017
– volume: 529
  start-page: 484
  issue: 7587
  year: 2016
  ident: 10.1016/j.neucom.2016.12.038_bib140
  article-title: Mastering the game of go with deep neural networks and tree search
  publication-title: Nature
  doi: 10.1038/nature16961
– volume: 216
  start-page: 657
  year: 2016
  ident: 10.1016/j.neucom.2016.12.038_bib175
  article-title: Passivity analysis for discrete-time neural networks with mixed time-delays and randomly occurring quantization effects
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.08.020
– ident: 10.1016/j.neucom.2016.12.038_bib119
  doi: 10.1109/ICASSP.2011.5947494
– ident: 10.1016/j.neucom.2016.12.038_bib40
– volume: 31
  start-page: 65
  issue: 1
  year: 2015
  ident: 10.1016/j.neucom.2016.12.038_bib164
  article-title: Environmentally robust asr front-end for deep neural network acoustic models
  publication-title: Comput. Speech Lang.
  doi: 10.1016/j.csl.2014.11.008
– ident: 10.1016/j.neucom.2016.12.038_bib104
  doi: 10.1109/TSP.2016.2634541
– ident: 10.1016/j.neucom.2016.12.038_bib87
– volume: 7
  start-page: 14680
  issue: 11
  year: 2015
  ident: 10.1016/j.neucom.2016.12.038_bib66
  article-title: Transferring deep convolutional neural networks for the scene classification of high-resolution remote sensing imagery
  publication-title: Remote Sens.
  doi: 10.3390/rs71114680
– volume: 24
  start-page: 93
  issue: 1
  year: 2016
  ident: 10.1016/j.neucom.2016.12.038_bib146
  article-title: Unseen noise estimation using separable deep auto encoder for speech enhancement
  publication-title: IEEE/ACM Trans. Audio, Speech, Lang. Process.
  doi: 10.1109/TASLP.2015.2498101
– volume: 313
  start-page: 504
  issue: 5786
  year: 2006
  ident: 10.1016/j.neucom.2016.12.038_bib60
  article-title: Reducing the dimensionality of data with neural networks
  publication-title: Science
  doi: 10.1126/science.1127647
– volume: 59
  start-page: 112204
  issue: 11
  year: 2016
  ident: 10.1016/j.neucom.2016.12.038_bib174
  article-title: Inferring nonlinear lateral flow immunoassay state-space models via an unscented Kalman filter
  publication-title: Sci. China Inf. Sci.
  doi: 10.1007/s11432-016-0280-9
– volume: 74
  start-page: 9889
  issue: 22
  year: 2015
  ident: 10.1016/j.neucom.2016.12.038_bib160
  article-title: Acoustic to articulatory mapping with deep neural network
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-014-2183-z
– volume: 64
  start-page: 155
  year: 2016
  ident: 10.1016/j.neucom.2016.12.038_bib68
  article-title: A variance-constrained approach to recursive state estimation for time-varying complex networks with missing measurements
  publication-title: Automatica
  doi: 10.1016/j.automatica.2015.11.008
– volume: 74
  start-page: 9871
  issue: 22
  year: 2015
  ident: 10.1016/j.neucom.2016.12.038_bib37
  article-title: Head motion synthesis from speech using deep neural networks
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-014-2156-2
– volume: 16
  start-page: 17315
  issue: 8
  year: 2015
  ident: 10.1016/j.neucom.2016.12.038_bib157
  article-title: DeepCNF-D: predicting protein order/disorder regions by weighted deep convolutional neural fields
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms160817315
– volume: 23
  start-page: 1469
  issue: 9
  year: 2015
  ident: 10.1016/j.neucom.2016.12.038_bib27
  article-title: Data augmentation for deep neural network acoustic modeling
  publication-title: IEEE/ACM Trans. Audio, Speech Lang. Process. (TASLP)
  doi: 10.1109/TASLP.2015.2438544
– volume: 2
  start-page: 1
  issue: 1
  year: 2015
  ident: 10.1016/j.neucom.2016.12.038_bib122
  article-title: Deep learning applications and challenges in big data analytics
  publication-title: J. Big Data
  doi: 10.1186/s40537-014-0007-7
– ident: 10.1016/j.neucom.2016.12.038_bib124
  doi: 10.1109/CVPR.2015.7298640
– volume: 8
  start-page: 684
  issue: 4
  year: 2016
  ident: 10.1016/j.neucom.2016.12.038_bib173
  article-title: Deep belief networks for quantitative analysis of a gold immunochromatographic strip
  publication-title: Cogn. Comput.
  doi: 10.1007/s12559-016-9404-x
– volume: 31
  start-page: 65
  year: 2016
  ident: 10.1016/j.neucom.2016.12.038_bib67
  article-title: Estimation, filtering and fusion for networked systems with network-induced phenomena: New progress and prospects
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2016.01.001
– volume: 32
  start-page: 190
  issue: 6
  year: 2013
  ident: 10.1016/j.neucom.2016.12.038_bib72
  article-title: Fine-grained semi-supervised labeling of large shape collections
  publication-title: ACM Trans. Graph. (TOG)
  doi: 10.1145/2508363.2508364
– volume: 124
  start-page: 127
  year: 2016
  ident: 10.1016/j.neucom.2016.12.038_bib83
  article-title: Deep neural network with weight sparsity control and pre-training extracts hierarchical features and enhances classification performance: Evidence from whole-brain resting-state functional connectivity patterns of schizophrenia
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2015.05.018
– volume: 77
  start-page: 257
  issue: 2
  year: 1989
  ident: 10.1016/j.neucom.2016.12.038_bib130
  article-title: A tutorial on hidden markov models and selected applications in speech recognition
  publication-title: Proc. IEEE
  doi: 10.1109/5.18626
– ident: 10.1016/j.neucom.2016.12.038_bib145
– volume: 171
  start-page: 444
  year: 2016
  ident: 10.1016/j.neucom.2016.12.038_bib143
  article-title: Resilisent finite-time stabilization of fuzzy stochastic systems with randomly occurring uncertainities and randomly occurring gain fluctuations
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.06.054
– ident: 10.1016/j.neucom.2016.12.038_bib45
– ident: 10.1016/j.neucom.2016.12.038_bib25
  doi: 10.1109/CVPR.2012.6248110
– volume: 4
  start-page: 345
  issue: 4
  year: 1990
  ident: 10.1016/j.neucom.2016.12.038_bib34
  article-title: Large vocabulary word recognition using context-dependent allophonic hidden markov models
  publication-title: Comput. Speech Lang.
  doi: 10.1016/0885-2308(90)90015-X
– volume: 59
  start-page: 1
  issue: 7
  year: 2016
  ident: 10.1016/j.neucom.2016.12.038_bib21
  article-title: Pinning controllability of autonomous Boolean control networks
  publication-title: Sci. China Inf. Sci.
  doi: 10.1007/s11432-016-5579-8
– start-page: 1137
  year: 2006
  ident: 10.1016/j.neucom.2016.12.038_bib128
  article-title: Efficient learning of sparse representations with an energy-based model
  publication-title: Adv. Neural Inf. Process. Syst.
– ident: 10.1016/j.neucom.2016.12.038_bib151
– ident: 10.1016/j.neucom.2016.12.038_bib54
  doi: 10.1109/EMBC.2015.7318984
– volume: 1
  start-page: 39
  issue: 9
  year: 2009
  ident: 10.1016/j.neucom.2016.12.038_bib117
  article-title: Deep belief networks for phone recognition
  publication-title: Nips Workshop Deep Learn. Speech Recognit. Relat. Appl.
– ident: 10.1016/j.neucom.2016.12.038_bib170
  doi: 10.1109/TII.2016.2542208
– volume: 20
  start-page: 30
  issue: 1
  year: 2012
  ident: 10.1016/j.neucom.2016.12.038_bib28
  article-title: Context-dependent pre-trained deep neural networks for large-vocabulary speech recognition
  publication-title: IEEE Trans. Audio, Speech, Lang. Process.
  doi: 10.1109/TASL.2011.2134090
– volume: 2
  start-page: 1
  issue: 1
  year: 2009
  ident: 10.1016/j.neucom.2016.12.038_bib10
  article-title: Learning deep architectures for AI
  publication-title: Found. Trends Mach. Learn.
  doi: 10.1561/2200000006
– ident: 10.1016/j.neucom.2016.12.038_bib17
– ident: 10.1016/j.neucom.2016.12.038_bib51
SSID ssj0017129
Score 2.6903508
Snippet Since the proposal of a fast learning algorithm for deep belief networks in 2006, the deep learning techniques have drawn ever-increasing research interests...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 11
SubjectTerms Autoencoder
Convolutional neural network
Deep belief network
Deep learning
Restricted Boltzmann machine
Title A survey of deep neural network architectures and their applications
URI https://dx.doi.org/10.1016/j.neucom.2016.12.038
Volume 234
WOSCitedRecordID wos000395221800002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-8286
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017129
  issn: 0925-2312
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6FlAMXKC9RaNEeuEVG9fqxm6PVFgGqIiQKirhYXu-scNXaURJH5d939mHHEMRL4mJZ1m6ymvn87Xh2HoS8YkiAcVyIAFLOg1gWyIOpZIYM01BpwcG6Bj6f89lMzOfTD6NR2-XCbK54XYubm-niv6oan6GyTersX6i7_1F8gPeodLyi2vH6R4rPJqt2uQF7cq4AFhNTshIVUbuA78nw6GDVBVBWy8nwKHtostryHaVt_uDdCtm1qa6gDJR6N8J51dpwPahks3XSOyL5UqnGb5DbkfOqaL62Ve-4Bjd2hnD95quBe2cEbnCm6uGW8nazZJyrkSUB2pGOdcERreDMprAPmZh5v6bjUk_Cbld2afU7fO9cD5evUZIm-AeXlFrvrqsY80Ml7Y9mIWYdaIOadknRHbLHeDIVY7KXvTubv--Pn3jIXJFGv_Au59IGBu7-189tmoGdcrFP7vsPDJo5YDwkI6gfkQdd8w7qufwxOc2owwltNDU4oQ4n1OOEfocTijihFid0iJMn5NObs4uTt4FvqRGU-G24xk0XbRYd8TJMExmWrORFGIljAULpQqaRkioFIWGaAsSgS3xdmcaxSmhAyzyKnpJx3dTwjFDJueQpB6nKJFYJiCTRoI9NgK-QaFcfkKgTSl76evOm7clV3gUWXuZOlLkRZR6yHEV5QIJ-1sLVW_nNeN7JO_c2o7MFc4TIL2c-_-eZL8i9LfYPyXi9bOGI3C0362q1fOmxdAs1iJMG
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+survey+of+deep+neural+network+architectures+and+their+applications&rft.jtitle=Neurocomputing+%28Amsterdam%29&rft.au=Liu%2C+Weibo&rft.au=Wang%2C+Zidong&rft.au=Liu%2C+Xiaohui&rft.au=Zeng%2C+Nianyin&rft.date=2017-04-19&rft.pub=Elsevier+B.V&rft.issn=0925-2312&rft.eissn=1872-8286&rft.volume=234&rft.spage=11&rft.epage=26&rft_id=info:doi/10.1016%2Fj.neucom.2016.12.038&rft.externalDocID=S0925231216315533
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-2312&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-2312&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-2312&client=summon