A survey of deep neural network architectures and their applications
Since the proposal of a fast learning algorithm for deep belief networks in 2006, the deep learning techniques have drawn ever-increasing research interests because of their inherent capability of overcoming the drawback of traditional algorithms dependent on hand-designed features. Deep learning ap...
Uloženo v:
| Vydáno v: | Neurocomputing (Amsterdam) Ročník 234; s. 11 - 26 |
|---|---|
| Hlavní autoři: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier B.V
19.04.2017
|
| Témata: | |
| ISSN: | 0925-2312, 1872-8286 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Since the proposal of a fast learning algorithm for deep belief networks in 2006, the deep learning techniques have drawn ever-increasing research interests because of their inherent capability of overcoming the drawback of traditional algorithms dependent on hand-designed features. Deep learning approaches have also been found to be suitable for big data analysis with successful applications to computer vision, pattern recognition, speech recognition, natural language processing, and recommendation systems. In this paper, we discuss some widely-used deep learning architectures and their practical applications. An up-to-date overview is provided on four deep learning architectures, namely, autoencoder, convolutional neural network, deep belief network, and restricted Boltzmann machine. Different types of deep neural networks are surveyed and recent progresses are summarized. Applications of deep learning techniques on some selected areas (speech recognition, pattern recognition and computer vision) are highlighted. A list of future research topics are finally given with clear justifications. |
|---|---|
| AbstractList | Since the proposal of a fast learning algorithm for deep belief networks in 2006, the deep learning techniques have drawn ever-increasing research interests because of their inherent capability of overcoming the drawback of traditional algorithms dependent on hand-designed features. Deep learning approaches have also been found to be suitable for big data analysis with successful applications to computer vision, pattern recognition, speech recognition, natural language processing, and recommendation systems. In this paper, we discuss some widely-used deep learning architectures and their practical applications. An up-to-date overview is provided on four deep learning architectures, namely, autoencoder, convolutional neural network, deep belief network, and restricted Boltzmann machine. Different types of deep neural networks are surveyed and recent progresses are summarized. Applications of deep learning techniques on some selected areas (speech recognition, pattern recognition and computer vision) are highlighted. A list of future research topics are finally given with clear justifications. |
| Author | Zeng, Nianyin Alsaadi, Fuad E. Liu, Weibo Liu, Yurong Wang, Zidong Liu, Xiaohui |
| Author_xml | – sequence: 1 givenname: Weibo surname: Liu fullname: Liu, Weibo organization: Department of Computer Science, Brunel University London, Uxbridge, Middlesex, UB8 3PH, United Kingdom – sequence: 2 givenname: Zidong orcidid: 0000-0002-9576-7401 surname: Wang fullname: Wang, Zidong email: Zidong.Wang@brunel.ac.uk organization: Department of Computer Science, Brunel University London, Uxbridge, Middlesex, UB8 3PH, United Kingdom – sequence: 3 givenname: Xiaohui surname: Liu fullname: Liu, Xiaohui organization: Department of Computer Science, Brunel University London, Uxbridge, Middlesex, UB8 3PH, United Kingdom – sequence: 4 givenname: Nianyin surname: Zeng fullname: Zeng, Nianyin organization: Department of Instrumental and Electrical Engineering, Xiamen University, Xiamen 361005, Fujian, China – sequence: 5 givenname: Yurong surname: Liu fullname: Liu, Yurong organization: Department of Mathematics, Yangzhou University, Yangzhou 225002, China – sequence: 6 givenname: Fuad E. surname: Alsaadi fullname: Alsaadi, Fuad E. organization: Communication Systems and Networks (CSN) Research Group, Faculty of Engineering, King Abdulaziz University, Jeddah 21589, Saudi Arabia |
| BookMark | eNqFkE1LAzEQhoNUsK3-Aw_5A7tmknY39SCU-gkFL3oO2WRCU7e7JUkr_fem1pMHPQ0D87y884zIoOs7JOQaWAkMqpt12eHO9JuS560EXjIhz8gQZM0LyWU1IEM249OCC-AXZBTjmjGogc-G5H5O4y7s8UB7Ry3iluaooNs80mcfPqgOZuUTmrQLGKnuLE0r9IHq7bb1Riffd_GSnDvdRrz6mWPy_vjwtngulq9PL4v5sjCCVanIXQVzojZQTRsw3NQahGQSpXW6qYRtbIWywVmFOEFnwDru8q2VDgG4EGMyOeWa0McY0Klt8BsdDgqYOppQa3UyoY4mFHCVTWTs9hdmfPpunoL27X_w3QnG_NjeY1DReOwMWh-yFWV7_3fAF6IDgCc |
| CitedBy_id | crossref_primary_10_1016_j_ribaf_2022_101844 crossref_primary_10_1016_j_dsp_2023_104205 crossref_primary_10_1016_j_jisa_2019_102419 crossref_primary_10_1039_D0NR01671C crossref_primary_10_1016_j_inffus_2021_09_012 crossref_primary_10_1016_j_neucom_2021_04_076 crossref_primary_10_1038_s41598_022_12634_2 crossref_primary_10_3389_fpls_2024_1342123 crossref_primary_10_1016_j_neucom_2020_09_056 crossref_primary_10_1016_j_neucom_2018_12_041 crossref_primary_10_1016_j_ecoenv_2025_118134 crossref_primary_10_1186_s12859_022_04582_5 crossref_primary_10_1007_s00521_021_05893_z crossref_primary_10_1007_s40745_020_00300_1 crossref_primary_10_1088_1755_1315_1428_1_012017 crossref_primary_10_1016_j_jdent_2022_104115 crossref_primary_10_3390_infrastructures6090129 crossref_primary_10_1016_j_neucom_2023_126904 crossref_primary_10_1016_j_conengprac_2020_104458 crossref_primary_10_3390_app9224976 crossref_primary_10_3390_sym17060950 crossref_primary_10_1038_s41598_025_89639_0 crossref_primary_10_1145_3604550 crossref_primary_10_1016_j_neucom_2021_11_018 crossref_primary_10_1063_5_0272178 crossref_primary_10_1016_j_rse_2022_113357 crossref_primary_10_1109_TNSE_2025_3534834 crossref_primary_10_1007_s11265_020_01546_x crossref_primary_10_1007_s40313_021_00868_w crossref_primary_10_1109_TCYB_2017_2671032 crossref_primary_10_3390_app11135868 crossref_primary_10_1109_COMST_2021_3086296 crossref_primary_10_3389_fphy_2025_1563756 crossref_primary_10_1145_3626314 crossref_primary_10_2196_23586 crossref_primary_10_1007_s40995_023_01562_z crossref_primary_10_1111_peps_12587 crossref_primary_10_1190_geo2021_0621_1 crossref_primary_10_1016_j_mri_2024_110277 crossref_primary_10_1016_j_neucom_2021_11_005 crossref_primary_10_1016_j_procs_2019_08_236 crossref_primary_10_1007_s10946_021_09999_6 crossref_primary_10_1007_s13202_024_01889_2 crossref_primary_10_1016_j_neucom_2017_08_016 crossref_primary_10_1155_2021_6961343 crossref_primary_10_1016_j_ejro_2023_100484 crossref_primary_10_1007_s42452_022_05246_y crossref_primary_10_1007_s00371_024_03477_1 crossref_primary_10_1016_j_neucom_2025_129723 crossref_primary_10_1007_s00330_020_07417_0 crossref_primary_10_1109_ACCESS_2020_2994290 crossref_primary_10_1155_2022_5596676 crossref_primary_10_3389_fvets_2022_836043 crossref_primary_10_1016_j_neucom_2018_09_102 crossref_primary_10_1016_j_neucom_2018_09_105 crossref_primary_10_1109_ACCESS_2021_3114306 crossref_primary_10_1016_j_petrol_2021_109089 crossref_primary_10_1155_2020_7268963 crossref_primary_10_1016_j_neucom_2018_05_083 crossref_primary_10_1109_TBDATA_2019_2918807 crossref_primary_10_1109_ACCESS_2020_3042839 crossref_primary_10_1016_j_aiia_2025_01_005 crossref_primary_10_1016_j_neucom_2017_08_027 crossref_primary_10_1016_j_procs_2018_05_117 crossref_primary_10_3390_electronics14051034 crossref_primary_10_1016_j_cosrev_2023_100568 crossref_primary_10_1016_j_neucom_2020_07_004 crossref_primary_10_1016_j_compbiomed_2020_104097 crossref_primary_10_1117_1_JRS_16_048506 crossref_primary_10_3390_ma16206804 crossref_primary_10_1007_s10489_025_06458_6 crossref_primary_10_1016_j_ifacol_2020_12_2303 crossref_primary_10_1016_j_nucengdes_2025_113969 crossref_primary_10_1109_TCYB_2020_3009582 crossref_primary_10_1109_TGRS_2019_2928715 crossref_primary_10_1109_JIOT_2022_3211889 crossref_primary_10_1016_j_ijleo_2020_165341 crossref_primary_10_1016_j_knosys_2023_110729 crossref_primary_10_1186_s13638_020_01677_6 crossref_primary_10_3390_app10165466 crossref_primary_10_1016_j_neucom_2025_129701 crossref_primary_10_1016_j_watres_2025_124058 crossref_primary_10_3390_ijgi10070442 crossref_primary_10_1007_s10462_023_10556_7 crossref_primary_10_1109_TKDE_2021_3130903 crossref_primary_10_1109_ACCESS_2025_3584461 crossref_primary_10_1016_j_ins_2023_119668 crossref_primary_10_1016_j_csl_2020_101180 crossref_primary_10_1016_j_media_2023_102919 crossref_primary_10_1016_j_neucom_2017_08_046 crossref_primary_10_1016_j_eswa_2022_118045 crossref_primary_10_1016_j_neucom_2017_08_041 crossref_primary_10_1007_s12021_024_09675_5 crossref_primary_10_1109_LGRS_2018_2861218 crossref_primary_10_1016_j_neucom_2017_08_040 crossref_primary_10_1016_j_neucom_2023_126986 crossref_primary_10_1007_s00530_024_01349_1 crossref_primary_10_1016_j_psep_2023_08_011 crossref_primary_10_1016_j_asoc_2022_109554 crossref_primary_10_1016_j_neucom_2021_11_030 crossref_primary_10_1080_19479832_2019_1655489 crossref_primary_10_1038_s41598_023_34298_2 crossref_primary_10_3390_app9194180 crossref_primary_10_1007_s11042_020_10170_7 crossref_primary_10_1109_ACCESS_2022_3155879 crossref_primary_10_1186_s13007_021_00722_9 crossref_primary_10_1109_ACCESS_2024_3524257 crossref_primary_10_1016_j_compag_2019_104898 crossref_primary_10_3390_su142215353 crossref_primary_10_1016_j_neucom_2018_05_040 crossref_primary_10_1016_j_imavis_2020_103981 crossref_primary_10_1109_TC_2021_3106496 crossref_primary_10_1016_j_ress_2023_109550 crossref_primary_10_1155_2020_7917353 crossref_primary_10_3390_f13050677 crossref_primary_10_1016_j_mtcomm_2020_101145 crossref_primary_10_3390_e24040440 crossref_primary_10_1002_nem_2146 crossref_primary_10_1109_ACCESS_2024_3448410 crossref_primary_10_1016_j_atech_2023_100216 crossref_primary_10_1016_j_knosys_2019_105201 crossref_primary_10_3390_sym17050768 crossref_primary_10_1016_j_iot_2024_101343 crossref_primary_10_1016_j_neucom_2023_126520 crossref_primary_10_1051_matecconf_201929201012 crossref_primary_10_1007_s00521_021_06540_3 crossref_primary_10_1109_TGRS_2021_3075968 crossref_primary_10_3390_en13143517 crossref_primary_10_7717_peerj_cs_1677 crossref_primary_10_1007_s10462_022_10283_5 crossref_primary_10_1007_s13748_020_00214_2 crossref_primary_10_1142_S0218001425580030 crossref_primary_10_33889_IJMEMS_2022_7_5_042 crossref_primary_10_3390_s19092025 crossref_primary_10_1109_ACCESS_2023_3330789 crossref_primary_10_1186_s40537_020_00382_x crossref_primary_10_1109_ACCESS_2024_3407097 crossref_primary_10_1016_j_cosrev_2021_100374 crossref_primary_10_1016_j_artmed_2024_102865 crossref_primary_10_1016_j_ins_2021_01_064 crossref_primary_10_4103_jmp_jmp_140_24 crossref_primary_10_1016_j_compind_2020_103378 crossref_primary_10_1016_j_techfore_2022_121757 crossref_primary_10_1016_j_compchemeng_2023_108560 crossref_primary_10_1007_s00521_024_10158_6 crossref_primary_10_1109_JPHOTOV_2020_2973448 crossref_primary_10_1016_j_compag_2019_104878 crossref_primary_10_1109_TCSII_2021_3107535 crossref_primary_10_1190_geo2020_0159_1 crossref_primary_10_1007_s00500_021_06177_3 crossref_primary_10_1109_TETC_2024_3404551 crossref_primary_10_1109_TDSC_2018_2874243 crossref_primary_10_1007_s10489_021_02416_0 crossref_primary_10_1145_3674839 crossref_primary_10_3390_s21113862 crossref_primary_10_1016_j_inffus_2019_05_004 crossref_primary_10_1016_j_neucom_2017_06_002 crossref_primary_10_1016_j_neucom_2021_02_049 crossref_primary_10_1007_s00521_023_08957_4 crossref_primary_10_1007_s11036_025_02458_5 crossref_primary_10_3390_signals2040042 crossref_primary_10_1038_s41380_023_02047_6 crossref_primary_10_1177_0036850419850394 crossref_primary_10_1016_j_micron_2021_103023 crossref_primary_10_1109_ACCESS_2019_2907729 crossref_primary_10_1016_j_microrel_2020_113969 crossref_primary_10_1109_TIM_2022_3220302 crossref_primary_10_1117_1_JEI_32_3_031803 crossref_primary_10_3390_su13158600 crossref_primary_10_3390_rs10071066 crossref_primary_10_1109_ACCESS_2020_2991183 crossref_primary_10_1109_ACCESS_2020_3042000 crossref_primary_10_1016_j_neucom_2018_07_072 crossref_primary_10_1016_j_enbuild_2019_06_034 crossref_primary_10_1016_j_jbi_2020_103500 crossref_primary_10_1016_j_bspc_2024_106095 crossref_primary_10_1162_neco_a_01139 crossref_primary_10_1002_cpe_7142 crossref_primary_10_1007_s00521_021_06780_3 crossref_primary_10_3390_s21093279 crossref_primary_10_1016_j_jvcir_2018_10_029 crossref_primary_10_1007_s00521_020_05077_1 crossref_primary_10_1016_j_neucom_2017_06_026 crossref_primary_10_1016_j_neucom_2017_06_025 crossref_primary_10_1016_j_neucom_2021_02_025 crossref_primary_10_1186_s13638_022_02193_5 crossref_primary_10_3390_pr8111365 crossref_primary_10_3390_rs11242898 crossref_primary_10_1016_j_eswa_2025_128785 crossref_primary_10_1002_er_7797 crossref_primary_10_1007_s12652_022_03786_0 crossref_primary_10_1080_08927022_2020_1804564 crossref_primary_10_1016_j_neucom_2018_07_057 crossref_primary_10_1007_s00500_022_07074_z crossref_primary_10_1109_JIOT_2023_3296116 crossref_primary_10_1007_s11340_021_00787_6 crossref_primary_10_3390_technologies11010024 crossref_primary_10_1007_s00287_020_01299_8 crossref_primary_10_1016_j_knosys_2017_09_023 crossref_primary_10_1016_j_neucom_2020_09_017 crossref_primary_10_1007_s42979_020_00392_9 crossref_primary_10_1016_j_neucom_2017_06_032 crossref_primary_10_1155_2022_5104464 crossref_primary_10_1007_s12652_023_04594_w crossref_primary_10_1016_j_neucom_2017_06_037 crossref_primary_10_1016_j_neucom_2021_02_034 crossref_primary_10_1016_j_neucom_2018_12_010 crossref_primary_10_1038_s41598_025_15894_w crossref_primary_10_3390_geosciences13040115 crossref_primary_10_3390_app122010344 crossref_primary_10_1109_TII_2018_2870879 crossref_primary_10_1109_ACCESS_2020_3004188 crossref_primary_10_1007_s11063_022_10869_8 crossref_primary_10_1007_s10489_020_01928_5 crossref_primary_10_3390_s20164367 crossref_primary_10_1016_j_envsoft_2021_105122 crossref_primary_10_1109_JIOT_2021_3070042 crossref_primary_10_1016_j_jenvman_2025_126413 crossref_primary_10_1080_21642583_2024_2362169 crossref_primary_10_3390_s23187791 crossref_primary_10_1155_2021_5519033 crossref_primary_10_1016_j_engappai_2024_109183 crossref_primary_10_3390_app112411853 crossref_primary_10_1016_j_neucom_2018_07_038 crossref_primary_10_7717_peerj_cs_860 crossref_primary_10_26634_jcom_8_1_17490 crossref_primary_10_1016_j_envsoft_2021_105112 crossref_primary_10_1007_s11042_020_09995_z crossref_primary_10_1016_j_csbj_2021_08_004 crossref_primary_10_1007_s11423_023_10323_z crossref_primary_10_1016_j_oceaneng_2024_117923 crossref_primary_10_1016_j_engappai_2019_03_026 crossref_primary_10_1109_ACCESS_2020_3036990 crossref_primary_10_1007_s11042_018_7076_0 crossref_primary_10_1007_s11042_024_20258_z crossref_primary_10_3390_appliedmath5030076 crossref_primary_10_1016_j_ast_2019_105539 crossref_primary_10_1109_COMST_2021_3127267 crossref_primary_10_1121_10_0021333 crossref_primary_10_1016_j_bspc_2021_103463 crossref_primary_10_1038_s41467_022_32884_y crossref_primary_10_1109_ACCESS_2021_3116131 crossref_primary_10_1177_17442591231219025 crossref_primary_10_1007_s00521_021_06873_z crossref_primary_10_1080_21642583_2021_1992684 crossref_primary_10_1007_s12021_021_09524_9 crossref_primary_10_1038_s41380_019_0365_9 crossref_primary_10_1186_s12911_024_02548_6 crossref_primary_10_3390_brainsci12010094 crossref_primary_10_3390_ijgi11030162 crossref_primary_10_1186_s12880_023_01176_2 crossref_primary_10_1109_ACCESS_2018_2888882 crossref_primary_10_1016_j_asoc_2020_106688 crossref_primary_10_1016_j_jnca_2025_104214 crossref_primary_10_1007_s00521_023_09279_1 crossref_primary_10_1016_j_infrared_2025_106059 crossref_primary_10_3390_diagnostics12020518 crossref_primary_10_1109_TIM_2022_3216669 crossref_primary_10_1299_transjsme_25_00020 crossref_primary_10_1007_s00466_020_01952_9 crossref_primary_10_1109_ACCESS_2025_3566252 crossref_primary_10_1016_j_scitotenv_2023_164968 crossref_primary_10_1016_j_jlp_2023_105185 crossref_primary_10_1109_LAWP_2024_3430557 crossref_primary_10_1016_j_inffus_2024_102447 crossref_primary_10_1016_j_compmedimag_2019_04_001 crossref_primary_10_1016_j_cviu_2019_04_004 crossref_primary_10_1007_s00034_019_01041_0 crossref_primary_10_3390_s22218263 crossref_primary_10_1007_s11831_018_9257_4 crossref_primary_10_1109_ACCESS_2025_3559981 crossref_primary_10_1016_j_future_2019_01_035 crossref_primary_10_1016_j_jhydrol_2021_127043 crossref_primary_10_3390_biom12040508 crossref_primary_10_1109_TNNLS_2021_3054867 crossref_primary_10_1016_j_dajour_2021_100010 crossref_primary_10_1049_itr2_12464 crossref_primary_10_1109_ACCESS_2020_3024558 crossref_primary_10_3390_computers13070174 crossref_primary_10_1093_jamiaopen_ooaf083 crossref_primary_10_1049_sfw2_12064 crossref_primary_10_1109_TNSM_2020_2995900 crossref_primary_10_3390_info14070397 crossref_primary_10_1016_j_neucom_2025_131117 crossref_primary_10_1109_ACCESS_2019_2925569 crossref_primary_10_1145_3648609 crossref_primary_10_1007_s40846_020_00538_3 crossref_primary_10_1016_j_ifacol_2020_12_582 crossref_primary_10_1007_s00530_023_01232_5 crossref_primary_10_3390_diagnostics11010011 crossref_primary_10_3390_en16186608 crossref_primary_10_3390_rs16183522 crossref_primary_10_62347_YQHQ1079 crossref_primary_10_1177_03019233241301144 crossref_primary_10_1016_j_ins_2025_122623 crossref_primary_10_1109_ACCESS_2019_2925561 crossref_primary_10_1016_j_neucom_2020_04_157 crossref_primary_10_1016_j_neucom_2020_04_159 crossref_primary_10_1016_j_image_2018_01_007 crossref_primary_10_1155_2019_7816154 crossref_primary_10_1186_s43093_025_00515_9 crossref_primary_10_3390_jmse9010047 crossref_primary_10_1007_s13735_023_00279_4 crossref_primary_10_1007_s10207_024_00891_3 crossref_primary_10_1016_j_ufug_2024_128390 crossref_primary_10_1016_j_measurement_2018_05_098 crossref_primary_10_1109_TCYB_2022_3169210 crossref_primary_10_1016_j_apenergy_2023_121703 crossref_primary_10_1109_TITS_2025_3564642 crossref_primary_10_3390_rs13142686 crossref_primary_10_1109_IOTM_0001_1900046 crossref_primary_10_1007_s10462_019_09744_1 crossref_primary_10_1007_s13369_023_08686_9 crossref_primary_10_3390_make3020017 crossref_primary_10_1145_3446390 crossref_primary_10_1177_0278364919884141 crossref_primary_10_3390_electronics8020209 crossref_primary_10_32604_cmc_2022_014637 crossref_primary_10_1109_TNET_2024_3390416 crossref_primary_10_1016_j_apacoust_2024_110261 crossref_primary_10_1080_09540091_2021_2024509 crossref_primary_10_3390_jimaging5050052 crossref_primary_10_1155_2020_1373087 crossref_primary_10_1080_10298436_2023_2257852 crossref_primary_10_3390_app11083662 crossref_primary_10_1016_j_oceaneng_2025_122384 crossref_primary_10_1080_10408398_2022_2131725 crossref_primary_10_4271_2021_01_0550 crossref_primary_10_1016_j_enganabound_2023_06_010 crossref_primary_10_3390_min11101089 crossref_primary_10_1007_s40435_025_01624_7 crossref_primary_10_1109_TIFS_2022_3217389 crossref_primary_10_1109_TVLSI_2020_3046075 crossref_primary_10_1007_s42452_019_1538_5 crossref_primary_10_3389_fchem_2019_00782 crossref_primary_10_1016_j_neucom_2022_01_006 crossref_primary_10_1016_j_jclepro_2021_127672 crossref_primary_10_1109_TDSC_2021_3139201 crossref_primary_10_1016_j_bbe_2022_03_001 crossref_primary_10_1016_j_neucom_2020_06_118 crossref_primary_10_3390_app12168140 crossref_primary_10_1155_2022_1042737 crossref_primary_10_1080_16843703_2021_1992072 crossref_primary_10_1016_j_neucom_2022_01_099 crossref_primary_10_1038_s41598_025_96875_x crossref_primary_10_3390_rs12050795 crossref_primary_10_1038_s41598_023_45486_5 crossref_primary_10_1109_TVT_2019_2925562 crossref_primary_10_1109_ACCESS_2021_3112612 crossref_primary_10_1190_geo2023_0129_1 crossref_primary_10_1016_j_compbiomed_2022_106073 crossref_primary_10_1109_TMI_2021_3101616 crossref_primary_10_1016_j_talanta_2020_121444 crossref_primary_10_1016_j_spasta_2020_100442 crossref_primary_10_3390_app9235254 crossref_primary_10_1109_ACCESS_2023_3258399 crossref_primary_10_3390_designs2020013 crossref_primary_10_1109_TVT_2023_3242433 crossref_primary_10_1007_s12530_025_09668_y crossref_primary_10_1016_j_chemolab_2020_104214 crossref_primary_10_1016_j_neucom_2024_127345 crossref_primary_10_1016_j_teler_2023_100053 crossref_primary_10_1109_ACCESS_2022_3205774 crossref_primary_10_1016_j_mtcomm_2025_112342 crossref_primary_10_1155_2021_6687146 crossref_primary_10_1016_j_health_2022_100104 crossref_primary_10_1016_j_conbuildmat_2020_118513 crossref_primary_10_3390_s23239570 crossref_primary_10_1109_JAS_2022_105464 crossref_primary_10_3390_electronics12010074 crossref_primary_10_1016_j_neucom_2025_131523 crossref_primary_10_1016_j_jsv_2023_117598 crossref_primary_10_1631_FITEE_1900236 crossref_primary_10_1049_iet_sen_2019_0045 crossref_primary_10_1177_18724981241306503 crossref_primary_10_1016_j_cmpb_2021_106007 crossref_primary_10_3390_rs13224712 crossref_primary_10_1016_j_neucom_2021_06_041 crossref_primary_10_1016_j_eswa_2022_118873 crossref_primary_10_1109_COMST_2019_2904897 crossref_primary_10_1093_bib_bbac075 crossref_primary_10_1016_j_comnet_2023_110114 crossref_primary_10_1016_j_oceaneng_2025_121084 crossref_primary_10_1016_j_jprocont_2021_07_012 crossref_primary_10_1007_s11042_024_20276_x crossref_primary_10_3390_electronics10172052 crossref_primary_10_1016_j_eswa_2024_124465 crossref_primary_10_1038_s41598_022_23320_8 crossref_primary_10_1038_s41598_018_33516_6 crossref_primary_10_1155_2019_2537689 crossref_primary_10_3389_fgene_2020_540751 crossref_primary_10_1038_s44220_024_00237_x crossref_primary_10_1016_j_neucom_2020_10_014 crossref_primary_10_1016_j_ipm_2022_102929 crossref_primary_10_1109_TBDATA_2023_3334648 crossref_primary_10_1016_j_optlaseng_2024_108645 crossref_primary_10_1109_ACCESS_2020_3001046 crossref_primary_10_1016_j_neucom_2019_11_041 crossref_primary_10_1016_j_neucom_2021_11_106 crossref_primary_10_1007_s44196_025_00842_3 crossref_primary_10_1016_j_sab_2024_106910 crossref_primary_10_1007_s40430_023_04200_2 crossref_primary_10_3390_app9122410 crossref_primary_10_2139_ssrn_5120580 crossref_primary_10_1007_s11063_022_10927_1 crossref_primary_10_1007_s40998_019_00177_8 crossref_primary_10_1016_j_solener_2023_112006 crossref_primary_10_1016_j_est_2021_102704 crossref_primary_10_1109_JSEN_2017_2780178 crossref_primary_10_1002_widm_1564 crossref_primary_10_1007_s13735_020_00195_x crossref_primary_10_1016_j_neunet_2018_12_010 crossref_primary_10_1016_j_neucom_2025_130645 crossref_primary_10_3389_fphy_2020_618917 crossref_primary_10_1002_aelm_202100918 crossref_primary_10_1007_s10462_023_10551_y crossref_primary_10_2478_amns_2024_3175 crossref_primary_10_1016_j_neucom_2018_03_068 crossref_primary_10_1016_j_neucom_2019_11_066 crossref_primary_10_1007_s10489_021_03152_1 crossref_primary_10_3233_IDA_184403 crossref_primary_10_1109_MDAT_2020_3031857 crossref_primary_10_1002_aisy_202000063 crossref_primary_10_1155_2021_6698249 crossref_primary_10_1016_j_ijinfomgt_2020_102142 crossref_primary_10_1016_j_engappai_2023_107127 crossref_primary_10_1016_j_isprsjprs_2019_04_016 crossref_primary_10_1007_s12652_022_03703_5 crossref_primary_10_1002_jim4_18 crossref_primary_10_1109_ACCESS_2022_3157651 crossref_primary_10_1061_NHREFO_NHENG_2004 crossref_primary_10_1016_j_neucom_2019_11_051 crossref_primary_10_3390_rs14225821 crossref_primary_10_3390_pr12030452 crossref_primary_10_1016_j_asoc_2021_107465 crossref_primary_10_3390_electronics11223647 crossref_primary_10_1016_j_microrel_2020_113893 crossref_primary_10_1016_j_bspc_2022_104273 crossref_primary_10_1109_LGRS_2021_3105448 crossref_primary_10_3389_fenrg_2023_1161401 crossref_primary_10_3390_w14193190 crossref_primary_10_1016_j_measurement_2020_107929 crossref_primary_10_1016_j_compind_2021_103394 crossref_primary_10_3233_JIFS_219059 crossref_primary_10_1016_j_simpat_2024_102916 crossref_primary_10_1007_s00500_021_06027_2 crossref_primary_10_1007_s10462_024_11049_x crossref_primary_10_1016_j_jweia_2023_105534 crossref_primary_10_1016_j_neucom_2023_01_081 crossref_primary_10_3390_horticulturae10090899 crossref_primary_10_1016_j_conbuildmat_2023_132596 crossref_primary_10_3390_en18174564 crossref_primary_10_1109_ACCESS_2020_3028690 crossref_primary_10_1109_ACCESS_2024_3433455 crossref_primary_10_1177_09574565221139638 crossref_primary_10_1016_j_compbiolchem_2021_107536 crossref_primary_10_1016_j_neucom_2018_11_109 crossref_primary_10_1109_ACCESS_2021_3080310 crossref_primary_10_1109_ACCESS_2024_3476140 crossref_primary_10_1016_j_compag_2021_106285 crossref_primary_10_1016_j_patcog_2025_112334 crossref_primary_10_1002_dac_4665 crossref_primary_10_1109_ACCESS_2021_3079323 crossref_primary_10_1109_TCAD_2022_3221906 crossref_primary_10_1109_TITS_2019_2958624 crossref_primary_10_3390_electronics11132100 crossref_primary_10_1016_j_neucom_2017_10_027 crossref_primary_10_1016_j_jclepro_2022_131500 crossref_primary_10_1016_j_neucom_2020_07_103 crossref_primary_10_3390_brainsci10070431 crossref_primary_10_1016_j_pnucene_2024_105568 crossref_primary_10_1016_j_jag_2022_102926 crossref_primary_10_1007_s10462_021_10127_8 crossref_primary_10_3390_rs14030632 crossref_primary_10_3390_vehicles5040078 crossref_primary_10_1016_j_neucom_2017_03_063 crossref_primary_10_1002_dac_5988 crossref_primary_10_1016_j_neucom_2023_126809 crossref_primary_10_1007_s11412_023_09386_0 crossref_primary_10_1016_j_energy_2025_136546 crossref_primary_10_3390_ijerph192215293 crossref_primary_10_1111_ffe_14330 crossref_primary_10_1016_j_atech_2023_100395 crossref_primary_10_1007_s00500_023_08277_8 crossref_primary_10_1016_j_displa_2022_102225 crossref_primary_10_3390_s24051495 crossref_primary_10_1007_s10845_020_01715_6 crossref_primary_10_1007_s12083_023_01564_z crossref_primary_10_1109_MIM_2023_10083000 crossref_primary_10_1007_s13198_022_01844_6 crossref_primary_10_3390_su151511803 crossref_primary_10_1016_j_neucom_2017_03_049 crossref_primary_10_1109_TIFS_2023_3274391 crossref_primary_10_1016_j_finel_2021_103572 crossref_primary_10_1007_s00034_023_02387_2 crossref_primary_10_1016_j_swevo_2021_100863 crossref_primary_10_1049_iet_ipr_2020_0491 crossref_primary_10_1093_mnras_staa4045 crossref_primary_10_1080_10589759_2024_2338187 crossref_primary_10_1109_MITS_2019_2953513 crossref_primary_10_1016_j_knosys_2021_107058 crossref_primary_10_1088_1742_6596_1770_1_012016 crossref_primary_10_1007_s11227_022_04936_z crossref_primary_10_1177_1548512919898750 crossref_primary_10_1007_s40747_022_00866_8 crossref_primary_10_1016_j_compbiomed_2022_105610 crossref_primary_10_1016_j_drudis_2019_03_003 crossref_primary_10_1007_s10772_021_09850_y crossref_primary_10_3390_rs17020333 crossref_primary_10_1016_j_asoc_2022_109401 crossref_primary_10_1016_j_jhydrol_2023_130350 crossref_primary_10_1007_s11042_023_16155_6 crossref_primary_10_1016_j_neucom_2017_03_056 crossref_primary_10_1016_j_ins_2022_05_104 crossref_primary_10_1016_j_neucom_2017_03_055 crossref_primary_10_1109_ACCESS_2020_3030960 crossref_primary_10_1016_j_jfranklin_2025_107575 crossref_primary_10_1016_j_neucom_2018_09_001 crossref_primary_10_1016_j_aei_2024_103070 crossref_primary_10_1109_JLT_2022_3184178 crossref_primary_10_1007_s12559_018_9577_6 crossref_primary_10_1109_TDSC_2020_2967724 crossref_primary_10_4018_IJBAN_2019040104 crossref_primary_10_1109_MITS_2018_2842040 crossref_primary_10_1038_s41467_024_48881_2 crossref_primary_10_1016_j_neucom_2021_10_110 crossref_primary_10_1016_j_neucom_2019_06_008 crossref_primary_10_1007_s11432_024_4310_7 crossref_primary_10_3390_biom10081123 crossref_primary_10_5897_JHMT2024_0342 crossref_primary_10_3390_ai3020029 crossref_primary_10_1007_s10015_020_00602_w crossref_primary_10_1109_TMAG_2021_3058131 crossref_primary_10_3390_app10072204 crossref_primary_10_1016_j_ins_2022_05_121 crossref_primary_10_1109_ACCESS_2022_3186479 crossref_primary_10_1155_2021_3742536 crossref_primary_10_1371_journal_pone_0194889 crossref_primary_10_1016_j_neucom_2020_03_038 crossref_primary_10_1007_s00521_023_08778_5 crossref_primary_10_1016_j_cose_2022_102684 crossref_primary_10_1007_s40313_025_01181_6 crossref_primary_10_1007_s12652_021_03312_8 crossref_primary_10_1109_ACCESS_2023_3323038 crossref_primary_10_1016_j_ijmecsci_2025_110517 crossref_primary_10_1109_TG_2022_3217057 crossref_primary_10_1016_j_neucom_2018_09_028 crossref_primary_10_1109_JSTARS_2023_3275995 crossref_primary_10_1155_2023_3835297 crossref_primary_10_1109_MAES_2021_3053108 crossref_primary_10_3389_fpls_2024_1368885 crossref_primary_10_3390_app10103443 crossref_primary_10_3390_electronics8050554 crossref_primary_10_1007_s11042_019_7222_3 crossref_primary_10_1784_insi_2025_67_4_208 crossref_primary_10_1016_j_neucom_2017_12_040 crossref_primary_10_1016_j_neucom_2018_09_038 crossref_primary_10_1109_JLT_2024_3486718 crossref_primary_10_1007_s11554_023_01393_6 crossref_primary_10_1007_s10994_021_06052_0 crossref_primary_10_1016_j_petrol_2020_107906 crossref_primary_10_1155_2022_7662264 crossref_primary_10_2166_ws_2023_033 crossref_primary_10_1109_ACCESS_2023_3287490 crossref_primary_10_1016_j_enconman_2019_111793 crossref_primary_10_3390_app122312215 crossref_primary_10_1016_j_energy_2018_11_128 crossref_primary_10_1016_j_neucom_2022_04_084 crossref_primary_10_1109_MMUL_2023_3272513 crossref_primary_10_1016_j_cosrev_2025_100808 crossref_primary_10_1007_s11042_021_10707_4 crossref_primary_10_1016_j_neucom_2017_12_032 crossref_primary_10_3390_w17050756 crossref_primary_10_1109_ACCESS_2020_2995442 crossref_primary_10_1016_j_atech_2025_100917 crossref_primary_10_1016_j_neucom_2018_09_050 crossref_primary_10_1016_j_knosys_2021_107941 crossref_primary_10_1109_JIOT_2025_3573703 crossref_primary_10_3390_cancers15143608 crossref_primary_10_1016_j_compag_2024_108906 crossref_primary_10_3390_app11209703 crossref_primary_10_1016_j_engappai_2023_107835 crossref_primary_10_1016_j_neucom_2019_08_055 crossref_primary_10_1007_s12652_022_04351_5 crossref_primary_10_1109_ACCESS_2019_2959238 crossref_primary_10_3390_s24072340 crossref_primary_10_1016_j_imavis_2024_105337 crossref_primary_10_1051_e3sconf_202339605013 crossref_primary_10_1049_elp2_12262 crossref_primary_10_1098_rsos_190227 crossref_primary_10_1109_TCAD_2023_3344523 crossref_primary_10_1190_geo2021_0335_1 crossref_primary_10_1016_j_neucom_2017_05_071 crossref_primary_10_1109_JLT_2021_3098345 crossref_primary_10_3390_s20061762 crossref_primary_10_1088_1757_899X_608_1_012045 crossref_primary_10_1109_ACCESS_2019_2952616 crossref_primary_10_1007_s10044_025_01449_2 crossref_primary_10_1016_j_coco_2022_101400 crossref_primary_10_1016_j_ecolind_2021_108287 crossref_primary_10_1016_j_neunet_2019_04_024 crossref_primary_10_1016_j_oceaneng_2023_113670 crossref_primary_10_1016_j_jhazmat_2024_134392 crossref_primary_10_1080_14680629_2021_1886160 crossref_primary_10_3390_rs13020326 crossref_primary_10_1038_s41598_021_98387_w crossref_primary_10_3390_math10081270 crossref_primary_10_1016_j_neucom_2017_05_061 crossref_primary_10_1016_j_saa_2021_119871 crossref_primary_10_1155_2022_2456550 crossref_primary_10_3390_ai5040127 crossref_primary_10_1016_j_cmpb_2020_105721 crossref_primary_10_3390_ijerph19053085 crossref_primary_10_1016_j_inffus_2023_101861 crossref_primary_10_1016_j_neucom_2023_126437 crossref_primary_10_1016_j_neucom_2022_10_020 crossref_primary_10_1038_s41598_025_94256_y crossref_primary_10_1109_TETCI_2024_3369628 crossref_primary_10_1145_3711845 crossref_primary_10_1016_j_engstruct_2023_115950 crossref_primary_10_3390_electronics11233909 crossref_primary_10_1007_s11356_025_36581_3 crossref_primary_10_3390_s19153424 crossref_primary_10_1371_journal_pone_0218086 crossref_primary_10_1007_s11416_024_00517_1 crossref_primary_10_1080_14680629_2023_2230298 crossref_primary_10_1007_s11042_018_6323_8 crossref_primary_10_3390_rs13193988 crossref_primary_10_1016_j_measurement_2018_12_071 crossref_primary_10_3390_network3020013 crossref_primary_10_32604_jai_2024_054314 crossref_primary_10_1016_j_still_2021_105223 crossref_primary_10_5604_01_3001_0054_8929 crossref_primary_10_1109_LES_2024_3514920 crossref_primary_10_1007_s10694_020_01056_z crossref_primary_10_1016_j_compbiomed_2022_105210 crossref_primary_10_1016_j_neucom_2023_126436 crossref_primary_10_3233_THC_220771 crossref_primary_10_1016_j_measurement_2021_110565 crossref_primary_10_1016_j_neucom_2023_126434 crossref_primary_10_1039_D2NH00536K crossref_primary_10_1016_j_neucom_2017_12_072 crossref_primary_10_1109_TCAD_2024_3444708 crossref_primary_10_1177_01423312221077755 crossref_primary_10_1007_s11042_019_08252_2 crossref_primary_10_1109_ACCESS_2020_3019307 crossref_primary_10_1016_j_cnsns_2022_106968 crossref_primary_10_1016_j_neucom_2020_01_036 crossref_primary_10_3390_diagnostics12081916 crossref_primary_10_3390_jimaging7020026 crossref_primary_10_1016_j_neucom_2022_04_015 crossref_primary_10_1109_TNSE_2023_3244864 crossref_primary_10_1177_15485129211049782 crossref_primary_10_23919_JSEE_2024_000054 crossref_primary_10_1109_JBHI_2022_3203454 crossref_primary_10_1155_2022_6348424 crossref_primary_10_1145_3635165 crossref_primary_10_1007_s11042_019_07784_x crossref_primary_10_3390_en15155719 crossref_primary_10_1109_ACCESS_2019_2891576 crossref_primary_10_1016_j_scitotenv_2021_149861 crossref_primary_10_2478_jee_2023_0022 crossref_primary_10_3390_rs13051003 crossref_primary_10_1016_j_ins_2020_09_038 crossref_primary_10_32604_cmc_2022_024272 crossref_primary_10_1016_j_neucom_2022_10_010 crossref_primary_10_1007_s11042_022_12242_2 crossref_primary_10_1016_j_aquaeng_2023_102368 crossref_primary_10_1145_3648471 crossref_primary_10_1016_j_enconman_2024_119291 crossref_primary_10_3390_app14156774 crossref_primary_10_1007_s11063_023_11223_2 crossref_primary_10_1109_ACCESS_2020_3034942 crossref_primary_10_1007_s43069_023_00286_5 crossref_primary_10_22430_22565337_1626 crossref_primary_10_1109_TDSC_2022_3141391 crossref_primary_10_1016_j_knosys_2021_107402 crossref_primary_10_1109_TSP_2023_3303648 crossref_primary_10_1016_j_biopsych_2022_02_005 crossref_primary_10_3390_photonics7040105 crossref_primary_10_1016_j_neucom_2020_05_036 crossref_primary_10_1109_ACCESS_2022_3210183 crossref_primary_10_1109_TPAMI_2023_3294394 crossref_primary_10_3103_S8756699019060086 crossref_primary_10_1002_itl2_270 crossref_primary_10_3390_app15094813 crossref_primary_10_1016_j_susmat_2025_e01309 crossref_primary_10_1016_j_neucom_2018_07_020 crossref_primary_10_1002_widm_1490 crossref_primary_10_3389_fenvs_2022_840479 crossref_primary_10_1016_j_asoc_2020_106565 crossref_primary_10_1016_j_neucom_2019_02_056 crossref_primary_10_1016_j_patcog_2018_02_014 crossref_primary_10_2174_0129503779282967240315040931 crossref_primary_10_1007_s00170_022_09054_x crossref_primary_10_1016_j_comcom_2022_04_009 crossref_primary_10_1007_s00500_020_05080_7 crossref_primary_10_1016_j_neucom_2020_05_049 crossref_primary_10_1007_s12553_021_00555_5 crossref_primary_10_1155_2020_9356165 crossref_primary_10_1016_j_jacr_2022_02_024 crossref_primary_10_3389_fninf_2021_663592 crossref_primary_10_1007_s11042_017_5385_3 crossref_primary_10_1016_j_infsof_2025_107719 crossref_primary_10_1016_j_neucom_2019_08_101 crossref_primary_10_1007_s11356_024_32807_y crossref_primary_10_1007_s11063_022_11055_6 crossref_primary_10_1016_j_neucom_2019_08_108 crossref_primary_10_3390_s21103523 crossref_primary_10_1016_j_jobe_2023_107107 crossref_primary_10_3390_s21134284 crossref_primary_10_1016_j_csite_2025_106505 crossref_primary_10_3390_app14062334 crossref_primary_10_3390_en11081988 crossref_primary_10_1007_s11042_018_7031_0 crossref_primary_10_1049_smt2_12143 crossref_primary_10_1016_j_knosys_2023_111205 crossref_primary_10_1016_j_neucom_2023_03_043 crossref_primary_10_1029_2020JB021473 crossref_primary_10_1007_s10044_022_01095_y crossref_primary_10_69882_adba_csai_2025074 crossref_primary_10_1038_s41598_024_76968_9 crossref_primary_10_1016_j_infrared_2022_104048 crossref_primary_10_1007_s00202_024_02522_5 crossref_primary_10_3390_sym15020545 crossref_primary_10_1080_0952813X_2021_1908431 crossref_primary_10_1002_aic_16473 crossref_primary_10_1016_j_cja_2024_05_009 crossref_primary_10_1016_j_pmcj_2022_101736 crossref_primary_10_1016_j_inffus_2017_04_004 crossref_primary_10_1016_j_inffus_2024_102582 crossref_primary_10_1016_j_neucom_2017_05_103 crossref_primary_10_1109_ACCESS_2019_2945488 crossref_primary_10_1155_2020_3793740 crossref_primary_10_1109_MNET_011_2000684 crossref_primary_10_1007_s11042_023_17112_z crossref_primary_10_1109_ACCESS_2022_3154061 crossref_primary_10_3390_bs13080618 crossref_primary_10_3390_s20154300 crossref_primary_10_1016_j_neucom_2020_05_078 crossref_primary_10_3390_rs12223706 crossref_primary_10_1016_j_automatica_2024_111907 crossref_primary_10_1016_j_elerap_2023_101263 crossref_primary_10_1016_j_neucom_2019_04_093 crossref_primary_10_1016_j_neucom_2017_12_006 crossref_primary_10_3390_electronics10202470 crossref_primary_10_1109_ACCESS_2020_3017076 crossref_primary_10_3390_s19061333 crossref_primary_10_1007_s11042_020_10419_1 crossref_primary_10_3390_atmos13101616 crossref_primary_10_1109_TNNLS_2024_3403155 crossref_primary_10_1007_s00165_021_00553_4 crossref_primary_10_1016_j_neucom_2019_04_087 crossref_primary_10_1186_s13040_022_00308_8 crossref_primary_10_1016_j_neucom_2019_04_089 crossref_primary_10_1016_j_oceaneng_2023_114069 crossref_primary_10_1145_3494569 crossref_primary_10_1016_j_jhydrol_2019_124296 crossref_primary_10_1007_s12065_019_00344_0 crossref_primary_10_1016_j_chroma_2020_461680 crossref_primary_10_3390_s18010292 crossref_primary_10_1016_j_energy_2019_04_075 crossref_primary_10_1016_j_cviu_2023_103915 crossref_primary_10_1007_s10661_024_13092_1 crossref_primary_10_1016_j_neucom_2019_02_024 crossref_primary_10_1109_ACCESS_2022_3140289 crossref_primary_10_3389_fmars_2025_1596325 crossref_primary_10_1109_ACCESS_2019_2936564 crossref_primary_10_1016_j_jfoodeng_2022_111137 crossref_primary_10_3389_fchem_2019_00895 crossref_primary_10_1016_j_anucene_2020_107969 crossref_primary_10_3390_s22010153 crossref_primary_10_1016_j_ymssp_2023_110101 crossref_primary_10_1007_s00044_025_03465_7 crossref_primary_10_3390_app10010319 crossref_primary_10_1109_ACCESS_2019_2929816 crossref_primary_10_3390_molecules25194480 crossref_primary_10_1190_geo2019_0468_1 crossref_primary_10_1016_j_neucom_2019_02_038 crossref_primary_10_1016_j_ocecoaman_2020_105478 crossref_primary_10_1007_s00521_018_3777_6 crossref_primary_10_1007_s11042_023_16751_6 crossref_primary_10_1145_3596498 crossref_primary_10_1007_s11042_023_14382_5 crossref_primary_10_1016_j_cosrev_2020_100254 crossref_primary_10_1007_s11227_018_2714_x crossref_primary_10_1007_s00521_020_04819_5 crossref_primary_10_1016_j_asoc_2022_108912 crossref_primary_10_1177_03611981241302335 crossref_primary_10_1007_s11042_023_15224_0 crossref_primary_10_1016_j_neucom_2017_01_078 crossref_primary_10_1007_s11023_019_09512_8 crossref_primary_10_1007_s11042_024_19817_1 crossref_primary_10_1016_j_rse_2020_112093 crossref_primary_10_1109_ACCESS_2022_3163380 crossref_primary_10_1016_j_procs_2020_02_243 crossref_primary_10_1002_we_2425 crossref_primary_10_1007_s00521_022_07234_0 crossref_primary_10_3390_diagnostics15151883 crossref_primary_10_3390_app14166955 crossref_primary_10_1186_s40537_021_00444_8 crossref_primary_10_1016_j_jmsy_2022_09_010 crossref_primary_10_1109_JIOT_2020_3038273 crossref_primary_10_3390_jmse12061013 crossref_primary_10_1016_j_jfranklin_2024_107196 crossref_primary_10_3390_electronics12010166 crossref_primary_10_32604_sdhm_2024_055265 crossref_primary_10_1109_TKDE_2022_3187455 crossref_primary_10_1109_JSEN_2025_3583256 crossref_primary_10_7717_peerj_6842 crossref_primary_10_1016_j_neucom_2021_04_108 crossref_primary_10_1002_ecs2_2960 crossref_primary_10_1016_j_apacoust_2020_107691 crossref_primary_10_3390_rs16091562 crossref_primary_10_1016_j_jag_2023_103382 crossref_primary_10_1016_j_neucom_2019_10_106 crossref_primary_10_1109_TC_2023_3236872 crossref_primary_10_1016_j_oregeorev_2022_105242 crossref_primary_10_1016_j_neucom_2020_03_009 crossref_primary_10_1088_1742_6596_1168_6_062032 crossref_primary_10_1007_s11047_020_09791_6 crossref_primary_10_1007_s12273_020_0664_8 crossref_primary_10_1109_ACCESS_2022_3180740 crossref_primary_10_3389_fmed_2023_1264659 crossref_primary_10_1016_j_chemolab_2020_104103 crossref_primary_10_1016_j_neucom_2018_11_067 crossref_primary_10_1016_j_compag_2023_108146 crossref_primary_10_1016_j_ins_2023_01_099 crossref_primary_10_1109_TAFFC_2023_3286351 crossref_primary_10_1002_adma_202107325 crossref_primary_10_1016_j_neucom_2021_08_157 crossref_primary_10_1177_01655515241244497 crossref_primary_10_1145_3494987 crossref_primary_10_3390_s21062180 crossref_primary_10_1016_j_cmpb_2019_105162 crossref_primary_10_1007_s11063_023_11361_7 crossref_primary_10_1016_j_neucom_2021_08_153 crossref_primary_10_1016_j_eswa_2020_113790 crossref_primary_10_1007_s00521_024_10960_2 crossref_primary_10_1109_ACCESS_2020_3024277 crossref_primary_10_1111_ffe_13889 crossref_primary_10_1016_j_neucom_2020_07_056 crossref_primary_10_1016_j_neucom_2018_11_075 crossref_primary_10_1109_ACCESS_2020_2975030 crossref_primary_10_3390_s20020342 crossref_primary_10_3390_app9214678 crossref_primary_10_1007_s11042_022_12963_4 crossref_primary_10_1016_j_compag_2022_106911 crossref_primary_10_3390_app112210829 crossref_primary_10_1088_1755_1315_143_1_012025 crossref_primary_10_1007_s10489_021_02474_4 crossref_primary_10_1007_s11042_019_07988_1 crossref_primary_10_1007_s41870_024_01869_z crossref_primary_10_1016_j_jclepro_2023_139771 crossref_primary_10_1016_j_neucom_2023_03_069 crossref_primary_10_3390_sym13061096 crossref_primary_10_1002_int_22590 crossref_primary_10_1109_ACCESS_2022_3177595 crossref_primary_10_1016_j_compag_2023_108127 crossref_primary_10_1038_s41598_024_56502_7 crossref_primary_10_1109_ACCESS_2019_2923663 crossref_primary_10_1134_S1061830922060109 crossref_primary_10_1093_jcde_qwad072 crossref_primary_10_3390_app13010398 crossref_primary_10_3390_s21020343 crossref_primary_10_3390_ma15103727 crossref_primary_10_1109_TR_2019_2907402 crossref_primary_10_1016_j_neucom_2022_08_033 crossref_primary_10_1177_15589250211005088 crossref_primary_10_1007_s00521_024_09529_w crossref_primary_10_1109_ACCESS_2020_3022039 crossref_primary_10_1109_JIOT_2025_3579940 crossref_primary_10_1007_s11042_021_10885_1 crossref_primary_10_1049_csy2_12006 crossref_primary_10_1007_s40095_022_00501_9 crossref_primary_10_1016_j_rineng_2023_100984 crossref_primary_10_1002_rse2_245 crossref_primary_10_1016_j_chemolab_2022_104750 crossref_primary_10_1016_j_procir_2020_04_158 crossref_primary_10_1007_s10596_020_09940_x crossref_primary_10_1016_j_neucom_2020_05_017 crossref_primary_10_3390_e23010083 crossref_primary_10_1016_j_engappai_2025_112186 crossref_primary_10_1016_j_imu_2023_101284 crossref_primary_10_1109_TGRS_2022_3183114 crossref_primary_10_1021_acsomega_5c04335 crossref_primary_10_1016_j_csbj_2020_02_007 crossref_primary_10_1016_j_ultramic_2019_03_017 crossref_primary_10_4018_IJIIT_2019100105 crossref_primary_10_1007_s00500_020_05245_4 crossref_primary_10_1016_j_cie_2024_110660 crossref_primary_10_1142_S1793984425300067 crossref_primary_10_1145_3458885 crossref_primary_10_1016_j_energy_2022_125368 crossref_primary_10_1016_j_neunet_2023_10_006 crossref_primary_10_3390_buildings14113519 crossref_primary_10_2478_acss_2020_0005 crossref_primary_10_26634_jip_10_1_19382 crossref_primary_10_1088_1402_4896_acf2cd crossref_primary_10_1109_ACCESS_2021_3097969 crossref_primary_10_1016_j_ejcon_2025_101360 crossref_primary_10_1155_2021_9927151 crossref_primary_10_1007_s10462_024_11100_x crossref_primary_10_3233_IDT_190160 crossref_primary_10_3390_electronics12244925 crossref_primary_10_1039_D5NR01509J crossref_primary_10_1155_2021_3950981 crossref_primary_10_3390_s19204599 crossref_primary_10_1108_JERER_03_2024_0013 crossref_primary_10_1111_agec_12531 crossref_primary_10_1038_s41598_022_24417_w crossref_primary_10_1109_TFUZZ_2024_3388091 crossref_primary_10_1007_s11042_020_09455_8 crossref_primary_10_1007_s10462_020_09819_4 crossref_primary_10_7717_peerj_cs_1831 crossref_primary_10_1109_ACCESS_2023_3301139 crossref_primary_10_1080_21681163_2024_2330524 crossref_primary_10_1002_cpe_6937 crossref_primary_10_1063_5_0124010 crossref_primary_10_1038_s41598_024_57026_w crossref_primary_10_1016_j_rineng_2023_101029 crossref_primary_10_1109_ACCESS_2019_2921832 crossref_primary_10_1109_ACCESS_2023_3326447 crossref_primary_10_1016_j_engfracmech_2025_111026 crossref_primary_10_1016_j_neucom_2021_12_056 crossref_primary_10_3390_a11090132 crossref_primary_10_1109_ACCESS_2020_2985127 crossref_primary_10_1016_j_isprsjprs_2022_08_012 crossref_primary_10_1016_j_ijepes_2024_110195 crossref_primary_10_1038_s41598_022_07054_1 crossref_primary_10_1007_s00371_022_02443_z crossref_primary_10_1155_2017_1895897 crossref_primary_10_1016_j_media_2021_102147 crossref_primary_10_1109_TVCG_2022_3165347 crossref_primary_10_1007_s10334_023_01142_7 crossref_primary_10_1109_TIA_2021_3126272 crossref_primary_10_1088_1361_6463_ac4723 crossref_primary_10_1007_s12555_021_0231_9 crossref_primary_10_1515_nanoph_2023_0569 crossref_primary_10_3390_agriculture13020357 crossref_primary_10_1002_cpe_6951 crossref_primary_10_1016_j_neucom_2018_04_034 crossref_primary_10_1093_bib_bbac364 crossref_primary_10_1016_j_bspc_2023_104653 crossref_primary_10_1016_j_bspc_2023_104652 crossref_primary_10_1109_TWC_2023_3327372 crossref_primary_10_1016_j_techfore_2022_121584 crossref_primary_10_1063_5_0147592 crossref_primary_10_3390_molecules24152738 crossref_primary_10_3390_electronics9030425 crossref_primary_10_5572_KOSAE_2025_41_3_531 crossref_primary_10_1016_j_neucom_2017_09_056 crossref_primary_10_1016_j_neucom_2020_01_126 crossref_primary_10_1109_JTEHM_2021_3134106 crossref_primary_10_3390_plants14152402 crossref_primary_10_1007_s10664_024_10520_1 crossref_primary_10_1016_j_neucom_2017_09_041 crossref_primary_10_1080_00423114_2019_1638947 crossref_primary_10_1007_s10462_020_09904_8 crossref_primary_10_3390_en15249347 crossref_primary_10_1007_s10462_022_10289_z crossref_primary_10_1109_ACCESS_2021_3069882 crossref_primary_10_1002_adfm_202112155 crossref_primary_10_1007_s42979_021_00815_1 crossref_primary_10_1016_j_neucom_2017_09_046 crossref_primary_10_1080_17457300_2020_1819341 crossref_primary_10_1007_s42979_019_0059_z crossref_primary_10_1016_j_cemconcomp_2021_104159 crossref_primary_10_1109_JSEN_2024_3382720 crossref_primary_10_1007_s11760_019_01629_8 crossref_primary_10_3847_1538_4357_ad0e6c crossref_primary_10_1109_TWC_2020_3004386 crossref_primary_10_1016_j_knosys_2020_105932 crossref_primary_10_1016_j_robot_2019_03_005 crossref_primary_10_1016_j_jvcir_2017_09_007 crossref_primary_10_3390_s20061626 crossref_primary_10_3390_rs14010088 crossref_primary_10_1007_s12633_021_01548_9 crossref_primary_10_1109_ACCESS_2021_3058772 crossref_primary_10_1016_j_neucom_2023_126709 crossref_primary_10_1016_j_eswa_2020_113699 crossref_primary_10_1007_s12553_020_00509_3 crossref_primary_10_1016_j_neucom_2019_12_144 crossref_primary_10_1177_1748006X19867776 crossref_primary_10_2208_jscejj_24_20108 crossref_primary_10_1007_s11276_020_02444_7 crossref_primary_10_1109_MNET_2018_1800078 crossref_primary_10_1109_TVT_2021_3080134 crossref_primary_10_1002_rnc_3855 crossref_primary_10_1088_1361_6501_ac4a18 crossref_primary_10_3390_app13064006 crossref_primary_10_1016_j_neucom_2021_05_059 crossref_primary_10_1016_j_neucom_2018_06_082 crossref_primary_10_1109_ACCESS_2021_3118095 crossref_primary_10_1007_s00024_024_03586_x crossref_primary_10_3390_atmos9110426 crossref_primary_10_1016_j_neucom_2019_12_118 crossref_primary_10_1007_s12083_024_01627_9 crossref_primary_10_1016_j_optlaseng_2022_107010 crossref_primary_10_1016_j_dib_2021_107723 crossref_primary_10_1016_j_asoc_2022_109314 crossref_primary_10_1016_j_comnet_2022_109144 crossref_primary_10_1038_s41598_024_56522_3 crossref_primary_10_3390_rs15102589 crossref_primary_10_1016_j_neucom_2017_07_016 crossref_primary_10_1016_j_neucom_2017_07_017 crossref_primary_10_1016_j_neucom_2017_09_080 crossref_primary_10_3390_en13010142 crossref_primary_10_1088_1742_6596_1399_2_022046 crossref_primary_10_1016_j_infrared_2017_08_015 crossref_primary_10_1109_MCAS_2020_3027222 crossref_primary_10_1016_j_snb_2025_137575 crossref_primary_10_1007_s12206_018_1205_6 crossref_primary_10_1016_j_gmod_2021_101122 crossref_primary_10_3390_e22030334 crossref_primary_10_1109_ACCESS_2023_3328210 crossref_primary_10_1016_j_neucom_2021_10_054 crossref_primary_10_1016_j_envpol_2022_120962 crossref_primary_10_1002_ecs2_3384 crossref_primary_10_1049_iet_bmt_2019_0017 crossref_primary_10_1007_s00500_021_05995_9 crossref_primary_10_1016_j_ibmed_2025_100220 crossref_primary_10_1016_j_neucom_2017_07_021 crossref_primary_10_1177_07356331231165099 crossref_primary_10_1002_lpor_202401178 crossref_primary_10_1016_j_measurement_2021_109663 crossref_primary_10_1109_ACCESS_2019_2947160 crossref_primary_10_3390_asi7010011 crossref_primary_10_1049_trit_2018_1016 crossref_primary_10_1109_TITS_2023_3304452 crossref_primary_10_1016_j_procs_2023_01_283 crossref_primary_10_1111_cbdd_14137 crossref_primary_10_1016_j_gexplo_2025_107695 crossref_primary_10_3390_rs15030798 crossref_primary_10_1016_j_knosys_2020_106417 crossref_primary_10_1109_TCE_2024_3371440 crossref_primary_10_1117_1_JRS_16_034519 crossref_primary_10_1016_j_neucom_2017_07_030 crossref_primary_10_1016_j_geothermics_2021_102262 crossref_primary_10_1016_j_neucom_2017_07_032 crossref_primary_10_3390_electronics12020438 crossref_primary_10_1186_s12859_021_04485_x crossref_primary_10_1016_j_phycom_2024_102460 crossref_primary_10_1007_s10845_020_01649_z crossref_primary_10_1016_j_jag_2020_102215 crossref_primary_10_1016_j_neucom_2021_10_037 crossref_primary_10_3390_min12040461 crossref_primary_10_1007_s10489_021_02262_0 crossref_primary_10_3389_fpls_2023_1158933 crossref_primary_10_1109_TNNLS_2020_3045146 crossref_primary_10_1109_TNNLS_2022_3155478 crossref_primary_10_1007_s10044_024_01297_6 crossref_primary_10_1007_s11063_019_09981_z crossref_primary_10_1016_j_chiabu_2024_106754 crossref_primary_10_1007_s10586_023_04161_0 crossref_primary_10_1016_j_asoc_2020_106942 crossref_primary_10_1080_15325008_2021_1937401 crossref_primary_10_1007_s11042_017_5360_z crossref_primary_10_1016_j_psep_2020_09_038 crossref_primary_10_1016_j_neucom_2021_10_045 crossref_primary_10_1109_ACCESS_2023_3257767 crossref_primary_10_1016_j_asoc_2018_10_035 crossref_primary_10_1016_j_ejor_2019_11_007 crossref_primary_10_1016_j_compstruc_2021_106484 crossref_primary_10_3389_fpubh_2023_1025746 crossref_primary_10_1016_j_neucom_2017_07_050 crossref_primary_10_1109_JSTARS_2021_3104726 crossref_primary_10_1016_j_neucom_2017_07_051 crossref_primary_10_1109_LSP_2018_2885511 crossref_primary_10_1109_TGRS_2022_3192614 crossref_primary_10_1007_s42979_023_02159_4 crossref_primary_10_1109_ACCESS_2024_3379906 crossref_primary_10_1109_JSYST_2020_3002428 crossref_primary_10_3390_brainsci11010075 crossref_primary_10_1002_adma_202300848 crossref_primary_10_3390_electronics10040449 crossref_primary_10_1016_j_neucom_2018_06_025 crossref_primary_10_3390_app12052677 crossref_primary_10_3390_smartcities5040085 crossref_primary_10_1007_s11709_024_1060_8 crossref_primary_10_1016_j_enconman_2019_02_032 crossref_primary_10_1016_j_neucom_2017_07_061 crossref_primary_10_1007_s44163_024_00134_3 crossref_primary_10_1007_s11334_023_00541_2 crossref_primary_10_1155_2022_5841630 crossref_primary_10_3390_electronics13101893 crossref_primary_10_1016_j_infsof_2025_107876 crossref_primary_10_1109_TGRS_2022_3167644 crossref_primary_10_1007_s00138_022_01291_0 crossref_primary_10_1007_s00521_022_08100_9 crossref_primary_10_34133_2019_9209727 crossref_primary_10_1016_j_jmsy_2023_06_005 crossref_primary_10_1088_1361_6420_abb51d crossref_primary_10_1016_j_neucom_2018_08_093 crossref_primary_10_1016_j_istruc_2021_05_031 crossref_primary_10_1002_hsr2_70859 crossref_primary_10_1108_DTA_03_2020_0066 crossref_primary_10_3390_electronics9101742 crossref_primary_10_1049_ipr2_12154 crossref_primary_10_3390_math13050849 crossref_primary_10_1016_j_renene_2021_01_143 crossref_primary_10_1109_ACCESS_2019_2938227 crossref_primary_10_1016_j_enbuild_2024_114068 crossref_primary_10_1016_j_jfranklin_2021_08_023 crossref_primary_10_1109_TCAD_2020_2966451 crossref_primary_10_1051_bioconf_202411801003 crossref_primary_10_1016_j_ymssp_2025_113259 crossref_primary_10_1016_j_compbiomed_2021_105042 crossref_primary_10_1016_j_neucom_2019_01_097 crossref_primary_10_1049_ipr2_13010 crossref_primary_10_1109_TIFS_2022_3219287 crossref_primary_10_1109_TPAMI_2022_3202765 crossref_primary_10_1155_2020_8899478 crossref_primary_10_1016_j_neucom_2018_08_078 crossref_primary_10_1016_j_cose_2022_103016 crossref_primary_10_1002_itl2_260 crossref_primary_10_1109_JIOT_2019_2935442 crossref_primary_10_1186_s13677_020_00167_w crossref_primary_10_1007_s00500_018_3644_5 crossref_primary_10_1016_j_neucom_2018_08_073 crossref_primary_10_1109_TPDS_2024_3480115 crossref_primary_10_1007_s11633_022_1348_x crossref_primary_10_1002_er_6679 crossref_primary_10_1016_j_engappai_2021_104182 crossref_primary_10_1063_5_0214881 crossref_primary_10_1016_j_neucom_2017_05_016 crossref_primary_10_1109_ACCESS_2020_3013631 crossref_primary_10_1016_j_ipm_2018_01_010 crossref_primary_10_1016_j_jvcir_2018_08_011 crossref_primary_10_1109_TCAD_2024_3447210 crossref_primary_10_1016_j_jfranklin_2020_04_033 crossref_primary_10_1016_j_cjca_2018_04_032 crossref_primary_10_1177_0361198120907283 crossref_primary_10_1016_j_jvcir_2018_08_005 crossref_primary_10_1016_j_neucom_2019_01_117 crossref_primary_10_1016_j_apenergy_2024_124329 crossref_primary_10_1177_0142331220966425 crossref_primary_10_1109_ACCESS_2023_3318486 crossref_primary_10_1007_s10845_024_02488_y crossref_primary_10_1016_j_ijheatfluidflow_2024_109498 crossref_primary_10_1016_j_comcom_2020_08_011 crossref_primary_10_3389_fdata_2022_1025806 crossref_primary_10_1109_JPHOT_2019_2947705 crossref_primary_10_3390_ijerph17072586 crossref_primary_10_3390_a15020071 crossref_primary_10_1016_j_uclim_2022_101390 crossref_primary_10_3390_technologies9040094 crossref_primary_10_1007_s00366_020_01272_9 crossref_primary_10_1016_j_knosys_2023_111327 crossref_primary_10_1108_EC_12_2020_0695 crossref_primary_10_1109_ACCESS_2020_3026968 crossref_primary_10_1016_j_compind_2019_103182 crossref_primary_10_3390_s18082640 crossref_primary_10_3390_s20133739 crossref_primary_10_1007_s12559_021_09844_7 crossref_primary_10_1109_JIOT_2022_3205410 crossref_primary_10_1109_ACCESS_2019_2947536 crossref_primary_10_12944_CARJ_12_3_38 crossref_primary_10_3390_jmse12091524 crossref_primary_10_1080_10543406_2025_2511194 crossref_primary_10_3390_jpm13091338 crossref_primary_10_1016_j_imed_2023_04_001 crossref_primary_10_1088_2632_2153_ad6be8 crossref_primary_10_1145_3529318 crossref_primary_10_1109_TMAG_2023_3281842 crossref_primary_10_3390_diagnostics14131334 crossref_primary_10_1016_j_rser_2020_109792 crossref_primary_10_1049_cit2_12180 crossref_primary_10_1371_journal_pone_0310356 crossref_primary_10_1007_s10489_022_03351_4 crossref_primary_10_3390_electronics9122193 crossref_primary_10_3390_e24030398 crossref_primary_10_1007_s10489_020_01900_3 crossref_primary_10_1109_TGRS_2025_3574080 crossref_primary_10_1016_j_patrec_2021_10_023 crossref_primary_10_1109_ACCESS_2020_2984768 crossref_primary_10_1109_JSTARS_2022_3187730 crossref_primary_10_1016_j_neucom_2018_02_083 crossref_primary_10_1109_ACCESS_2019_2913349 crossref_primary_10_1007_s10681_022_02992_3 crossref_primary_10_1007_s11740_022_01113_2 crossref_primary_10_1016_j_socscimed_2025_117690 crossref_primary_10_3389_fbinf_2025_1628724 crossref_primary_10_1089_big_2019_0007 crossref_primary_10_1007_s10462_020_09855_0 crossref_primary_10_1109_TCOMM_2022_3180069 crossref_primary_10_1016_j_jhydrol_2021_126371 crossref_primary_10_1016_j_neucom_2019_10_077 crossref_primary_10_1109_TWC_2024_3371226 crossref_primary_10_1016_j_neucom_2019_10_079 crossref_primary_10_1109_ACCESS_2022_3159651 crossref_primary_10_1007_s11277_023_10198_6 crossref_primary_10_1016_j_compbiomed_2022_106267 crossref_primary_10_1109_ACCESS_2024_3509774 crossref_primary_10_1109_TSTE_2022_3213992 crossref_primary_10_1016_j_optlaseng_2021_106695 crossref_primary_10_1016_j_oceaneng_2024_119928 crossref_primary_10_1016_j_patrec_2021_10_004 crossref_primary_10_3390_rs15174264 crossref_primary_10_3390_rs15143523 crossref_primary_10_1111_coin_70124 crossref_primary_10_1155_2018_4613935 crossref_primary_10_1038_s41598_024_72125_4 crossref_primary_10_1007_s12206_019_1003_9 crossref_primary_10_2174_1874447802115010081 crossref_primary_10_1016_j_eswa_2024_125963 crossref_primary_10_1007_s00521_019_04699_4 crossref_primary_10_1016_j_neucom_2019_10_094 crossref_primary_10_1109_TAI_2021_3067574 crossref_primary_10_3389_fnins_2021_651141 crossref_primary_10_1093_bib_bbae050 crossref_primary_10_1155_2022_2415726 crossref_primary_10_1177_03611981241281730 crossref_primary_10_3390_app9071437 crossref_primary_10_1016_j_cmpb_2021_106284 crossref_primary_10_1007_s00521_025_11125_5 crossref_primary_10_1016_j_procs_2017_09_040 crossref_primary_10_3390_app11125458 crossref_primary_10_1016_j_chemolab_2022_104693 crossref_primary_10_1016_j_apenergy_2021_116812 crossref_primary_10_1016_j_biosystemseng_2022_05_011 crossref_primary_10_1016_j_procs_2022_12_088 crossref_primary_10_1007_s13369_025_10478_2 crossref_primary_10_1016_j_future_2018_07_006 crossref_primary_10_1016_j_neunet_2023_06_016 crossref_primary_10_1109_TIE_2017_2764861 crossref_primary_10_1007_s00521_019_04557_3 crossref_primary_10_1016_j_tifs_2025_105029 crossref_primary_10_1016_j_osnem_2021_100140 crossref_primary_10_1016_j_compag_2024_109414 crossref_primary_10_1016_j_rico_2025_100589 crossref_primary_10_1109_TIFS_2022_3176191 crossref_primary_10_1016_j_measurement_2025_118167 crossref_primary_10_3390_app11157046 crossref_primary_10_1016_j_optlastec_2024_111321 crossref_primary_10_1016_j_neucom_2020_11_036 crossref_primary_10_1016_j_neucom_2020_11_037 crossref_primary_10_1016_j_jag_2023_103269 crossref_primary_10_1515_itit_2022_0007 crossref_primary_10_1145_3524497 crossref_primary_10_3390_math11081926 crossref_primary_10_11121_ijocta_1424 crossref_primary_10_1109_ACCESS_2023_3252499 crossref_primary_10_1109_LAWP_2019_2916369 crossref_primary_10_3389_frobt_2020_522141 crossref_primary_10_1016_j_neucom_2018_02_062 crossref_primary_10_1016_j_geoderma_2025_117222 crossref_primary_10_1016_j_neucom_2019_12_039 crossref_primary_10_1002_widm_1306 crossref_primary_10_1007_s11042_020_08782_0 crossref_primary_10_1007_s10915_022_02078_1 crossref_primary_10_1587_nolta_16_13 crossref_primary_10_3390_make3030028 crossref_primary_10_1016_j_neucom_2022_06_104 crossref_primary_10_1016_j_ifacol_2022_07_051 crossref_primary_10_1007_s00500_022_06755_z crossref_primary_10_1007_s13369_020_04430_9 crossref_primary_10_3390_info14010053 crossref_primary_10_1371_journal_pone_0285563 crossref_primary_10_4018_IJSKD_2020010103 crossref_primary_10_1016_j_neuri_2022_100084 crossref_primary_10_1016_j_dajour_2022_100153 crossref_primary_10_1016_j_procs_2021_05_037 crossref_primary_10_1109_TPDS_2020_3001593 crossref_primary_10_3390_w12051369 crossref_primary_10_3390_environments6020025 crossref_primary_10_1007_s12083_021_01262_8 crossref_primary_10_1016_j_amc_2019_02_071 crossref_primary_10_1016_j_eswa_2025_128098 crossref_primary_10_1007_s00521_023_09153_0 crossref_primary_10_1007_s12652_022_03901_1 crossref_primary_10_1007_s00466_022_02251_1 crossref_primary_10_1016_j_ress_2025_111374 crossref_primary_10_3390_rs15123095 crossref_primary_10_1038_s41467_022_31148_z crossref_primary_10_1145_3447866 crossref_primary_10_3390_agriculture14081225 crossref_primary_10_1016_j_image_2023_117009 crossref_primary_10_1016_j_neucom_2020_05_114 crossref_primary_10_1016_j_neucom_2020_03_103 crossref_primary_10_1109_ACCESS_2018_2877932 crossref_primary_10_1145_3467476 crossref_primary_10_1016_j_buildenv_2022_109687 crossref_primary_10_1016_j_foodcont_2018_09_027 crossref_primary_10_1007_s00521_017_3050_4 crossref_primary_10_3390_electronics8101065 crossref_primary_10_1080_09507116_2023_2233889 crossref_primary_10_1088_2040_8986_ad7156 crossref_primary_10_1016_j_eswa_2021_114800 crossref_primary_10_1007_s11227_020_03362_3 crossref_primary_10_1109_ACCESS_2019_2907071 crossref_primary_10_1109_COMST_2020_2988293 crossref_primary_10_1155_2022_8951961 crossref_primary_10_1111_mice_13411 crossref_primary_10_1016_j_applthermaleng_2018_12_048 crossref_primary_10_1016_j_neucom_2021_07_016 crossref_primary_10_1007_s13042_022_01743_z crossref_primary_10_3390_app15063177 crossref_primary_10_1016_j_psep_2021_06_019 crossref_primary_10_1038_s41598_021_95957_w crossref_primary_10_1016_j_ins_2025_121924 crossref_primary_10_3390_rs15010272 crossref_primary_10_1002_srin_202400713 crossref_primary_10_1108_COMPEL_12_2021_0508 crossref_primary_10_1029_2025SW004492 crossref_primary_10_1109_JSEN_2020_3006009 crossref_primary_10_1109_JIOT_2021_3099028 crossref_primary_10_1016_j_renene_2024_120218 crossref_primary_10_1155_2022_4878684 crossref_primary_10_3390_land12040879 crossref_primary_10_3390_cells10112924 crossref_primary_10_1108_JAAR_05_2022_0116 crossref_primary_10_1371_journal_pone_0240656 crossref_primary_10_3390_app15105666 crossref_primary_10_1177_15485129211022857 crossref_primary_10_1016_j_cherd_2024_12_028 crossref_primary_10_1016_j_engappai_2023_106032 crossref_primary_10_1016_j_eswa_2024_125571 crossref_primary_10_1007_s11831_023_09898_w crossref_primary_10_1016_j_iot_2022_100556 crossref_primary_10_1016_j_neucom_2017_09_012 crossref_primary_10_1016_j_neucom_2018_02_011 crossref_primary_10_1002_cpe_6500 crossref_primary_10_1109_ACCESS_2023_3322101 crossref_primary_10_3390_e21100988 crossref_primary_10_3390_en13051169 crossref_primary_10_1109_ACCESS_2024_3465511 crossref_primary_10_3390_s21092958 crossref_primary_10_1109_ACCESS_2021_3096513 crossref_primary_10_1111_jfpp_17232 crossref_primary_10_1155_2022_6785642 crossref_primary_10_1051_wujns_2025302195 crossref_primary_10_1155_2018_6934825 crossref_primary_10_1016_j_future_2020_07_020 crossref_primary_10_1109_TAI_2020_3046167 crossref_primary_10_3390_su131810018 crossref_primary_10_1016_j_neucom_2021_03_140 crossref_primary_10_1109_JSEN_2021_3066037 crossref_primary_10_1109_TIP_2022_3170727 crossref_primary_10_1145_3617508 crossref_primary_10_3390_en18010045 crossref_primary_10_1016_j_artmed_2022_102349 crossref_primary_10_3390_app10228189 crossref_primary_10_1007_s10489_021_02846_w crossref_primary_10_1287_ijoc_2021_1117 crossref_primary_10_1002_asmb_2757 crossref_primary_10_1016_j_neucom_2019_05_007 crossref_primary_10_3389_fpls_2025_1538163 crossref_primary_10_1016_j_jpdc_2019_10_004 crossref_primary_10_1109_JBHI_2020_3037366 crossref_primary_10_1016_j_neucom_2020_02_053 crossref_primary_10_1515_jisys_2024_0185 crossref_primary_10_1007_s13369_022_07086_9 crossref_primary_10_1109_TIFS_2020_3036242 crossref_primary_10_1007_s11227_022_04348_z crossref_primary_10_1007_s00603_023_03698_1 crossref_primary_10_2196_14755 crossref_primary_10_1016_j_jmsy_2020_11_018 crossref_primary_10_1063_5_0218516 crossref_primary_10_1109_JIOT_2023_3331736 crossref_primary_10_1016_j_neucom_2022_05_019 crossref_primary_10_1016_j_neunet_2022_10_011 crossref_primary_10_1007_s42235_021_00142_4 crossref_primary_10_1016_j_neucom_2020_02_042 crossref_primary_10_1155_2024_6632801 crossref_primary_10_3390_electronics10101187 crossref_primary_10_1007_s13369_022_06769_7 crossref_primary_10_1016_j_neucom_2017_02_029 crossref_primary_10_1109_MCAS_2023_3325496 crossref_primary_10_1007_s00138_021_01251_0 crossref_primary_10_3389_fcomp_2023_997159 crossref_primary_10_3390_s23229159 crossref_primary_10_1049_rsn2_12280 crossref_primary_10_3390_math11081777 crossref_primary_10_4028_p_b3BQUG crossref_primary_10_1007_s00521_021_06080_w crossref_primary_10_1016_j_agrformet_2025_110550 crossref_primary_10_1007_s11042_022_13843_7 crossref_primary_10_1016_j_neucom_2019_05_020 crossref_primary_10_1016_j_neucom_2017_11_059 crossref_primary_10_1007_s00521_019_04601_2 crossref_primary_10_1007_s00530_022_00992_w crossref_primary_10_1080_00207543_2019_1602744 crossref_primary_10_1109_ACCESS_2018_2872769 crossref_primary_10_1007_s11063_021_10591_x crossref_primary_10_1109_TITS_2022_3207281 crossref_primary_10_1371_journal_pone_0212137 crossref_primary_10_1007_s11042_024_20262_3 crossref_primary_10_1080_21681163_2021_1922315 crossref_primary_10_1109_ACCESS_2020_3026222 crossref_primary_10_1007_s10994_021_06050_2 crossref_primary_10_1016_j_neunet_2025_107490 crossref_primary_10_1007_s10044_020_00899_0 crossref_primary_10_1109_TNNLS_2023_3316551 crossref_primary_10_1007_s10009_023_00711_4 crossref_primary_10_1007_s13369_021_05401_4 crossref_primary_10_1016_j_neucom_2017_04_083 crossref_primary_10_3390_s25133904 crossref_primary_10_1016_j_future_2018_11_011 crossref_primary_10_1007_s12626_023_00151_1 crossref_primary_10_1007_s00521_018_3441_1 crossref_primary_10_1016_j_softx_2025_102357 crossref_primary_10_1109_TPAMI_2024_3417451 crossref_primary_10_3390_app12073641 crossref_primary_10_1016_j_jbi_2020_103442 crossref_primary_10_1007_s11540_025_09846_0 crossref_primary_10_1016_j_enbuild_2020_110026 crossref_primary_10_3390_biology11121727 crossref_primary_10_1109_ACCESS_2019_2918136 crossref_primary_10_1016_j_procs_2020_03_341 crossref_primary_10_1088_1755_1315_632_4_042055 crossref_primary_10_3390_agronomy14020349 crossref_primary_10_1016_j_eswa_2023_122945 crossref_primary_10_3233_ICA_200632 crossref_primary_10_1016_j_engappai_2025_110165 crossref_primary_10_1109_TETC_2019_2901272 crossref_primary_10_1007_s11042_018_6151_x crossref_primary_10_1016_j_ress_2023_109664 crossref_primary_10_3390_agriculture15080847 crossref_primary_10_1016_j_neucom_2020_02_008 crossref_primary_10_1155_2021_8444858 crossref_primary_10_1109_TASLP_2021_3082307 crossref_primary_10_1016_j_engappai_2019_06_001 crossref_primary_10_1016_j_neucom_2019_12_005 crossref_primary_10_1016_j_isprsjprs_2024_05_011 crossref_primary_10_3233_ICA_200620 crossref_primary_10_1007_s11063_019_09991_x crossref_primary_10_3390_app12104882 crossref_primary_10_3390_act14010016 crossref_primary_10_1109_TNNLS_2023_3259016 crossref_primary_10_1109_JSTARS_2020_3043628 crossref_primary_10_1109_TCAD_2024_3514778 crossref_primary_10_1016_j_knosys_2019_105327 crossref_primary_10_1109_ACCESS_2020_2985414 crossref_primary_10_1007_s10489_020_02122_3 crossref_primary_10_3390_atmos15080890 crossref_primary_10_3390_su12229707 crossref_primary_10_1089_tmj_2023_0155 crossref_primary_10_1016_j_envc_2025_101123 crossref_primary_10_1109_TCAD_2020_2986128 crossref_primary_10_1016_j_asoc_2022_109697 crossref_primary_10_1016_j_cscm_2023_e02800 crossref_primary_10_3390_photonics9010030 crossref_primary_10_1007_s11042_022_14225_9 crossref_primary_10_1007_s44163_025_00317_6 crossref_primary_10_1016_j_compag_2025_110491 crossref_primary_10_3390_brainsci11050615 crossref_primary_10_1111_bjet_13283 crossref_primary_10_1155_2019_7081073 crossref_primary_10_1007_s11042_020_10025_1 crossref_primary_10_3390_data3030028 crossref_primary_10_1007_s11042_018_6005_6 crossref_primary_10_1177_14759217211065009 crossref_primary_10_1080_01431161_2021_1954261 crossref_primary_10_1016_j_eswa_2020_114078 crossref_primary_10_1155_2020_9606908 crossref_primary_10_1109_THMS_2022_3148339 crossref_primary_10_1016_j_neucom_2017_04_030 crossref_primary_10_1016_j_apenergy_2023_122048 crossref_primary_10_1016_j_neucom_2017_04_039 crossref_primary_10_1016_j_cities_2019_04_012 crossref_primary_10_1109_JIOT_2022_3206585 crossref_primary_10_1109_TMBMC_2020_3035383 crossref_primary_10_1109_TSP_2020_3019655 crossref_primary_10_1109_TCAD_2023_3264786 crossref_primary_10_3390_agronomy15051079 crossref_primary_10_1109_TDSC_2022_3174569 crossref_primary_10_1016_j_heliyon_2023_e22203 crossref_primary_10_1016_j_biombioe_2020_105673 crossref_primary_10_3390_rs14030461 crossref_primary_10_1016_j_neucom_2023_126656 crossref_primary_10_1007_s11356_024_33290_1 crossref_primary_10_1080_17455030_2021_1880669 crossref_primary_10_1007_s11042_022_14247_3 crossref_primary_10_1007_s12652_020_02014_x crossref_primary_10_1109_TIFS_2022_3233777 crossref_primary_10_1109_TII_2018_2886048 crossref_primary_10_3390_jmse8110924 crossref_primary_10_1016_j_jksuci_2023_03_016 crossref_primary_10_1016_j_techfore_2021_120759 crossref_primary_10_1016_j_neucom_2022_05_074 crossref_primary_10_1063_5_0007821 crossref_primary_10_1177_2158244020920701 crossref_primary_10_1016_j_neucom_2017_04_010 crossref_primary_10_1016_j_compag_2024_109182 crossref_primary_10_1109_JLT_2018_2850801 crossref_primary_10_1109_LSENS_2021_3074958 crossref_primary_10_1002_ecj_12224 crossref_primary_10_1109_TCI_2020_3041092 crossref_primary_10_1109_JPROC_2021_3117472 crossref_primary_10_32604_cmc_2023_026952 crossref_primary_10_1080_21642583_2020_1836526 crossref_primary_10_3389_fbioe_2020_605132 crossref_primary_10_1007_s00521_024_09882_w crossref_primary_10_1007_s00521_025_11192_8 crossref_primary_10_1016_j_compag_2021_106478 crossref_primary_10_3390_app8091575 crossref_primary_10_1007_s11517_022_02637_6 crossref_primary_10_1016_j_neucom_2018_05_103 crossref_primary_10_1109_JETCAS_2020_3015294 crossref_primary_10_1016_j_aquaeng_2022_102288 crossref_primary_10_1007_s10489_023_05155_6 crossref_primary_10_1007_s42979_020_0070_4 crossref_primary_10_3390_philosophies7030046 crossref_primary_10_1016_j_neucom_2017_11_034 crossref_primary_10_1016_j_procs_2024_04_048 crossref_primary_10_1109_ACCESS_2022_3180073 crossref_primary_10_1162_neco_a_01491 crossref_primary_10_1016_j_neucom_2022_11_078 crossref_primary_10_3390_app10176077 crossref_primary_10_1109_JLT_2024_3400286 crossref_primary_10_1007_s11277_021_08766_9 crossref_primary_10_1111_ffe_14121 crossref_primary_10_1016_j_neucom_2022_03_007 crossref_primary_10_1021_acsapm_5c01616 crossref_primary_10_1109_ACCESS_2024_3508735 crossref_primary_10_1016_j_asoc_2023_110534 crossref_primary_10_1007_s11280_024_01277_0 crossref_primary_10_1016_j_neucom_2017_11_022 crossref_primary_10_1109_TNNLS_2020_3007943 crossref_primary_10_1016_j_neucom_2021_01_108 crossref_primary_10_1016_j_neucom_2022_11_052 crossref_primary_10_1016_j_neucom_2022_11_053 crossref_primary_10_1088_1742_6596_1302_2_022023 crossref_primary_10_1049_iet_gtd_2019_0743 crossref_primary_10_1109_ACCESS_2021_3087136 crossref_primary_10_3390_e25101467 crossref_primary_10_3390_inventions8030076 crossref_primary_10_1109_TPAMI_2022_3174574 crossref_primary_10_2196_37808 crossref_primary_10_1007_s11063_021_10462_5 crossref_primary_10_1016_j_ijmedinf_2020_104131 crossref_primary_10_3390_drones7050327 crossref_primary_10_1109_JPHOTOV_2019_2920732 crossref_primary_10_1007_s11831_021_09542_5 crossref_primary_10_3390_agronomy11010174 crossref_primary_10_1016_j_scs_2025_106626 crossref_primary_10_1109_TIP_2023_3266161 crossref_primary_10_1109_TPAMI_2020_2979450 crossref_primary_10_1109_JSTARS_2025_3593380 crossref_primary_10_1016_j_autcon_2022_104332 crossref_primary_10_1007_s00261_025_04891_2 crossref_primary_10_1016_j_isprsjprs_2024_01_015 crossref_primary_10_1016_j_jvoice_2023_03_018 crossref_primary_10_1016_j_neucom_2017_06_066 crossref_primary_10_32604_cmc_2022_024975 crossref_primary_10_1007_s00521_022_07178_5 crossref_primary_10_1016_j_ins_2024_121338 crossref_primary_10_1109_TITS_2025_3552739 crossref_primary_10_1016_j_ins_2022_03_006 crossref_primary_10_3390_cancers13092162 crossref_primary_10_1002_jmri_26534 crossref_primary_10_1007_s00521_019_04236_3 crossref_primary_10_1109_JSEN_2024_3462493 crossref_primary_10_1016_j_matchar_2024_114003 crossref_primary_10_1186_s40537_022_00650_y crossref_primary_10_1016_j_jvoice_2020_05_029 crossref_primary_10_1109_JAS_2021_1004051 crossref_primary_10_1007_s11128_023_04239_z crossref_primary_10_1016_j_eswa_2019_04_030 crossref_primary_10_1016_j_amc_2018_05_059 crossref_primary_10_3389_fmars_2021_629485 crossref_primary_10_1007_s11063_022_11079_y crossref_primary_10_1051_bioconf_20249700024 crossref_primary_10_1007_s11042_023_16344_3 crossref_primary_10_1016_j_neucom_2020_04_003 crossref_primary_10_1016_j_neucom_2019_03_090 crossref_primary_10_1061__ASCE_CP_1943_5487_0001039 crossref_primary_10_1007_s11042_021_11092_8 crossref_primary_10_1016_j_imavis_2024_105021 crossref_primary_10_1016_j_neucom_2019_03_096 crossref_primary_10_3390_sym12071065 crossref_primary_10_3390_info10100308 crossref_primary_10_1016_j_ress_2023_109192 crossref_primary_10_1088_1757_899X_1055_1_012088 crossref_primary_10_1007_s11042_019_07839_z crossref_primary_10_1007_s42979_021_00535_6 crossref_primary_10_1007_s12046_020_01484_1 crossref_primary_10_1016_j_jobe_2025_113345 crossref_primary_10_1007_s00530_021_00847_w crossref_primary_10_1016_j_compag_2019_105098 crossref_primary_10_1016_j_neucom_2022_09_079 crossref_primary_10_1016_j_eswa_2018_11_025 crossref_primary_10_1002_cjce_23753 crossref_primary_10_1016_j_datak_2024_102277 crossref_primary_10_1109_TCSI_2021_3065332 crossref_primary_10_1007_s13735_018_0162_2 crossref_primary_10_1016_j_ress_2019_106731 crossref_primary_10_1080_03019233_2019_1699358 crossref_primary_10_1007_s11042_023_14634_4 crossref_primary_10_1617_s11527_023_02262_1 crossref_primary_10_1109_JAS_2023_123450 crossref_primary_10_1007_s10751_024_02135_1 crossref_primary_10_3390_su13126527 crossref_primary_10_1109_ACCESS_2020_3036882 crossref_primary_10_1016_j_cmpb_2022_106664 crossref_primary_10_1016_j_commatsci_2020_109792 crossref_primary_10_1109_TNNLS_2020_3015992 crossref_primary_10_1177_00491241221122603 crossref_primary_10_1007_s12652_022_04025_2 crossref_primary_10_1007_s00607_021_00992_0 crossref_primary_10_1007_s11227_021_03903_4 crossref_primary_10_3389_fenrg_2021_763977 crossref_primary_10_1093_ppmgov_gvz014 crossref_primary_10_1016_j_csl_2023_101500 crossref_primary_10_7717_peerj_cs_1361 crossref_primary_10_1016_j_rsase_2024_101243 crossref_primary_10_1109_TGRS_2024_3493415 crossref_primary_10_3390_math10162867 crossref_primary_10_1016_j_jfranklin_2024_106998 crossref_primary_10_1109_JBHI_2025_3555596 crossref_primary_10_1016_j_cogsys_2021_07_005 crossref_primary_10_1007_s10639_023_11588_w crossref_primary_10_3390_s22062346 crossref_primary_10_1016_j_neucom_2018_08_025 crossref_primary_10_1016_j_rcim_2021_102281 crossref_primary_10_1016_j_neucom_2018_08_023 crossref_primary_10_1016_j_eswa_2022_117650 crossref_primary_10_1016_j_neucom_2024_128741 crossref_primary_10_1016_j_bspc_2020_102170 crossref_primary_10_1109_JIOT_2023_3280843 crossref_primary_10_3390_electronics9050851 crossref_primary_10_1016_j_patcog_2018_03_008 crossref_primary_10_1016_j_smhl_2021_100221 crossref_primary_10_1109_TNANO_2019_2932271 crossref_primary_10_4316_AECE_2023_02011 crossref_primary_10_1016_j_compbiomed_2025_110547 crossref_primary_10_3390_en16010112 crossref_primary_10_1016_j_infrared_2025_106133 crossref_primary_10_1109_ACCESS_2023_3312616 crossref_primary_10_1109_TVCG_2019_2940580 crossref_primary_10_1016_j_patcog_2024_110504 crossref_primary_10_3390_sym14010140 crossref_primary_10_1121_1_5067389 crossref_primary_10_1109_TNSM_2023_3342716 crossref_primary_10_1016_j_neucom_2023_126277 crossref_primary_10_1016_j_neucom_2020_04_048 crossref_primary_10_1088_1742_6596_1933_1_012045 crossref_primary_10_1109_ACCESS_2020_3033312 crossref_primary_10_1007_s00521_021_05964_1 crossref_primary_10_1145_3555768 crossref_primary_10_1007_s11760_024_03603_5 crossref_primary_10_1016_j_ins_2018_10_041 crossref_primary_10_1016_j_neucom_2021_01_078 crossref_primary_10_1111_raq_12726 crossref_primary_10_1007_s12652_020_02642_3 crossref_primary_10_1186_s12859_020_03896_6 crossref_primary_10_1111_mice_12806 crossref_primary_10_1016_j_cnsns_2023_107177 crossref_primary_10_2196_32508 crossref_primary_10_1016_j_neucom_2020_04_059 crossref_primary_10_3390_mi16080902 crossref_primary_10_3390_math9233130 crossref_primary_10_1109_TVT_2021_3099797 crossref_primary_10_1109_LPT_2018_2852601 crossref_primary_10_5194_acp_19_13383_2019 crossref_primary_10_1080_15583058_2022_2134062 crossref_primary_10_1109_MCOM_001_2000598 crossref_primary_10_1007_s11761_024_00423_w crossref_primary_10_1007_s11227_023_05300_5 crossref_primary_10_1007_s13369_020_05112_2 crossref_primary_10_1016_j_petlm_2019_11_009 crossref_primary_10_1364_JOCN_449009 crossref_primary_10_3390_sym15061251 crossref_primary_10_1155_2022_5323327 crossref_primary_10_1007_s12530_024_09606_4 crossref_primary_10_1155_2019_6434578 crossref_primary_10_1016_j_neucom_2019_03_072 crossref_primary_10_1016_j_physrep_2021_10_005 crossref_primary_10_1038_s41746_022_00566_0 crossref_primary_10_1007_s00521_021_05955_2 crossref_primary_10_3390_electronics12194179 crossref_primary_10_1016_j_eswa_2019_06_012 crossref_primary_10_1145_3394112 crossref_primary_10_1007_s42835_019_00215_9 crossref_primary_10_1177_0954407020907818 crossref_primary_10_1016_j_engappai_2020_103647 crossref_primary_10_33012_navi_518 crossref_primary_10_1007_s12650_025_01077_2 crossref_primary_10_1016_j_neucom_2019_05_081 crossref_primary_10_1016_j_cose_2021_102515 crossref_primary_10_1016_j_neucom_2019_11_110 crossref_primary_10_1007_s11042_018_6561_9 crossref_primary_10_1007_s00371_025_04122_1 crossref_primary_10_3390_info13090410 crossref_primary_10_1109_TPAMI_2023_3286121 crossref_primary_10_1108_ECAM_11_2024_1595 crossref_primary_10_1155_2020_8454327 crossref_primary_10_1016_j_neucom_2019_03_028 crossref_primary_10_1016_j_knosys_2025_112984 crossref_primary_10_1109_ACCESS_2021_3110336 crossref_primary_10_1016_j_gmod_2018_01_001 crossref_primary_10_1038_s41598_025_93418_2 crossref_primary_10_3390_genes10110924 crossref_primary_10_1109_JIOT_2022_3163892 crossref_primary_10_1109_ACCESS_2020_2968508 crossref_primary_10_1111_exsy_12759 crossref_primary_10_4236_vp_2025_111003 crossref_primary_10_1088_1757_899X_767_1_012067 crossref_primary_10_1007_s10586_022_03769_y crossref_primary_10_1016_j_cmpb_2021_106369 crossref_primary_10_1007_s11042_020_09409_0 crossref_primary_10_1016_j_neucom_2020_08_094 crossref_primary_10_1007_s40747_021_00477_9 crossref_primary_10_1007_s10462_020_09825_6 crossref_primary_10_1109_LSENS_2018_2886427 crossref_primary_10_1016_j_ress_2022_108881 crossref_primary_10_3390_app132111980 crossref_primary_10_3390_fi10070060 crossref_primary_10_1007_s11554_019_00937_z crossref_primary_10_1108_IJICC_11_2021_0257 crossref_primary_10_3390_en18030533 crossref_primary_10_3390_s20010311 crossref_primary_10_1016_j_neucom_2021_12_022 crossref_primary_10_3390_electronics11193241 crossref_primary_10_1093_bib_bbab054 crossref_primary_10_1109_ACCESS_2020_3002666 crossref_primary_10_1109_JSTARS_2022_3162387 crossref_primary_10_1007_s11760_024_03464_y crossref_primary_10_1109_TSE_2022_3150788 crossref_primary_10_1109_JSTARS_2024_3402114 crossref_primary_10_1038_s41598_021_96751_4 crossref_primary_10_1007_s11390_023_1902_1 crossref_primary_10_1007_s42486_020_00039_x crossref_primary_10_1109_ACCESS_2025_3555044 crossref_primary_10_1007_s12145_025_01716_0 crossref_primary_10_1016_j_conbuildmat_2017_09_110 crossref_primary_10_1007_s10462_021_09975_1 crossref_primary_10_1007_s11063_023_11163_x crossref_primary_10_1109_TMTT_2021_3075689 crossref_primary_10_1016_j_neucom_2024_128353 crossref_primary_10_1007_s00704_022_04103_7 crossref_primary_10_1016_j_neucom_2017_02_066 crossref_primary_10_1177_1748006X20969465 crossref_primary_10_1049_iet_gtd_2019_1161 crossref_primary_10_1088_1742_6596_1706_1_012068 crossref_primary_10_1002_fld_5217 crossref_primary_10_1016_j_inffus_2021_02_008 crossref_primary_10_1016_j_icte_2025_02_002 crossref_primary_10_1016_j_neucom_2020_10_113 crossref_primary_10_1109_TFUZZ_2020_3007442 crossref_primary_10_1109_TCAD_2022_3197500 crossref_primary_10_1002_asi_24655 crossref_primary_10_1007_s00226_021_01309_2 crossref_primary_10_1016_j_compbiomed_2025_110926 crossref_primary_10_1007_s11227_020_03178_1 crossref_primary_10_1016_j_neucom_2024_129214 crossref_primary_10_1002_ldr_70164 crossref_primary_10_1007_s42452_021_04162_x crossref_primary_10_1007_s00500_019_03901_y crossref_primary_10_1016_j_neucom_2019_05_075 crossref_primary_10_1016_j_measurement_2021_109806 crossref_primary_10_1007_s11227_024_06473_3 crossref_primary_10_1016_j_neucom_2018_10_076 crossref_primary_10_1016_j_aei_2022_101818 crossref_primary_10_1007_s10586_019_02963_9 crossref_primary_10_1109_TRO_2025_3588449 crossref_primary_10_1109_TNNLS_2022_3202752 crossref_primary_10_1007_s10639_023_12292_5 crossref_primary_10_1016_j_heliyon_2024_e30954 crossref_primary_10_1016_j_patrec_2019_10_022 crossref_primary_10_1016_j_jhydrol_2020_124631 crossref_primary_10_1109_TSC_2021_3133673 crossref_primary_10_1109_TPDS_2021_3094364 crossref_primary_10_3390_healthcare10122504 |
| Cites_doi | 10.1093/bioinformatics/btu703 10.3389/fncom.2015.00146 10.1145/1390156.1390294 10.1145/2835487 10.1109/TPAMI.2015.2439281 10.1162/neco.2008.11-07-647 10.1080/00207179.2012.756149 10.1016/j.patrec.2015.07.037 10.1016/j.neunet.2012.02.023 10.1016/j.asoc.2015.06.048 10.1109/EMBC.2015.7318462 10.1080/02564602.2015.1010611 10.1109/TPAMI.2009.167 10.1214/08-AOS604 10.1145/2699343.2699349 10.1038/nature14539 10.1016/j.neunet.2014.09.006 10.1016/j.renene.2015.06.034 10.1016/j.neucom.2015.05.086 10.1016/j.neucom.2016.02.062 10.1109/TPAMI.2013.50 10.1126/science.7761831 10.1016/j.neunet.2014.08.006 10.1109/MSP.2014.2359987 10.1109/MSP.2010.939038 10.1109/EMBC.2015.7318454 10.1016/j.neucom.2016.06.016 10.1109/LSP.2015.2420092 10.1109/TAC.2015.2390554 10.1109/TASLP.2015.2457612 10.1109/EMBC.2015.7318458 10.1049/iet-cta.2013.0854 10.1016/j.csl.2015.02.003 10.1016/j.biosystemseng.2015.06.002 10.1080/02564602.2015.1015631 10.1016/j.neucom.2015.10.064 10.1016/j.neucom.2015.07.093 10.1134/S0005117916010033 10.1109/TGRS.2014.2335751 10.1016/j.neunet.2014.09.003 10.1109/MCI.2010.938364 10.1109/TNNLS.2015.2435783 10.1080/03081079.2014.892251 10.1109/TCYB.2015.2404432 10.1016/j.neucom.2012.09.040 10.1007/BF00344251 10.1016/j.neucom.2015.10.076 10.1109/5.726791 10.1109/MSP.2009.932166 10.1109/ASRU.2013.6707746 10.1145/1390156.1390177 10.1109/ICASSP.2015.7178918 10.1109/TASL.2011.2109382 10.1109/MSP.2012.2205597 10.1109/JPROC.2015.2444094 10.1109/LGRS.2015.2491329 10.1162/NECO_a_00142 10.1007/978-3-642-21735-7_7 10.1016/j.neunet.2014.08.005 10.1109/CVPR.2012.6247936 10.1080/03081079.2015.1106730 10.1007/s12555-014-0261-7 10.1109/TASLP.2014.2346313 10.1007/s10489-014-0629-7 10.1145/2647868.2654902 10.1109/CVPRW.2014.78 10.1109/TIP.2015.2487860 10.1162/neco.2006.18.7.1527 10.1109/CVPR.2004.1315150 10.1145/1553374.1553453 10.1109/ICCV.2011.6126555 10.1109/CVPR.2009.5206848 10.1007/s12559-016-9396-6 10.1080/02564602.2014.890840 10.1016/j.neucom.2014.07.087 10.1109/ICASSP.2013.6639345 10.1016/j.neucom.2015.11.089 10.21437/Interspeech.2010-304 10.1145/1778765.1778839 10.1109/78.134406 10.1109/ICASSP.2013.6639081 10.1109/ICASSP.2011.5947700 10.1007/s10032-014-0229-4 10.1016/j.neucom.2015.11.079 10.1007/BF00332918 10.1109/LSP.2014.2354456 10.1109/LGRS.2015.2483680 10.1145/1390156.1390224 10.1109/ICCV.2009.5459469 10.1016/j.neucom.2015.10.071 10.1016/j.eswa.2015.10.015 10.1109/TASL.2011.2116010 10.1145/2766959 10.1145/2157689.2157740 10.1113/jphysiol.1962.sp006837 10.21437/Interspeech.2011-607 10.1109/TAC.2015.2394872 10.1162/089976602760128018 10.1017/atsip.2013.9 10.1109/TIT.1986.1057145 10.1109/CVPR.2012.6248076 10.1016/j.csi.2015.06.004 10.1016/j.patcog.2015.03.017 10.1038/nature16961 10.1016/j.neucom.2016.08.020 10.1109/ICASSP.2011.5947494 10.1016/j.csl.2014.11.008 10.1109/TSP.2016.2634541 10.3390/rs71114680 10.1109/TASLP.2015.2498101 10.1126/science.1127647 10.1007/s11432-016-0280-9 10.1007/s11042-014-2183-z 10.1016/j.automatica.2015.11.008 10.1007/s11042-014-2156-2 10.3390/ijms160817315 10.1109/TASLP.2015.2438544 10.1186/s40537-014-0007-7 10.1109/CVPR.2015.7298640 10.1007/s12559-016-9404-x 10.1016/j.inffus.2016.01.001 10.1145/2508363.2508364 10.1016/j.neuroimage.2015.05.018 10.1109/5.18626 10.1016/j.neucom.2015.06.054 10.1109/CVPR.2012.6248110 10.1016/0885-2308(90)90015-X 10.1007/s11432-016-5579-8 10.1109/EMBC.2015.7318984 10.1109/TII.2016.2542208 10.1109/TASL.2011.2134090 10.1561/2200000006 |
| ContentType | Journal Article |
| Copyright | 2016 Elsevier B.V. |
| Copyright_xml | – notice: 2016 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.neucom.2016.12.038 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1872-8286 |
| EndPage | 26 |
| ExternalDocumentID | 10_1016_j_neucom_2016_12_038 S0925231216315533 |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61329301; 61374010; 61403319 – fundername: Alexander von Humboldt Foundation of Germany – fundername: Royal Society of the UK |
| GroupedDBID | --- --K --M .DC .~1 0R~ 123 1B1 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JM 9JN AABNK AACTN AADPK AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXLA AAXUO AAYFN ABBOA ABCQJ ABFNM ABJNI ABMAC ABYKQ ACDAQ ACGFS ACRLP ACZNC ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGWIK AGYEJ AHHHB AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ IHE J1W KOM LG9 M41 MO0 MOBAO N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SDP SES SPC SPCBC SSN SSV SSZ T5K ZMT ~G- 29N 9DU AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS FEDTE FGOYB HLZ HVGLF HZ~ R2- SBC SEW WUQ XPP ~HD |
| ID | FETCH-LOGICAL-c306t-10130f37c165b1c2c7a13808e8dfab63dbd6e8be96ee4efc1df2f165d8fe11233 |
| ISICitedReferencesCount | 2252 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000395221800002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0925-2312 |
| IngestDate | Sat Nov 29 07:50:04 EST 2025 Tue Nov 18 21:08:38 EST 2025 Fri Feb 23 02:30:25 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Deep learning Restricted Boltzmann machine Deep belief network Autoencoder Convolutional neural network |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c306t-10130f37c165b1c2c7a13808e8dfab63dbd6e8be96ee4efc1df2f165d8fe11233 |
| ORCID | 0000-0002-9576-7401 |
| PageCount | 16 |
| ParticipantIDs | crossref_primary_10_1016_j_neucom_2016_12_038 crossref_citationtrail_10_1016_j_neucom_2016_12_038 elsevier_sciencedirect_doi_10_1016_j_neucom_2016_12_038 |
| PublicationCentury | 2000 |
| PublicationDate | 2017-04-19 |
| PublicationDateYYYYMMDD | 2017-04-19 |
| PublicationDate_xml | – month: 04 year: 2017 text: 2017-04-19 day: 19 |
| PublicationDecade | 2010 |
| PublicationTitle | Neurocomputing (Amsterdam) |
| PublicationYear | 2017 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | M.D. Zeiler, R. Fergus, Stochastic pooling for regularization of deep convolutional neural networks Yuan, Sun, Liu, Yang (bib168) 2015; 9 Miao, Zhang, Metze (bib114) 2015; 23 Ma, Wang, Lam (bib109) 2016 Zeng, Wang, Zhang (bib174) 2016; 59 Bengio (bib10) 2009; 2 Silver, Huang, Maddison, Guez, Sifre, Van Den Driessche, Schrittwieser, Antonoglou, Panneershelvam, Lanctot, Dieleman, Grewe, Nham, Kalchbrenner, Sutskever, Lillicrap, Leach, Kavukcuoglu, Graepel, Hassabis (bib140) 2016; 529 Hu, Liu, Ji, Li (bib65) 2016; 45 N. Srivastava, R. Salakhutdinov, Learning representations for multimodal data with deep belief nets, in: Proceedings of International Conference on Machine Learning Workshop, 2012. Kang, Kwon, Shin, Kim (bib81) 2015; 22 Bourlard, Kamp (bib15) 1988; 59 I. Sutskever, T. Tieleman, On the convergence properties of contrastive divergence, in: Proceedings of International Conference on Artificial Intelligence and Statistics, vol. 9, (2010) pp. 789–795. Szegedy, Toshev, Erhan (bib148) 2013 Yu, Dong, Wang, Ren, Alsaadi (bib166) 2016; 182 Fukushima (bib46) 1980; 36 Abdel Zaher, Eldeib (bib1) 2016; 46 Hong, Yu, Wan, Tao, Wang (bib62) 2015; 24 Hinton (bib56) 2002; 14 Noda, Yamaguchi, Nakadai, Okuno, Ogata (bib125) 2015; 42 P. Hamel, D. Eck, Learning features from music audio with deep belief networks, in: ISMIR, 2010, pp. 339–344. Deng (bib30) 2012 Hinton, Deng, Yu, Dahl, Mohamed, Jaitly, Senior, Vanhoucke, Nguyen, Sainath (bib58) 2012; 29 Kim, Xie (bib84) 2015; 18 Mohamed, Dahl, Hinton (bib116) 2012; 20 Song, Niu (bib143) 2016; 171 L. Deng, D. Yu, Deep convex net: A scalable architecture for speech pattern classification, in: Proceedings of the Interspeech, 2011. Najafabadi, Villanustre, Khoshgoftaar, Seliya, Wald, Muharemagic (bib122) 2015; 2 Schmidhuber (bib137) 2015; 61 . LeCun, Bottou, Bengio, Haffner (bib92) 1998; 86 Zeng, Wang, Zhang, Liu, Alsaadi (bib173) 2016; 8 F. Feng, X. Wang, R. Li, Cross-modal retrieval with correspondence autoencoder, in: Proceedings of the ACM International Conference on Multimedia, 2014, pp. 7–16. M. Henderson, B. Thomson, S. Young, Deep neural network approach for the dialog state tracking challenge, in: Proceedings of the SIGDIAL 2013 Conference, 2013, pp. 467–471. Dong, Wu (bib39) 2015; 42 Liao, Xu, Lv, Zhou (bib100) 2015; 32 Hu, Wang, Shen, Gao (bib69) 2013; 86 D. Ciresan, U. Meier, J. Schmidhuber, Multi-column deep neural networks for image classification, in: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2012, pp. 3642–3649. LeCun, Bengio (bib90) 1995; 3361 Aryal, Gutierrez Osuna (bib6) 2016; 36 Arel, Rose, Karnowski (bib3) 2010; 5 J.T. Huang, J. Li, D. Yu, L. Deng, Y. Gong, Cross-language knowledge transfer using multilingual deep neural network with shared hidden layers, in: Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2013, pp. 7304–7308. Hu, Chen, Du (bib64) 2014; 43 Baker, Deng, Glass, Khudanpur, Lee, Morgan, Shaughnessy (bib7) 2009; 26 Yuan, Sun, Zhu (bib169) 2015; 13 H. Larochelle, Y. Bengio, Classification using discriminative restricted Boltzmann machines, in: Proceedings of the 25th international conference on Machine learning, 2008, pp. 536–543. Liu, Wang, He, Zhou (bib103) 2015; 60 Singh, Tripathy, Anand (bib141) 2014; 31 Wang, Weng, Ma, Tang (bib157) 2015; 16 Felzenszwalb, Girshick, McAllester, Ramanan (bib43) 2010; 32 Li, Yang, Pang, Wu (bib99) 2015; 170 Poultney, Chopra, Cun (bib128) 2006 O. Emad, I.A. Yassine, A.S. Fahmy, Automatic localization of the left ventricle in cardiac mri images using deep learning, in: Engineering in Medicine and Biology Society (EMBC), 2015 Proceedings of the 37th Annual International Conference of the IEEE, 2015, pp. 683–686. Morgan (bib120) 2012; 20 A. Fischer, C. Igel, Training RBMs based on the signs of the CD approximation of the log-likelihood derivatives, in: ESANN, 2011. Mohamed, Dahl, Hinton (bib117) 2009; 1 Y.L. Boureau, J. Ponce, Y. LeCun, A theoretical analysis of feature pooling in visual recognition, in: Proceedings of the 27th International Conference on Machine Learning (ICML-10), 2010, pp. 111–118. Hu, Wang, Chen, Alsaadi (bib67) 2016; 31 Ballard, Brown (bib8) 1982 Kim, Moon (bib85) 2015; 13 Tang, Deng, Huang, Zhao (bib150) 2015; 53 Gonzalez-Dominguez, Lopez-Moreno, Moreno, Gonzalez-Rodriguez (bib49) 2015; 64 Kim, Calhoun, Shim, Lee (bib83) 2016; 124 Bishop (bib14) 2006 Lerouge, Herault, Chatelain, Jardin, Modzelewski (bib96) 2015; 48 Bengio, Delalleau (bib12) 2009; 21 G. Desjardins, Y. Bengio, Empirical evaluation of convolutional RBMs for vision, Département d′Informatique et de Recherche Opérationnelle, Université de Montréal, Tech. Rep. 1327, 2008. Deng, Kenny, Lennig, Gupta, Seitz, Mermelstein (bib32) 1991; 39 Hinton (bib55) 2012 Han, Zhang, Wen, Guo, Liu, Li (bib52) 2015; 46 Ren, Deng, Dai (bib131) 2016; 175 H. Lee, R. Grosse, R. Ranganath, A.Y. Ng, Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations, in: Proceedings of the 26th Annual International Conference on Machine Learning, 2009, pp. 609–616. Ding, Xie, Zhu (bib37) 2015; 74 Chen, Mak (bib20) 2015; 23 Chen, Liang, Wang (bib21) 2016; 59 Y. Yuan, H. Yuan, L. Guo, H. Yang, S. Sun, Robust control of networked control system under DoS attacks: a unified game approach, IEEE transactions on Industrial Informatics Lee, Pham, Largman, Ng (bib95) 2009; 22 Taylor, Hinton, Roweis (bib153) 2011; 12 Arias Castro, Donoho (bib4) 2009; 37 Chen, Yang, Zhong, Pan, Chen, Zhang (bib22) 2016; 38 S. Rifai, P. Vincent, X. Muller, X. Glorot, Y. Bengio, Contractive auto-encoders: Explicit invariance during feature extraction, in: Proceedings of the 28th International Conference on Machine Learning (ICML-11), 2011, pp. 833–840. Dahl, Yu, Deng, Acero (bib28) 2012; 20 Gong, Zhao, Liu, Miao, Jiao (bib48) 2016; 27 Li, Deng, Xu, Wen, Wang, Pei, Shi (bib97) 2016; 6 Deng (bib31) 2014; 3 Manor, Geva (bib111) 2015; 9 Wu, Lu, Gao, Zhao, Liu (bib159) 2016; 175 Padmanabhan, Johnson Premkumar (bib126) 2015; 32 Deng, Lennig, Seitz, Mermelstein (bib34) 1990; 4 Ling, Kang, Zen, Senior, Schuster, Qian, Meng, Deng (bib101) 2015; 32 Yu, Deng (bib165) 2011; 28 Zhang, Ma, Liu (bib175) 2016; 216 Mathieu, Henaff, LeCun (bib113) 2013 Kalogerakis, Hertzmann, Singh (bib80) 2010; 29 Yuan, Sun (bib167) 2014; 125 N. Jaitly, G. Hinton, Learning a better representation of speech soundwaves using restricted Boltzmann machines, in: Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2011, pp. 5884–5887. Sainath, Kingsbury, Saon, Soltau, Mohamed, Dahl, Ramabhadran (bib134) 2015; 64 Hu, Xia, Hu, Zhang (bib66) 2015; 7 Elfwing, Uchibe, Doya (bib41) 2015; 64 S. Li, Z.Q. Liu, A. Chan, Heterogeneous multi-task learning for human pose estimation with deep convolutional neural network, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, 2014, pp. 482–489. Indiveri, Liu (bib75) 2015; 103 P. Sermanet, S. Chintala, Y. LeCun, Convolutional neural networks applied to house numbers digit classification, in: Proceedings of the 21st International Conference on Pattern Recognition (ICPR), 2012, pp. 3288–3291. A. Mohamed, T.N. Sainath, G. Dahl, B. Ramabhadran, G.E. Hinton, M.A. Picheny, Deep belief networks using discriminative features for phone recognition, in: Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2011, pp. 5060–5063. Masci, Meier, Cireşan, Schmidhuber (bib112) 2011 R. Kelley, L. Wigand, B. Hamilton, K. Browne, M. Nicolescu, M. Nicolescu, Deep networks for predicting human intent with respect to objects, in: Proceedings of the Seventh Annual ACM/IEEE International Conference on Human-Robot Interaction, 2012, pp. 171–172. R. Collobert, J. Weston, A unified architecture for natural language processing: Deep neural networks with multitask learning, in: Proceedings of the 25th international conference on Machine learning, 2008, pp. 160–167. Rabiner (bib130) 1989; 77 X. Chen, Y. Xu, D.W.K. Wong, T.Y. Wong, J. Liu, Glaucoma detection based on deep convolutional neural network, in: Engineering in Medicine and Biology Society (EMBC), in: Proceedings of the 37th Annual International Conference of the IEEE, 2015, pp. 715–718. X. Glorot, A. Bordes, Y. Bengio, Domain adaptation for large-scale sentiment classification: A deep learning approach, in: Proceedings of the 28th International Conference on Machine Learning (ICML-11), 2011, pp. 513–520. Hubel, Wiesel (bib73) 1962; 160 Y. LeCun, F.J. Huang, L. Bottou, Learning methods for generic object recognition with invariance to pose and lighting, in: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2004, vol. 2, pp. 97–104. 2013. V. Mnih, H. Larochelle, G.E. Hinton, Conditional restricted Boltzmann machines for structured output prediction Hu, Zhang, Zhou (bib70) 2016; 85 Cui, Goel, Kingsbury (bib27) 2015; 23 Y. Tang, R. Salakhutdinov, G.E. Hinton, Deep lambertian networks Zeng, Wang, Zhang, Alsaadi (bib172) 2016; 8 T. Shinozaki, S. Watanabe, Structure discovery of deep neural network based on evolutionary algorithms, in: Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2015, pp. 4979–4983. N.D. Lane, P. Georgiev, Can deep learning revolutionize mobile sensing? in: Proceedings of the 16th International Workshop on Mobile Computing Systems and Applications, 2015, pp. 117–122. Vincent (bib154) 2011; 23 Q. Liu, Z. Wang, X. He, G. Ghinea, F.E. Alsaadi, A resilient approach to distributed filter design for time-varying systems under stochastic nonlinearities and sensor degradation, IEEE Transactions on Signal Processing, accepted for publication. Hinton, Osindero, Teh (bib59) 2006; 18 Hinton, Zemel (bib61) 1994 Hinton, Dayan, Frey, Neal (bib57) 1995; 268 L. Deng, J. Li, J.T. Huang, K. Yao, D. Yu, F. Seide, M. Seltzer, G. Zweig, X. He, J. Williams, Y. Gong, A. Acero, Recent advances in deep learning for speech research at microsoft, in: Pr Deng (10.1016/j.neucom.2016.12.038_bib32) 1991; 39 Kang (10.1016/j.neucom.2016.12.038_bib81) 2015; 22 Yuan (10.1016/j.neucom.2016.12.038_bib168) 2015; 9 Hu (10.1016/j.neucom.2016.12.038_bib65) 2016; 45 Zhu (10.1016/j.neucom.2016.12.038_bib177) 2015; 65 Baker (10.1016/j.neucom.2016.12.038_bib7) 2009; 26 Hinton (10.1016/j.neucom.2016.12.038_bib58) 2012; 29 Dong (10.1016/j.neucom.2016.12.038_bib39) 2015; 42 10.1016/j.neucom.2016.12.038_bib104 Ding (10.1016/j.neucom.2016.12.038_bib37) 2015; 74 Ma (10.1016/j.neucom.2016.12.038_bib106) 2016 Tang (10.1016/j.neucom.2016.12.038_bib149) 2015; 6 Chen (10.1016/j.neucom.2016.12.038_bib21) 2016; 59 10.1016/j.neucom.2016.12.038_bib51 Liao (10.1016/j.neucom.2016.12.038_bib100) 2015; 32 10.1016/j.neucom.2016.12.038_bib53 Bourlard (10.1016/j.neucom.2016.12.038_bib15) 1988; 59 10.1016/j.neucom.2016.12.038_bib54 Kim (10.1016/j.neucom.2016.12.038_bib84) 2015; 18 Bengio (10.1016/j.neucom.2016.12.038_bib10) 2009; 2 Makhzani (10.1016/j.neucom.2016.12.038_bib110) 2013 Yu (10.1016/j.neucom.2016.12.038_bib165) 2011; 28 Hu (10.1016/j.neucom.2016.12.038_bib70) 2016; 85 10.1016/j.neucom.2016.12.038_bib170 10.1016/j.neucom.2016.12.038_bib171 Dong (10.1016/j.neucom.2016.12.038_bib38) 2015; 38 Xue (10.1016/j.neucom.2016.12.038_bib161) 2014; 22 Padmanabhan (10.1016/j.neucom.2016.12.038_bib126) 2015; 32 Silver (10.1016/j.neucom.2016.12.038_bib140) 2016; 529 Ma (10.1016/j.neucom.2016.12.038_bib109) 2016 Sainath (10.1016/j.neucom.2016.12.038_bib134) 2015; 64 Kim (10.1016/j.neucom.2016.12.038_bib83) 2016; 124 Wen (10.1016/j.neucom.2016.12.038_bib158) 2015; 136 Huang (10.1016/j.neucom.2016.12.038_bib72) 2013; 32 LeCun (10.1016/j.neucom.2016.12.038_bib92) 1998; 86 Nair (10.1016/j.neucom.2016.12.038_bib121) 2009 Vincent (10.1016/j.neucom.2016.12.038_bib154) 2011; 23 LeCun (10.1016/j.neucom.2016.12.038_bib91) 2015; 521 Fukushima (10.1016/j.neucom.2016.12.038_bib46) 1980; 36 Ballard (10.1016/j.neucom.2016.12.038_bib8) 1982 10.1016/j.neucom.2016.12.038_bib40 Hinton (10.1016/j.neucom.2016.12.038_bib61) 1994 Liu (10.1016/j.neucom.2016.12.038_bib102) 2015; 60 10.1016/j.neucom.2016.12.038_bib42 10.1016/j.neucom.2016.12.038_bib44 10.1016/j.neucom.2016.12.038_bib45 Kim (10.1016/j.neucom.2016.12.038_bib85) 2015; 13 10.1016/j.neucom.2016.12.038_bib47 Hinton (10.1016/j.neucom.2016.12.038_bib55) 2012 Miao (10.1016/j.neucom.2016.12.038_bib114) 2015; 23 Hu (10.1016/j.neucom.2016.12.038_bib64) 2014; 43 Luus (10.1016/j.neucom.2016.12.038_bib105) 2015; 12 Hinton (10.1016/j.neucom.2016.12.038_bib56) 2002; 14 10.1016/j.neucom.2016.12.038_bib123 10.1016/j.neucom.2016.12.038_bib124 10.1016/j.neucom.2016.12.038_bib127 Zeng (10.1016/j.neucom.2016.12.038_bib172) 2016; 8 Vincent (10.1016/j.neucom.2016.12.038_bib156) 2010; 11 Rabiner (10.1016/j.neucom.2016.12.038_bib130) 1989; 77 Gonzalez-Dominguez (10.1016/j.neucom.2016.12.038_bib49) 2015; 64 Hu (10.1016/j.neucom.2016.12.038_bib68) 2016; 64 Morgan (10.1016/j.neucom.2016.12.038_bib120) 2012; 20 10.1016/j.neucom.2016.12.038_bib33 10.1016/j.neucom.2016.12.038_bib35 10.1016/j.neucom.2016.12.038_bib36 Hou (10.1016/j.neucom.2016.12.038_bib63) 2016; 179 Lerouge (10.1016/j.neucom.2016.12.038_bib96) 2015; 48 Li (10.1016/j.neucom.2016.12.038_bib97) 2016; 6 Hu (10.1016/j.neucom.2016.12.038_bib67) 2016; 31 Sun (10.1016/j.neucom.2016.12.038_bib146) 2016; 24 Bengio (10.1016/j.neucom.2016.12.038_bib11) 2013; 35 Bengio (10.1016/j.neucom.2016.12.038_bib13) 2007; 19 10.1016/j.neucom.2016.12.038_bib26 Poultney (10.1016/j.neucom.2016.12.038_bib128) 2006 Yang (10.1016/j.neucom.2016.12.038_bib162) 2016; 197 Arias Castro (10.1016/j.neucom.2016.12.038_bib4) 2009; 37 10.1016/j.neucom.2016.12.038_bib29 10.1016/j.neucom.2016.12.038_bib115 10.1016/j.neucom.2016.12.038_bib119 Deng (10.1016/j.neucom.2016.12.038_bib30) 2012 LeCun (10.1016/j.neucom.2016.12.038_bib90) 1995; 3361 10.1016/j.neucom.2016.12.038_bib23 Yu (10.1016/j.neucom.2016.12.038_bib166) 2016; 182 10.1016/j.neucom.2016.12.038_bib25 Ma (10.1016/j.neucom.2016.12.038_bib107) 2016 Zeng (10.1016/j.neucom.2016.12.038_bib174) 2016; 59 Ciresan (10.1016/j.neucom.2016.12.038_bib24) 2012; 32 10.1016/j.neucom.2016.12.038_bib145 Gong (10.1016/j.neucom.2016.12.038_bib48) 2016; 27 Guo (10.1016/j.neucom.2016.12.038_bib50) 2015; 35 Bengio (10.1016/j.neucom.2016.12.038_bib12) 2009; 21 Li (10.1016/j.neucom.2016.12.038_bib99) 2015; 170 10.1016/j.neucom.2016.12.038_bib16 10.1016/j.neucom.2016.12.038_bib17 10.1016/j.neucom.2016.12.038_bib147 10.1016/j.neucom.2016.12.038_bib18 Taylor (10.1016/j.neucom.2016.12.038_bib153) 2011; 12 Bishop (10.1016/j.neucom.2016.12.038_bib14) 2006 10.1016/j.neucom.2016.12.038_bib98 Hinton (10.1016/j.neucom.2016.12.038_bib59) 2006; 18 Lee (10.1016/j.neucom.2016.12.038_bib95) 2009; 22 Singh (10.1016/j.neucom.2016.12.038_bib141) 2014; 31 Zeng (10.1016/j.neucom.2016.12.038_bib173) 2016; 8 Masci (10.1016/j.neucom.2016.12.038_bib112) 2011 10.1016/j.neucom.2016.12.038_bib93 10.1016/j.neucom.2016.12.038_bib94 Quang (10.1016/j.neucom.2016.12.038_bib129) 2014; 31 Sonka (10.1016/j.neucom.2016.12.038_bib144) 2014 Mathieu (10.1016/j.neucom.2016.12.038_bib113) 2013 Schmidhuber (10.1016/j.neucom.2016.12.038_bib137) 2015; 61 Yuan (10.1016/j.neucom.2016.12.038_bib167) 2014; 125 Zhang (10.1016/j.neucom.2016.12.038_bib175) 2016; 216 Arel (10.1016/j.neucom.2016.12.038_bib3) 2010; 5 Hu (10.1016/j.neucom.2016.12.038_bib69) 2013; 86 10.1016/j.neucom.2016.12.038_bib135 Zhou (10.1016/j.neucom.2016.12.038_bib176) 2015; 168 10.1016/j.neucom.2016.12.038_bib133 10.1016/j.neucom.2016.12.038_bib138 Mohamed (10.1016/j.neucom.2016.12.038_bib118) 2010 10.1016/j.neucom.2016.12.038_bib139 Arnold (10.1016/j.neucom.2016.12.038_bib5) 2011 10.1016/j.neucom.2016.12.038_bib136 Bell (10.1016/j.neucom.2016.12.038_bib9) 2015; 34 Yoshioka (10.1016/j.neucom.2016.12.038_bib164) 2015; 31 Han (10.1016/j.neucom.2016.12.038_bib52) 2015; 46 Manor (10.1016/j.neucom.2016.12.038_bib111) 2015; 9 Mohamed (10.1016/j.neucom.2016.12.038_bib117) 2009; 1 10.1016/j.neucom.2016.12.038_bib87 10.1016/j.neucom.2016.12.038_bib88 10.1016/j.neucom.2016.12.038_bib89 Yang (10.1016/j.neucom.2016.12.038_bib163) 2016; 175 Hinton (10.1016/j.neucom.2016.12.038_bib57) 1995; 268 Felzenszwalb (10.1016/j.neucom.2016.12.038_bib43) 2010; 32 Agostinelli (10.1016/j.neucom.2016.12.038_bib2) 2013; 26 Yuan (10.1016/j.neucom.2016.12.038_bib169) 2015; 13 10.1016/j.neucom.2016.12.038_bib82 Richardson (10.1016/j.neucom.2016.12.038_bib132) 2015; 22 Noda (10.1016/j.neucom.2016.12.038_bib125) 2015; 42 Song (10.1016/j.neucom.2016.12.038_bib142) 2016; 214 Wu (10.1016/j.neucom.2016.12.038_bib160) 2015; 74 Hubel (10.1016/j.neucom.2016.12.038_bib73) 1962; 160 Elfwing (10.1016/j.neucom.2016.12.038_bib41) 2015; 64 Ma (10.1016/j.neucom.2016.12.038_bib108) 2016; 77 Hong (10.1016/j.neucom.2016.12.038_bib62) 2015; 24 Najafabadi (10.1016/j.neucom.2016.12.038_bib122) 2015; 2 Hinton (10.1016/j.neucom.2016.12.038_bib60) 2006; 313 Mohamed (10.1016/j.neucom.2016.12.038_bib116) 2012; 20 10.1016/j.neucom.2016.12.038_bib74 10.1016/j.neucom.2016.12.038_bib76 Deng (10.1016/j.neucom.2016.12.038_bib34) 1990; 4 10.1016/j.neucom.2016.12.038_bib77 10.1016/j.neucom.2016.12.038_bib78 Deng (10.1016/j.neucom.2016.12.038_bib31) 2014; 3 Indiveri (10.1016/j.neucom.2016.12.038_bib75) 2015; 103 Abdel Zaher (10.1016/j.neucom.2016.12.038_bib1) 2016; 46 Chen (10.1016/j.neucom.2016.12.038_bib20) 2015; 23 10.1016/j.neucom.2016.12.038_bib71 Szegedy (10.1016/j.neucom.2016.12.038_bib148) 2013 Chandra (10.1016/j.neucom.2016.12.038_bib19) 2016; 171 Cui (10.1016/j.neucom.2016.12.038_bib27) 2015; 23 10.1016/j.neucom.2016.12.038_bib152 Song (10.1016/j.neucom.2016.12.038_bib143) 2016; 171 Kalogerakis (10.1016/j.neucom.2016.12.038_bib80) 2010; 29 Aryal (10.1016/j.neucom.2016.12.038_bib6) 2016; 36 10.1016/j.neucom.2016.12.038_bib151 Liu (10.1016/j.neucom.2016.12.038_bib103) 2015; 60 Tang (10.1016/j.neucom.2016.12.038_bib150) 2015; 53 10.1016/j.neucom.2016.12.038_bib155 Dahl (10.1016/j.neucom.2016.12.038_bib28) 2012; 20 Hu (10.1016/j.neucom.2016.12.038_bib66) 2015; 7 Ren (10.1016/j.neucom.2016.12.038_bib131) 2016; 175 Chen (10.1016/j.neucom.2016.12.038_bib22) 2016; 38 Juang (10.1016/j.neucom.2016.12.038_bib79) 1986; 32 Krizhevsky (10.1016/j.neucom.2016.12.038_bib86) 2012 Ling (10.1016/j.neucom.2016.12.038_bib101) 2015; 32 Wu (10.1016/j.neucom.2016.12.038_bib159) 2016; 175 Wang (10.1016/j.neucom.2016.12.038_bib157) 2015; 16 |
| References_xml | – volume: 46 start-page: 487 year: 2015 end-page: 498 ident: bib52 article-title: Two-stage learning to predict human eye fixations via SADEs publication-title: IEEE Trans. Cybern. – start-page: 1097 year: 2012 end-page: 1105 ident: bib86 article-title: Imagenet classification with deep convolutional neural networks publication-title: Adv. Neural Inf. Process. Syst. 25 – volume: 23 start-page: 1938 year: 2015 end-page: 1949 ident: bib114 article-title: Speaker adaptive training of deep neural network acoustic models using I-vectors publication-title: IEEE/ACM Trans. Audio, Speech, Lang. Process. – volume: 64 start-page: 49 year: 2015 end-page: 58 ident: bib49 article-title: Frame-by-frame language identification in short utterances using deep neural networks publication-title: Neural Netw. – volume: 26 start-page: 75 year: 2009 end-page: 80 ident: bib7 article-title: Developments and directions in speech recognition and understanding [dsp education] publication-title: IEEE Trans. Signal Process. Mag. – volume: 13 start-page: 1425 year: 2015 end-page: 1435 ident: bib169 article-title: Resilient control in the presence of DoS Attack: switched system approach publication-title: Int. J. Control, Autom., Syst. – volume: 59 start-page: 291 year: 1988 end-page: 294 ident: bib15 article-title: Auto-association by multilayer perceptrons and singular value decomposition publication-title: Biol. Cybern. – volume: 14 start-page: 1771 year: 2002 end-page: 1800 ident: bib56 article-title: Training products of experts by minimizing contrastive divergence publication-title: Neural Comput. – volume: 74 start-page: 9889 year: 2015 end-page: 9907 ident: bib160 article-title: Acoustic to articulatory mapping with deep neural network publication-title: Multimed. Tools Appl. – year: 1982 ident: bib8 article-title: Computer Vision – volume: 32 start-page: 307 year: 1986 end-page: 309 ident: bib79 article-title: Maximum likelihood estimation for multivariate mixture observations of markov chains (corresp.) publication-title: IEEE Trans. Inf. Theory – reference: P. Sermanet, S. Chintala, Y. LeCun, Convolutional neural networks applied to house numbers digit classification, in: Proceedings of the 21st International Conference on Pattern Recognition (ICPR), 2012, pp. 3288–3291. – reference: Y. Jia, C. Huang, T. Darrell, Beyond spatial pyramids: Receptive field learning for pooled image features, in: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2012, pp. 3370–3377. – volume: 39 start-page: 1677 year: 1991 end-page: 1681 ident: bib32 article-title: Phonemic hidden markov models with continuous mixture output densities for large vocabulary word recognition publication-title: IEEE Trans. Signal Process. – start-page: 599 year: 2012 end-page: 619 ident: bib55 article-title: A practical guide to training restricted Boltzmann machines publication-title: Neural Netw.: Tricks Trade – volume: 35 start-page: 3 year: 2015 ident: bib50 article-title: 3D mesh labeling via deep convolutional neural networks publication-title: ACM Trans. Graph. (TOG) – volume: 31 start-page: 761 year: 2014 end-page: 763 ident: bib129 article-title: DANN: a deep learning approach for annotating the pathogenicity of genetic variants publication-title: Bioinformatics – year: 2016 ident: bib109 article-title: Mean-square publication-title: IEEE Trans. Syst., Man Cybern.: Syst. – volume: 16 start-page: 17315 year: 2015 end-page: 17330 ident: bib157 article-title: DeepCNF-D: predicting protein order/disorder regions by weighted deep convolutional neural fields publication-title: Int. J. Mol. Sci. – reference: , 2012. – volume: 22 start-page: 1671 year: 2015 end-page: 1675 ident: bib132 article-title: Deep neural network approaches to speaker and language recognition publication-title: IEEE Signal Process. Lett. – reference: P. Vincent, H. Larochelle, Y. Bengio, P.A. Manzagol, Extracting and composing robust features with denoising autoencoders, in: Proceedings of the 25th International Conference on Machine Learning, 2008, pp. 1096–1103. – volume: 61 start-page: 85 year: 2015 end-page: 117 ident: bib137 article-title: Deep learning in neural networks: an overview publication-title: Neural Netw. – start-page: 2553 year: 2013 end-page: 2561 ident: bib148 article-title: Deep neural networks for object detection publication-title: Adv. Neural Inf. Process. Syst. – volume: 38 start-page: 1088 year: 2016 end-page: 1098 ident: bib22 article-title: Cnntracker publication-title: Appl. Soft Comput. – reference: R. Collobert, J. Weston, A unified architecture for natural language processing: Deep neural networks with multitask learning, in: Proceedings of the 25th international conference on Machine learning, 2008, pp. 160–167. – reference: D. Ciresan, U. Meier, J. Schmidhuber, Multi-column deep neural networks for image classification, in: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2012, pp. 3642–3649. – volume: 86 start-page: 650 year: 2013 end-page: 663 ident: bib69 article-title: Quantised recursive filtering for a class of nonlinear systems with multiplicative noises and missing measurements publication-title: Int. J. Control – volume: 12 start-page: 1025 year: 2011 end-page: 1068 ident: bib153 article-title: Two distributed-state models for generating high-dimensional time series publication-title: J. Mach. Learn. Res. – volume: 29 start-page: 82 year: 2012 end-page: 97 ident: bib58 article-title: Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups publication-title: Signal Process. Mag., IEEE – volume: 3 start-page: e2 year: 2014 ident: bib31 article-title: A tutorial survey of architectures, algorithms, and applications for deep learning publication-title: APSIPA Trans. Signal Inf. Process. – reference: Y.L. Boureau, N.L. Roux, F. Bach, J. Ponce, Y. LeCun, Ask the locals: multi-way local pooling for image recognition, in: 2011 IEEE International Conference on Computer Vision (ICCV), 2011, pp. 2651–2658. – volume: 170 start-page: 251 year: 2015 end-page: 256 ident: bib99 article-title: A comparative study on selecting acoustic modeling units in deep neural networks based large vocabulary chinese speech recognition publication-title: Neurocomputing – volume: 9 start-page: 203 year: 2015 end-page: 210 ident: bib168 article-title: Finite frequency property-based robust control for singularly perturbed system publication-title: IET Control Theory Appl. – volume: 65 start-page: 103 year: 2015 end-page: 108 ident: bib177 article-title: Deep neural network based image annotation publication-title: Pattern Recognit. Lett. – year: 2006 ident: bib14 article-title: Pattern Recognition and Machine Learning – reference: H. Larochelle, Y. Bengio, Classification using discriminative restricted Boltzmann machines, in: Proceedings of the 25th international conference on Machine learning, 2008, pp. 536–543. – volume: 42 start-page: 722 year: 2015 end-page: 737 ident: bib125 article-title: Audio-visual speech recognition using deep learning publication-title: Appl. Intell. – reference: Q. Liu, Z. Wang, X. He, G. Ghinea, F.E. Alsaadi, A resilient approach to distributed filter design for time-varying systems under stochastic nonlinearities and sensor degradation, IEEE Transactions on Signal Processing, accepted for publication. – reference: J. Deng, W. Dong, R. Socher, L.J. Li, K. Li, L. Fei-Fei, Imagenet: A large-scale hierarchical image database, in: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2009, 2009, pp. 248–255. – volume: 160 start-page: 106 year: 1962 end-page: 154 ident: bib73 article-title: Receptive fields, binocular interaction and functional architecture in the cat's visual cortex publication-title: J. Physiol. – volume: 77 start-page: 257 year: 1989 end-page: 286 ident: bib130 article-title: A tutorial on hidden markov models and selected applications in speech recognition publication-title: Proc. IEEE – volume: 31 start-page: 65 year: 2015 end-page: 86 ident: bib164 article-title: Environmentally robust asr front-end for deep neural network acoustic models publication-title: Comput. Speech Lang. – reference: N.D. Lane, P. Georgiev, Can deep learning revolutionize mobile sensing? in: Proceedings of the 16th International Workshop on Mobile Computing Systems and Applications, 2015, pp. 117–122. – volume: 31 start-page: 65 year: 2016 end-page: 75 ident: bib67 article-title: Estimation, filtering and fusion for networked systems with network-induced phenomena: New progress and prospects publication-title: Inf. Fusion – volume: 64 start-page: 155 year: 2016 end-page: 162 ident: bib68 article-title: A variance-constrained approach to recursive state estimation for time-varying complex networks with missing measurements publication-title: Automatica – volume: 32 start-page: 333 year: 2012 end-page: 338 ident: bib24 article-title: Multi-column deep neural network for traffic sign classification publication-title: Neural Netw. – reference: O. Emad, I.A. Yassine, A.S. Fahmy, Automatic localization of the left ventricle in cardiac mri images using deep learning, in: Engineering in Medicine and Biology Society (EMBC), 2015 Proceedings of the 37th Annual International Conference of the IEEE, 2015, pp. 683–686. – volume: 32 start-page: 190 year: 2013 ident: bib72 article-title: Fine-grained semi-supervised labeling of large shape collections publication-title: ACM Trans. Graph. (TOG) – volume: 86 start-page: 2278 year: 1998 end-page: 2324 ident: bib92 article-title: Gradient-based learning applied to document recognition publication-title: Proc. IEEE – reference: V. Mnih, H. Larochelle, G.E. Hinton, Conditional restricted Boltzmann machines for structured output prediction, – volume: 7 start-page: 14680 year: 2015 end-page: 14707 ident: bib66 article-title: Transferring deep convolutional neural networks for the scene classification of high-resolution remote sensing imagery publication-title: Remote Sens. – volume: 36 start-page: 260 year: 2016 end-page: 273 ident: bib6 article-title: Data driven articulatory synthesis with deep neural networks publication-title: Comput. Speech Lang. – reference: D. Eigen, J. Rolfe, R. Fergus, Y. LeCun, Understanding deep architectures using a recursive convolutional network, – volume: 20 start-page: 30 year: 2012 end-page: 42 ident: bib28 article-title: Context-dependent pre-trained deep neural networks for large-vocabulary speech recognition publication-title: IEEE Trans. Audio, Speech, Lang. Process. – year: 2014 ident: bib144 article-title: Image processing, analysis, and machine vision publication-title: Cengage Learn. – volume: 34 start-page: 98 year: 2015 ident: bib9 article-title: Learning visual similarity for product design with convolutional neural networks publication-title: ACM Trans. Graph. (TOG) – volume: 216 start-page: 657 year: 2016 end-page: 665 ident: bib175 article-title: Passivity analysis for discrete-time neural networks with mixed time-delays and randomly occurring quantization effects publication-title: Neurocomputing – volume: 27 start-page: 125 year: 2016 end-page: 138 ident: bib48 article-title: Change detection in synthetic aperture radar images based on deep neural networks publication-title: IEEE Trans. Neural Netw. Learn. Syst. – reference: M.D. Zeiler, R. Fergus, Stochastic pooling for regularization of deep convolutional neural networks, – reference: M. Henderson, B. Thomson, S. Young, Deep neural network approach for the dialog state tracking challenge, in: Proceedings of the SIGDIAL 2013 Conference, 2013, pp. 467–471. – volume: 85 start-page: 83 year: 2016 end-page: 95 ident: bib70 article-title: Transfer learning for short-term wind speed prediction with deep neural networks publication-title: Renew. Energy – volume: 529 start-page: 484 year: 2016 end-page: 489 ident: bib140 article-title: Mastering the game of go with deep neural networks and tree search publication-title: Nature – reference: X. Glorot, A. Bordes, Y. Bengio, Domain adaptation for large-scale sentiment classification: A deep learning approach, in: Proceedings of the 28th International Conference on Machine Learning (ICML-11), 2011, pp. 513–520. – reference: T.N. Sainath, B. Kingsbury, A.r. Mohamed, B. Ramabhadran, Learning filter banks within a deep neural network framework, in: Proceedings of IEEE Workshop on Automatic Speech Recognition and Understanding (ASRU), 2013, pp. 297–302. – volume: 59 start-page: 1 year: 2016 end-page: 14 ident: bib21 article-title: Pinning controllability of autonomous Boolean control networks publication-title: Sci. China Inf. Sci. – reference: J. Ngiam, A. Khosla, M. Kim, J. Nam, H. Lee, A.Y. Ng, Multimodal deep learning, in: Proceedings of the 28th international conference on machine learning (ICML-11), 2011, pp. 689–696. – volume: 171 start-page: 1205 year: 2016 end-page: 1215 ident: bib19 article-title: Fast learning in deep neural networks publication-title: Neurocomputing – volume: 22 start-page: 1096 year: 2009 end-page: 1104 ident: bib95 article-title: Unsupervised feature learning for audio classification using convolutional deep belief networks publication-title: Adv. Neural Inf. Process. Syst. – volume: 175 start-page: 392 year: 2016 end-page: 400 ident: bib163 article-title: Almost sure publication-title: Neurocomputing – volume: 5 start-page: 13 year: 2010 end-page: 18 ident: bib3 article-title: Deep machine learning-a new frontier in artificial intelligence research [research frontier] publication-title: IEEE Comput. Intell. Mag. – volume: 214 start-page: 340 year: 2016 end-page: 349 ident: bib142 article-title: Recursive approach to networked fault estimation with packet dropouts and randomly occurring uncertainties publication-title: Neurocomputing – volume: 103 start-page: 1379 year: 2015 end-page: 1397 ident: bib75 article-title: Memory and information processing in neuromorphic systems publication-title: Proc. IEEE – reference: A. Fischer, C. Igel, Training RBMs based on the signs of the CD approximation of the log-likelihood derivatives, in: ESANN, 2011. – reference: G. Desjardins, Y. Bengio, Empirical evaluation of convolutional RBMs for vision, Département d′Informatique et de Recherche Opérationnelle, Université de Montréal, Tech. Rep. 1327, 2008. – reference: N. Jaitly, G. Hinton, Learning a better representation of speech soundwaves using restricted Boltzmann machines, in: Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2011, pp. 5884–5887. – volume: 48 start-page: 2847 year: 2015 end-page: 2858 ident: bib96 article-title: IODA: an input/output deep architecture for image labeling publication-title: Pattern Recognit. – volume: 9 year: 2015 ident: bib111 article-title: Convolutional neural network for multi-category rapid serial visual presentation BCI publication-title: Front. Comput. Neurosci. – reference: A. Mohamed, T.N. Sainath, G. Dahl, B. Ramabhadran, G.E. Hinton, M.A. Picheny, Deep belief networks using discriminative features for phone recognition, in: Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2011, pp. 5060–5063. – reference: X. Chen, Y. Xu, D.W.K. Wong, T.Y. Wong, J. Liu, Glaucoma detection based on deep convolutional neural network, in: Engineering in Medicine and Biology Society (EMBC), in: Proceedings of the 37th Annual International Conference of the IEEE, 2015, pp. 715–718. – volume: 521 start-page: 436 year: 2015 end-page: 444 ident: bib91 article-title: Deep learning publication-title: Nature – reference: Y. Tang, R. Salakhutdinov, G.E. Hinton, Deep lambertian networks, – volume: 13 start-page: 8 year: 2015 end-page: 12 ident: bib85 article-title: Human detection and activity classification based on micro-doppler signatures using deep convolutional neural networks publication-title: IEEE Geosci. Remote Sens. Lett. – volume: 3361 year: 1995 ident: bib90 article-title: Convolutional networks for images, speech, and time series publication-title: Handb. brain Theory Neural Netw. – volume: 37 start-page: 1172 year: 2009 end-page: 1206 ident: bib4 article-title: Does median filtering truly preserve edges better than linear filtering? publication-title: Ann. Stat. – volume: 19 start-page: 153 year: 2007 end-page: 160 ident: bib13 article-title: Greedy layer-wise training of deep networks publication-title: Adv. Neural Inf. Process. Syst. – volume: 12 start-page: 2448 year: 2015 end-page: 2452 ident: bib105 article-title: Multiview deep learning for land-use classification publication-title: IEEE Geosci. Remote Sens. Lett. – reference: Y. Pan, W. Huang, Z. Lin, W. Zhu, J. Zhou, J. Wong, Z. Ding, Brain tumor grading based on neural networks and convolutional neural networks, in: Proceedings of the 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2015, pp. 699–702. – volume: 313 start-page: 504 year: 2006 end-page: 507 ident: bib60 article-title: Reducing the dimensionality of data with neural networks publication-title: Science – volume: 26 start-page: 1493 year: 2013 end-page: 1501 ident: bib2 article-title: Adaptive multi-column deep neural networks with application to robust image denoising publication-title: Adv. Neural Inf. Process. Syst. – reference: T. Shinozaki, S. Watanabe, Structure discovery of deep neural network based on evolutionary algorithms, in: Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2015, pp. 4979–4983. – volume: 46 start-page: 139 year: 2016 end-page: 144 ident: bib1 article-title: Breast cancer classification using deep belief networks publication-title: Exp. Syst. Appl. – reference: K. Jarrett, K. Kavukcuoglu, M. Ranzato, Y. LeCun, What is the best multi-stage architecture for object recognition? in: Proceedings of IEEE Proceedings of the 12th International Conference on Computer Vision, 2009, pp. 2146–2153. – year: 2016 ident: bib107 article-title: Distributed event-based set-membership filtering for a class of nonlinear systems with sensor saturations over sensor networks publication-title: IEEE Trans. Cybern. – volume: 179 start-page: 238 year: 2016 end-page: 245 ident: bib63 article-title: Non-fragile state estimation for discrete Markovian jumping neural networks publication-title: Neurocomputing – reference: 2012. – start-page: 1339 year: 2009 end-page: 1347 ident: bib121 article-title: 3D object recognition with deep belief nets publication-title: Adv. Neural Inf. Process. Syst. – volume: 197 start-page: 205 year: 2016 end-page: 211 ident: bib162 article-title: A new approach to non-fragile state estimation for continuous neural networks with time-delays publication-title: Neurocomputing – volume: 32 start-page: 35 year: 2015 end-page: 52 ident: bib101 article-title: Deep learning for acoustic modeling in parametric speech generation: a systematic review of existing techniques and future trends publication-title: IEEE Signal Process. Mag. – volume: 32 start-page: 1627 year: 2010 end-page: 1645 ident: bib43 article-title: Object detection with discriminatively trained part-based models publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 18 start-page: 1527 year: 2006 end-page: 1554 ident: bib59 article-title: A fast learning algorithm for deep belief nets publication-title: Neural Comput. – volume: 45 start-page: 619 year: 2016 end-page: 632 ident: bib65 article-title: On co-design of filter and fault estimator against randomly occurring nonlinearities and randomly occurring deception attacks publication-title: Int. J. Gen. Syst. – reference: R.G. Brown, P.Y. Hwang, Introduction to random signals and applied kalman filtering: with matlab exercises and solutions, Introduction to random signals and applied Kalman filtering: with MATLAB exercises and solutions, by Brown, Robert Grover.; Hwang, Patrick YC New York: Wiley, c1997, vol. 1, 1997. – volume: 23 start-page: 1469 year: 2015 end-page: 1477 ident: bib27 article-title: Data augmentation for deep neural network acoustic modeling publication-title: IEEE/ACM Trans. Audio, Speech Lang. Process. (TASLP) – volume: 60 start-page: 2553 year: 2015 end-page: 2558 ident: bib102 article-title: Event-based publication-title: IEEE Trans. Autom. Control – volume: 22 start-page: 1713 year: 2014 end-page: 1725 ident: bib161 article-title: Fast adaptation of deep neural network based on discriminant codes for speech recognition publication-title: IEEE/ACM Trans. Audio, Speech, Lang. Process. – reference: A. Krizhevsky, G.E. Hinton, Convolutional deep belief networks on cifar-10, Unpublished manuscript, vol. 40, 2010. – year: 2013 ident: bib113 publication-title: Fast Train. convolutional Netw. FFTs – reference: I.G.Y. Bengio, A. Courville, Deep learning, book in preparation for MIT Press [Online], 2016. – volume: 64 start-page: 39 year: 2015 end-page: 48 ident: bib134 article-title: Deep convolutional neural networks for large-scale speech tasks publication-title: Neural Netw. – volume: 1 start-page: 39 year: 2009 ident: bib117 article-title: Deep belief networks for phone recognition publication-title: Nips Workshop Deep Learn. Speech Recognit. Relat. Appl. – volume: 32 start-page: 240 year: 2015 end-page: 251 ident: bib126 article-title: Machine learning in automatic speech recognition: a survey publication-title: IETE Tech. Rev. – reference: L. Deng, D. Yu, Deep convex net: A scalable architecture for speech pattern classification, in: Proceedings of the Interspeech, 2011. – volume: 136 start-page: 117 year: 2015 end-page: 128 ident: bib158 article-title: Pose estimation-dependent identification method for field moth images using deep learning architecture publication-title: Biosyst. Eng. – reference: Y. LeCun, F.J. Huang, L. Bottou, Learning methods for generic object recognition with invariance to pose and lighting, in: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2004, vol. 2, pp. 97–104. – volume: 168 start-page: 408 year: 2015 end-page: 417 ident: bib176 article-title: Combining heterogeneous deep neural networks with conditional random fields for chinese dialogue act recognition publication-title: Neurocomputing – volume: 20 start-page: 7 year: 2012 end-page: 13 ident: bib120 article-title: Deep and wide: multiple layers in automatic speech recognition publication-title: IEEE Trans. Audio, Speech, Lang. Process. – volume: 28 start-page: 145 year: 2011 end-page: 154 ident: bib165 article-title: Deep learning and its applications to signal and information processing [exploratory dsp] publication-title: IEEE Signal Process. Mag. – reference: A. Nguyen, J. Yosinski, J. Clune, Deep neural networks are easily fooled: High confidence predictions for unrecognizable images, in: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015, pp. 427–436. – volume: 23 start-page: 1172 year: 2015 end-page: 1183 ident: bib20 article-title: Multitask learning of deep neural networks for low-resource speech recognition publication-title: IEEE/ACM Trans. Audio, Speech, Lang. Process. – start-page: 1137 year: 2006 end-page: 1144 ident: bib128 article-title: Efficient learning of sparse representations with an energy-based model publication-title: Adv. Neural Inf. Process. Syst. – reference: S. Li, Z.Q. Liu, A. Chan, Heterogeneous multi-task learning for human pose estimation with deep convolutional neural network, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, 2014, pp. 482–489. – volume: 124 start-page: 127 year: 2016 end-page: 146 ident: bib83 article-title: Deep neural network with weight sparsity control and pre-training extracts hierarchical features and enhances classification performance: Evidence from whole-brain resting-state functional connectivity patterns of schizophrenia publication-title: NeuroImage – reference: , 2013. – reference: I. Sutskever, T. Tieleman, On the convergence properties of contrastive divergence, in: Proceedings of International Conference on Artificial Intelligence and Statistics, vol. 9, (2010) pp. 789–795. – volume: 59 start-page: 112204 year: 2016 ident: bib174 article-title: Inferring nonlinear lateral flow immunoassay state-space models via an unscented Kalman filter publication-title: Sci. China Inf. Sci. – volume: 20 start-page: 14 year: 2012 end-page: 22 ident: bib116 article-title: Acoustic modeling using deep belief networks publication-title: IEEE Trans. Audio, Speech, Lang. Process. – reference: L. Deng, J. Li, J.T. Huang, K. Yao, D. Yu, F. Seide, M. Seltzer, G. Zweig, X. He, J. Williams, Y. Gong, A. Acero, Recent advances in deep learning for speech research at microsoft, in: Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2013, pp. 8604–8608. – volume: 60 start-page: 2470 year: 2015 end-page: 2475 ident: bib103 article-title: Event-based recursive distributed filtering over wireless sensor networks publication-title: IEEE Trans. Autom. Control – start-page: 477 year: 2011 end-page: 488 ident: bib5 article-title: An introduction to deep learning publication-title: ESANN – volume: 8 start-page: 684 year: 2016 end-page: 692 ident: bib173 article-title: Deep belief networks for quantitative analysis of a gold immunochromatographic strip publication-title: Cogn. Comput. – volume: 4 start-page: 345 year: 1990 end-page: 357 ident: bib34 article-title: Large vocabulary word recognition using context-dependent allophonic hidden markov models publication-title: Comput. Speech Lang. – volume: 2 start-page: 1 year: 2015 end-page: 21 ident: bib122 article-title: Deep learning applications and challenges in big data analytics publication-title: J. Big Data – year: 2012 ident: bib30 article-title: Three classes of deep learning architectures and their applications: a tutorial survey publication-title: APSIPA Trans. Signal Inf. Process. – reference: Y. Tang, R. Salakhutdinov, G.E. Hinton, Robust boltzmann machines for recognition and denoising, in: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2012, pp. 2264–2271. – volume: 11 start-page: 3371 year: 2010 end-page: 3408 ident: bib156 article-title: Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion publication-title: J. Mach. Learn. Res. – reference: J. Hennrich, C. Herff, D. Heger, T. Schultz, Investigating deep learning for FNIRs based BCI, in: Engineering in Medicine and Biology Society (EMBC), 2015 Proceedings of the 37th Annual International Conference of the IEEE, 2015, pp. 2844–2847. – volume: 42 start-page: 105 year: 2015 end-page: 112 ident: bib39 article-title: Adaptive cascade deep convolutional neural networks for face alignment publication-title: Comput. Stand. Interfaces – start-page: 52 year: 2011 end-page: 59 ident: bib112 article-title: Stacked convolutional auto-encoders for hierarchical feature extraction publication-title: Artif. Neural Netw. Mach. Learn.-ICANN 2011 – volume: 29 start-page: 102 year: 2010 ident: bib80 article-title: Learning 3D mesh segmentation and labeling publication-title: ACM Trans. Graph. (TOG) – reference: N. Srivastava, R. Salakhutdinov, Learning representations for multimodal data with deep belief nets, in: Proceedings of International Conference on Machine Learning Workshop, 2012. – volume: 175 start-page: 310 year: 2016 end-page: 323 ident: bib159 article-title: Regional deep learning model for visual tracking publication-title: Neurocomputing – volume: 6 year: 2016 ident: bib97 article-title: Temperature based restricted Boltzmann machines publication-title: Sci. Rep. – volume: 53 start-page: 1174 year: 2015 end-page: 1185 ident: bib150 article-title: Compressed-domain ship detection on spaceborne optical image using deep neural network and extreme learning machine publication-title: IEEE Trans. Geosci. Remote Sens. – reference: Y.L. Boureau, J. Ponce, Y. LeCun, A theoretical analysis of feature pooling in visual recognition, in: Proceedings of the 27th International Conference on Machine Learning (ICML-10), 2010, pp. 111–118. – volume: 74 start-page: 9871 year: 2015 end-page: 9888 ident: bib37 article-title: Head motion synthesis from speech using deep neural networks publication-title: Multimed. Tools Appl. – volume: 18 start-page: 1 year: 2015 end-page: 13 ident: bib84 article-title: Handwritten hangul recognition using deep convolutional neural networks publication-title: Int. J. Doc. Anal. Recognit. (IJDAR) – volume: 23 start-page: 1661 year: 2011 end-page: 1674 ident: bib154 article-title: A connection between score matching and denoising autoencoders publication-title: Neural Comput. – reference: P. Hamel, D. Eck, Learning features from music audio with deep belief networks, in: ISMIR, 2010, pp. 339–344. – volume: 22 start-page: 229 year: 2015 end-page: 233 ident: bib81 article-title: NMF-based target source separation using deep neural network publication-title: IEEE Signal Process. Lett. – volume: 21 start-page: 1601 year: 2009 end-page: 1621 ident: bib12 article-title: Justifying and generalizing contrastive divergence publication-title: Neural Comput. – volume: 32 start-page: 294 year: 2015 end-page: 303 ident: bib100 article-title: An image retrieval method for binary images based on DBN and Softmax classifier publication-title: IETE Tech. Rev. – volume: 6 start-page: 21 year: 2015 ident: bib149 article-title: A real-time hand posture recognition system using deep neural networks publication-title: ACM Trans. Intell. Syst. Technol. (TIST) – start-page: 3 year: 1994 ident: bib61 article-title: Autoencoders, minimum description length, and Helmholtz free energy publication-title: Adv. Neural Inf. Process. Syst. – volume: 36 start-page: 193 year: 1980 end-page: 202 ident: bib46 article-title: Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position publication-title: Biol. Cybern. – volume: 125 start-page: 17 year: 2014 end-page: 21 ident: bib167 article-title: Delay-dependent stability criteria for time-varying delay neural networks in the delta domain publication-title: Neurocomputing – volume: 35 start-page: 1798 year: 2013 end-page: 1828 ident: bib11 article-title: Representation learning: A review and new perspectives publication-title: IEEE Pattern Anal. Mach. Intell. – volume: 24 start-page: 93 year: 2016 end-page: 104 ident: bib146 article-title: Unseen noise estimation using separable deep auto encoder for speech enhancement publication-title: IEEE/ACM Trans. Audio, Speech, Lang. Process. – year: 2016 ident: bib106 article-title: Event-triggered mean-square consensus control for time-varying stochastic multi-agent system with sensor saturations publication-title: IEEE Trans. Autom. Control – reference: F. Feng, X. Wang, R. Li, Cross-modal retrieval with correspondence autoencoder, in: Proceedings of the ACM International Conference on Multimedia, 2014, pp. 7–16. – volume: 24 start-page: 5659 year: 2015 end-page: 5670 ident: bib62 article-title: Multimodal deep autoencoder for human pose recovery publication-title: IEEE Trans. Image Process. – year: 2013 ident: bib110 publication-title: K.-sparse autoencoders – volume: 171 start-page: 444 year: 2016 end-page: 451 ident: bib143 article-title: Resilisent finite-time stabilization of fuzzy stochastic systems with randomly occurring uncertainities and randomly occurring gain fluctuations publication-title: Neurocomputing – volume: 182 start-page: 18 year: 2016 end-page: 24 ident: bib166 article-title: Design of non-fragile state estimators for discrete time-delayed neural networks with parameter uncertainties publication-title: Neurocomputing – reference: R. Kelley, L. Wigand, B. Hamilton, K. Browne, M. Nicolescu, M. Nicolescu, Deep networks for predicting human intent with respect to objects, in: Proceedings of the Seventh Annual ACM/IEEE International Conference on Human-Robot Interaction, 2012, pp. 171–172. – volume: 77 start-page: 37 year: 2016 end-page: 54 ident: bib108 article-title: Robust filtering for a class of nonlinear stochastic systems with probability constraints publication-title: Autom. Remote Control – reference: Y. Yuan, H. Yuan, L. Guo, H. Yang, S. Sun, Robust control of networked control system under DoS attacks: a unified game approach, IEEE transactions on Industrial Informatics, – volume: 8 start-page: 143 year: 2016 end-page: 152 ident: bib172 article-title: A novel switching delayed PSO algorithm for estimating unknown parameters of lateral flow immunoassay publication-title: Cogn. Comput. – reference: . – volume: 43 start-page: 387 year: 2014 end-page: 401 ident: bib64 article-title: State estimation for a class of discrete nonlinear systems with randomly occurring uncertainties and distributed sensor delays publication-title: Int. J. Gen. Syst. – start-page: 2846 year: 2010 end-page: 2849 ident: bib118 article-title: Investigation of full-sequence training of deep belief networks for speech recognition publication-title: INTERSPEECH – volume: 64 start-page: 29 year: 2015 end-page: 38 ident: bib41 article-title: Expected energy-based restricted boltzmann machine for classification publication-title: Neural Netw. – volume: 2 start-page: 1 year: 2009 end-page: 127 ident: bib10 article-title: Learning deep architectures for AI publication-title: Found. Trends Mach. Learn. – reference: H. Lee, R. Grosse, R. Ranganath, A.Y. Ng, Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations, in: Proceedings of the 26th Annual International Conference on Machine Learning, 2009, pp. 609–616. – reference: S. Rifai, P. Vincent, X. Muller, X. Glorot, Y. Bengio, Contractive auto-encoders: Explicit invariance during feature extraction, in: Proceedings of the 28th International Conference on Machine Learning (ICML-11), 2011, pp. 833–840. – volume: 38 start-page: 295 year: 2015 end-page: 307 ident: bib38 article-title: Image super-resolution using deep convolutional networks publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 268 start-page: 1158 year: 1995 end-page: 1161 ident: bib57 article-title: The “wake-sleep” algorithm for unsupervised neural networks publication-title: Science – reference: J.T. Huang, J. Li, D. Yu, L. Deng, Y. Gong, Cross-language knowledge transfer using multilingual deep neural network with shared hidden layers, in: Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2013, pp. 7304–7308. – volume: 175 start-page: 427 year: 2016 end-page: 432 ident: bib131 article-title: Local visual feature fusion via maximum margin multimodal deep neural network publication-title: Neurocomputing – reference: R. Salakhutdinov, G.E. Hinton, Using deep belief nets to learn covariance kernels for gaussian processes, in: Proceedings of the Conference on Neural Information Processing Systems, 2007, pp. 1249–1256. – volume: 31 year: 2014 ident: bib141 article-title: Subjective and objective analysis of speech enhancement algorithms for single channel speech patterns of indian and english languages publication-title: IETE Tech. Rev. – year: 2016 ident: 10.1016/j.neucom.2016.12.038_bib107 article-title: Distributed event-based set-membership filtering for a class of nonlinear systems with sensor saturations over sensor networks publication-title: IEEE Trans. Cybern. – volume: 31 start-page: 761 year: 2014 ident: 10.1016/j.neucom.2016.12.038_bib129 article-title: DANN: a deep learning approach for annotating the pathogenicity of genetic variants publication-title: Bioinformatics doi: 10.1093/bioinformatics/btu703 – volume: 23 start-page: 1172 issue: 7 year: 2015 ident: 10.1016/j.neucom.2016.12.038_bib20 article-title: Multitask learning of deep neural networks for low-resource speech recognition publication-title: IEEE/ACM Trans. Audio, Speech, Lang. Process. – volume: 9 year: 2015 ident: 10.1016/j.neucom.2016.12.038_bib111 article-title: Convolutional neural network for multi-category rapid serial visual presentation BCI publication-title: Front. Comput. Neurosci. doi: 10.3389/fncom.2015.00146 – volume: 19 start-page: 153 year: 2007 ident: 10.1016/j.neucom.2016.12.038_bib13 article-title: Greedy layer-wise training of deep networks publication-title: Adv. Neural Inf. Process. Syst. – ident: 10.1016/j.neucom.2016.12.038_bib155 doi: 10.1145/1390156.1390294 – volume: 35 start-page: 3 issue: 1 year: 2015 ident: 10.1016/j.neucom.2016.12.038_bib50 article-title: 3D mesh labeling via deep convolutional neural networks publication-title: ACM Trans. Graph. (TOG) doi: 10.1145/2835487 – ident: 10.1016/j.neucom.2016.12.038_bib136 – volume: 38 start-page: 295 issue: 2 year: 2015 ident: 10.1016/j.neucom.2016.12.038_bib38 article-title: Image super-resolution using deep convolutional networks publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2015.2439281 – year: 2016 ident: 10.1016/j.neucom.2016.12.038_bib106 article-title: Event-triggered mean-square consensus control for time-varying stochastic multi-agent system with sensor saturations publication-title: IEEE Trans. Autom. Control – volume: 21 start-page: 1601 issue: 6 year: 2009 ident: 10.1016/j.neucom.2016.12.038_bib12 article-title: Justifying and generalizing contrastive divergence publication-title: Neural Comput. doi: 10.1162/neco.2008.11-07-647 – volume: 86 start-page: 650 issue: 4 year: 2013 ident: 10.1016/j.neucom.2016.12.038_bib69 article-title: Quantised recursive filtering for a class of nonlinear systems with multiplicative noises and missing measurements publication-title: Int. J. Control doi: 10.1080/00207179.2012.756149 – start-page: 1097 year: 2012 ident: 10.1016/j.neucom.2016.12.038_bib86 article-title: Imagenet classification with deep convolutional neural networks publication-title: Adv. Neural Inf. Process. Syst. 25 – volume: 65 start-page: 103 year: 2015 ident: 10.1016/j.neucom.2016.12.038_bib177 article-title: Deep neural network based image annotation publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2015.07.037 – volume: 32 start-page: 333 year: 2012 ident: 10.1016/j.neucom.2016.12.038_bib24 article-title: Multi-column deep neural network for traffic sign classification publication-title: Neural Netw. doi: 10.1016/j.neunet.2012.02.023 – ident: 10.1016/j.neucom.2016.12.038_bib133 – volume: 38 start-page: 1088 year: 2016 ident: 10.1016/j.neucom.2016.12.038_bib22 article-title: Cnntracker publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2015.06.048 – ident: 10.1016/j.neucom.2016.12.038_bib171 – ident: 10.1016/j.neucom.2016.12.038_bib23 doi: 10.1109/EMBC.2015.7318462 – volume: 32 start-page: 240 issue: 4 year: 2015 ident: 10.1016/j.neucom.2016.12.038_bib126 article-title: Machine learning in automatic speech recognition: a survey publication-title: IETE Tech. Rev. doi: 10.1080/02564602.2015.1010611 – year: 2006 ident: 10.1016/j.neucom.2016.12.038_bib14 – volume: 32 start-page: 1627 issue: 9 year: 2010 ident: 10.1016/j.neucom.2016.12.038_bib43 article-title: Object detection with discriminatively trained part-based models publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2009.167 – volume: 37 start-page: 1172 issue: 3 year: 2009 ident: 10.1016/j.neucom.2016.12.038_bib4 article-title: Does median filtering truly preserve edges better than linear filtering? publication-title: Ann. Stat. doi: 10.1214/08-AOS604 – ident: 10.1016/j.neucom.2016.12.038_bib88 doi: 10.1145/2699343.2699349 – volume: 521 start-page: 436 issue: 7553 year: 2015 ident: 10.1016/j.neucom.2016.12.038_bib91 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – volume: 26 start-page: 1493 year: 2013 ident: 10.1016/j.neucom.2016.12.038_bib2 article-title: Adaptive multi-column deep neural networks with application to robust image denoising publication-title: Adv. Neural Inf. Process. Syst. – volume: 64 start-page: 29 year: 2015 ident: 10.1016/j.neucom.2016.12.038_bib41 article-title: Expected energy-based restricted boltzmann machine for classification publication-title: Neural Netw. doi: 10.1016/j.neunet.2014.09.006 – volume: 85 start-page: 83 year: 2016 ident: 10.1016/j.neucom.2016.12.038_bib70 article-title: Transfer learning for short-term wind speed prediction with deep neural networks publication-title: Renew. Energy doi: 10.1016/j.renene.2015.06.034 – volume: 168 start-page: 408 year: 2015 ident: 10.1016/j.neucom.2016.12.038_bib176 article-title: Combining heterogeneous deep neural networks with conditional random fields for chinese dialogue act recognition publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.05.086 – year: 2013 ident: 10.1016/j.neucom.2016.12.038_bib113 publication-title: Fast Train. convolutional Netw. FFTs – volume: 197 start-page: 205 year: 2016 ident: 10.1016/j.neucom.2016.12.038_bib162 article-title: A new approach to non-fragile state estimation for continuous neural networks with time-delays publication-title: Neurocomputing doi: 10.1016/j.neucom.2016.02.062 – volume: 35 start-page: 1798 issue: 8 year: 2013 ident: 10.1016/j.neucom.2016.12.038_bib11 article-title: Representation learning: A review and new perspectives publication-title: IEEE Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2013.50 – volume: 268 start-page: 1158 issue: 5214 year: 1995 ident: 10.1016/j.neucom.2016.12.038_bib57 article-title: The “wake-sleep” algorithm for unsupervised neural networks publication-title: Science doi: 10.1126/science.7761831 – ident: 10.1016/j.neucom.2016.12.038_bib147 – year: 2012 ident: 10.1016/j.neucom.2016.12.038_bib30 article-title: Three classes of deep learning architectures and their applications: a tutorial survey publication-title: APSIPA Trans. Signal Inf. Process. – year: 2014 ident: 10.1016/j.neucom.2016.12.038_bib144 article-title: Image processing, analysis, and machine vision publication-title: Cengage Learn. – volume: 64 start-page: 49 year: 2015 ident: 10.1016/j.neucom.2016.12.038_bib49 article-title: Frame-by-frame language identification in short utterances using deep neural networks publication-title: Neural Netw. doi: 10.1016/j.neunet.2014.08.006 – volume: 32 start-page: 35 issue: 3 year: 2015 ident: 10.1016/j.neucom.2016.12.038_bib101 article-title: Deep learning for acoustic modeling in parametric speech generation: a systematic review of existing techniques and future trends publication-title: IEEE Signal Process. Mag. doi: 10.1109/MSP.2014.2359987 – volume: 28 start-page: 145 issue: 1 year: 2011 ident: 10.1016/j.neucom.2016.12.038_bib165 article-title: Deep learning and its applications to signal and information processing [exploratory dsp] publication-title: IEEE Signal Process. Mag. doi: 10.1109/MSP.2010.939038 – ident: 10.1016/j.neucom.2016.12.038_bib42 doi: 10.1109/EMBC.2015.7318454 – volume: 214 start-page: 340 year: 2016 ident: 10.1016/j.neucom.2016.12.038_bib142 article-title: Recursive approach to networked fault estimation with packet dropouts and randomly occurring uncertainties publication-title: Neurocomputing doi: 10.1016/j.neucom.2016.06.016 – start-page: 3 year: 1994 ident: 10.1016/j.neucom.2016.12.038_bib61 article-title: Autoencoders, minimum description length, and Helmholtz free energy publication-title: Adv. Neural Inf. Process. Syst. – volume: 22 start-page: 1671 issue: 10 year: 2015 ident: 10.1016/j.neucom.2016.12.038_bib132 article-title: Deep neural network approaches to speaker and language recognition publication-title: IEEE Signal Process. Lett. doi: 10.1109/LSP.2015.2420092 – volume: 60 start-page: 2470 issue: 9 year: 2015 ident: 10.1016/j.neucom.2016.12.038_bib103 article-title: Event-based recursive distributed filtering over wireless sensor networks publication-title: IEEE Trans. Autom. Control doi: 10.1109/TAC.2015.2390554 – volume: 3361 issue: 10 year: 1995 ident: 10.1016/j.neucom.2016.12.038_bib90 article-title: Convolutional networks for images, speech, and time series publication-title: Handb. brain Theory Neural Netw. – year: 2013 ident: 10.1016/j.neucom.2016.12.038_bib110 publication-title: K.-sparse autoencoders – volume: 23 start-page: 1938 issue: 11 year: 2015 ident: 10.1016/j.neucom.2016.12.038_bib114 article-title: Speaker adaptive training of deep neural network acoustic models using I-vectors publication-title: IEEE/ACM Trans. Audio, Speech, Lang. Process. doi: 10.1109/TASLP.2015.2457612 – ident: 10.1016/j.neucom.2016.12.038_bib115 – ident: 10.1016/j.neucom.2016.12.038_bib138 – ident: 10.1016/j.neucom.2016.12.038_bib127 doi: 10.1109/EMBC.2015.7318458 – volume: 9 start-page: 203 issue: 2 year: 2015 ident: 10.1016/j.neucom.2016.12.038_bib168 article-title: Finite frequency property-based robust control for singularly perturbed system publication-title: IET Control Theory Appl. doi: 10.1049/iet-cta.2013.0854 – volume: 36 start-page: 260 year: 2016 ident: 10.1016/j.neucom.2016.12.038_bib6 article-title: Data driven articulatory synthesis with deep neural networks publication-title: Comput. Speech Lang. doi: 10.1016/j.csl.2015.02.003 – volume: 136 start-page: 117 year: 2015 ident: 10.1016/j.neucom.2016.12.038_bib158 article-title: Pose estimation-dependent identification method for field moth images using deep learning architecture publication-title: Biosyst. Eng. doi: 10.1016/j.biosystemseng.2015.06.002 – volume: 32 start-page: 294 issue: 4 year: 2015 ident: 10.1016/j.neucom.2016.12.038_bib100 article-title: An image retrieval method for binary images based on DBN and Softmax classifier publication-title: IETE Tech. Rev. doi: 10.1080/02564602.2015.1015631 – volume: 175 start-page: 310 year: 2016 ident: 10.1016/j.neucom.2016.12.038_bib159 article-title: Regional deep learning model for visual tracking publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.10.064 – volume: 171 start-page: 1205 year: 2016 ident: 10.1016/j.neucom.2016.12.038_bib19 article-title: Fast learning in deep neural networks publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.07.093 – volume: 77 start-page: 37 issue: 1 year: 2016 ident: 10.1016/j.neucom.2016.12.038_bib108 article-title: Robust filtering for a class of nonlinear stochastic systems with probability constraints publication-title: Autom. Remote Control doi: 10.1134/S0005117916010033 – volume: 53 start-page: 1174 issue: 3 year: 2015 ident: 10.1016/j.neucom.2016.12.038_bib150 article-title: Compressed-domain ship detection on spaceborne optical image using deep neural network and extreme learning machine publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2014.2335751 – volume: 61 start-page: 85 year: 2015 ident: 10.1016/j.neucom.2016.12.038_bib137 article-title: Deep learning in neural networks: an overview publication-title: Neural Netw. doi: 10.1016/j.neunet.2014.09.003 – year: 2016 ident: 10.1016/j.neucom.2016.12.038_bib109 article-title: Mean-square H∞ consensus control for a class of nonlinear time-varying stochastic multiagent systems: the finite-horizon case publication-title: IEEE Trans. Syst., Man Cybern.: Syst. – volume: 5 start-page: 13 issue: 4 year: 2010 ident: 10.1016/j.neucom.2016.12.038_bib3 article-title: Deep machine learning-a new frontier in artificial intelligence research [research frontier] publication-title: IEEE Comput. Intell. Mag. doi: 10.1109/MCI.2010.938364 – volume: 27 start-page: 125 issue: 1 year: 2016 ident: 10.1016/j.neucom.2016.12.038_bib48 article-title: Change detection in synthetic aperture radar images based on deep neural networks publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2015.2435783 – volume: 43 start-page: 387 issue: 3–4 year: 2014 ident: 10.1016/j.neucom.2016.12.038_bib64 article-title: State estimation for a class of discrete nonlinear systems with randomly occurring uncertainties and distributed sensor delays publication-title: Int. J. Gen. Syst. doi: 10.1080/03081079.2014.892251 – volume: 46 start-page: 487 issue: 2 year: 2015 ident: 10.1016/j.neucom.2016.12.038_bib52 article-title: Two-stage learning to predict human eye fixations via SADEs publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2015.2404432 – volume: 125 start-page: 17 year: 2014 ident: 10.1016/j.neucom.2016.12.038_bib167 article-title: Delay-dependent stability criteria for time-varying delay neural networks in the delta domain publication-title: Neurocomputing doi: 10.1016/j.neucom.2012.09.040 – volume: 36 start-page: 193 issue: 4 year: 1980 ident: 10.1016/j.neucom.2016.12.038_bib46 article-title: Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position publication-title: Biol. Cybern. doi: 10.1007/BF00344251 – volume: 175 start-page: 427 year: 2016 ident: 10.1016/j.neucom.2016.12.038_bib131 article-title: Local visual feature fusion via maximum margin multimodal deep neural network publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.10.076 – volume: 86 start-page: 2278 issue: 11 year: 1998 ident: 10.1016/j.neucom.2016.12.038_bib92 article-title: Gradient-based learning applied to document recognition publication-title: Proc. IEEE doi: 10.1109/5.726791 – volume: 26 start-page: 75 issue: 3 year: 2009 ident: 10.1016/j.neucom.2016.12.038_bib7 article-title: Developments and directions in speech recognition and understanding [dsp education] publication-title: IEEE Trans. Signal Process. Mag. doi: 10.1109/MSP.2009.932166 – ident: 10.1016/j.neucom.2016.12.038_bib135 doi: 10.1109/ASRU.2013.6707746 – ident: 10.1016/j.neucom.2016.12.038_bib26 doi: 10.1145/1390156.1390177 – ident: 10.1016/j.neucom.2016.12.038_bib139 doi: 10.1109/ICASSP.2015.7178918 – volume: 20 start-page: 14 issue: 1 year: 2012 ident: 10.1016/j.neucom.2016.12.038_bib116 article-title: Acoustic modeling using deep belief networks publication-title: IEEE Trans. Audio, Speech, Lang. Process. doi: 10.1109/TASL.2011.2109382 – volume: 29 start-page: 82 issue: 6 year: 2012 ident: 10.1016/j.neucom.2016.12.038_bib58 article-title: Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups publication-title: Signal Process. Mag., IEEE doi: 10.1109/MSP.2012.2205597 – volume: 103 start-page: 1379 issue: 8 year: 2015 ident: 10.1016/j.neucom.2016.12.038_bib75 article-title: Memory and information processing in neuromorphic systems publication-title: Proc. IEEE doi: 10.1109/JPROC.2015.2444094 – volume: 13 start-page: 8 issue: 1 year: 2015 ident: 10.1016/j.neucom.2016.12.038_bib85 article-title: Human detection and activity classification based on micro-doppler signatures using deep convolutional neural networks publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2015.2491329 – volume: 23 start-page: 1661 issue: 7 year: 2011 ident: 10.1016/j.neucom.2016.12.038_bib154 article-title: A connection between score matching and denoising autoencoders publication-title: Neural Comput. doi: 10.1162/NECO_a_00142 – start-page: 52 year: 2011 ident: 10.1016/j.neucom.2016.12.038_bib112 article-title: Stacked convolutional auto-encoders for hierarchical feature extraction publication-title: Artif. Neural Netw. Mach. Learn.-ICANN 2011 doi: 10.1007/978-3-642-21735-7_7 – volume: 64 start-page: 39 year: 2015 ident: 10.1016/j.neucom.2016.12.038_bib134 article-title: Deep convolutional neural networks for large-scale speech tasks publication-title: Neural Netw. doi: 10.1016/j.neunet.2014.08.005 – ident: 10.1016/j.neucom.2016.12.038_bib152 doi: 10.1109/CVPR.2012.6247936 – volume: 45 start-page: 619 issue: 5 year: 2016 ident: 10.1016/j.neucom.2016.12.038_bib65 article-title: On co-design of filter and fault estimator against randomly occurring nonlinearities and randomly occurring deception attacks publication-title: Int. J. Gen. Syst. doi: 10.1080/03081079.2015.1106730 – volume: 6 issue: 19133 year: 2016 ident: 10.1016/j.neucom.2016.12.038_bib97 article-title: Temperature based restricted Boltzmann machines publication-title: Sci. Rep. – volume: 13 start-page: 1425 issue: 6 year: 2015 ident: 10.1016/j.neucom.2016.12.038_bib169 article-title: Resilient control in the presence of DoS Attack: switched system approach publication-title: Int. J. Control, Autom., Syst. doi: 10.1007/s12555-014-0261-7 – volume: 11 start-page: 3371 year: 2010 ident: 10.1016/j.neucom.2016.12.038_bib156 article-title: Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion publication-title: J. Mach. Learn. Res. – volume: 22 start-page: 1713 issue: 12 year: 2014 ident: 10.1016/j.neucom.2016.12.038_bib161 article-title: Fast adaptation of deep neural network based on discriminant codes for speech recognition publication-title: IEEE/ACM Trans. Audio, Speech, Lang. Process. doi: 10.1109/TASLP.2014.2346313 – volume: 42 start-page: 722 issue: 4 year: 2015 ident: 10.1016/j.neucom.2016.12.038_bib125 article-title: Audio-visual speech recognition using deep learning publication-title: Appl. Intell. doi: 10.1007/s10489-014-0629-7 – start-page: 1339 year: 2009 ident: 10.1016/j.neucom.2016.12.038_bib121 article-title: 3D object recognition with deep belief nets publication-title: Adv. Neural Inf. Process. Syst. – ident: 10.1016/j.neucom.2016.12.038_bib44 doi: 10.1145/2647868.2654902 – ident: 10.1016/j.neucom.2016.12.038_bib98 doi: 10.1109/CVPRW.2014.78 – volume: 6 start-page: 21 issue: 2 year: 2015 ident: 10.1016/j.neucom.2016.12.038_bib149 article-title: A real-time hand posture recognition system using deep neural networks publication-title: ACM Trans. Intell. Syst. Technol. (TIST) – volume: 24 start-page: 5659 issue: 12 year: 2015 ident: 10.1016/j.neucom.2016.12.038_bib62 article-title: Multimodal deep autoencoder for human pose recovery publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2015.2487860 – volume: 18 start-page: 1527 issue: 7 year: 2006 ident: 10.1016/j.neucom.2016.12.038_bib59 article-title: A fast learning algorithm for deep belief nets publication-title: Neural Comput. doi: 10.1162/neco.2006.18.7.1527 – ident: 10.1016/j.neucom.2016.12.038_bib93 doi: 10.1109/CVPR.2004.1315150 – ident: 10.1016/j.neucom.2016.12.038_bib94 doi: 10.1145/1553374.1553453 – ident: 10.1016/j.neucom.2016.12.038_bib16 doi: 10.1109/ICCV.2011.6126555 – volume: 12 start-page: 1025 year: 2011 ident: 10.1016/j.neucom.2016.12.038_bib153 article-title: Two distributed-state models for generating high-dimensional time series publication-title: J. Mach. Learn. Res. – ident: 10.1016/j.neucom.2016.12.038_bib29 doi: 10.1109/CVPR.2009.5206848 – volume: 8 start-page: 143 issue: 2 year: 2016 ident: 10.1016/j.neucom.2016.12.038_bib172 article-title: A novel switching delayed PSO algorithm for estimating unknown parameters of lateral flow immunoassay publication-title: Cogn. Comput. doi: 10.1007/s12559-016-9396-6 – ident: 10.1016/j.neucom.2016.12.038_bib123 – volume: 31 issue: 1 year: 2014 ident: 10.1016/j.neucom.2016.12.038_bib141 article-title: Subjective and objective analysis of speech enhancement algorithms for single channel speech patterns of indian and english languages publication-title: IETE Tech. Rev. doi: 10.1080/02564602.2014.890840 – volume: 22 start-page: 1096 year: 2009 ident: 10.1016/j.neucom.2016.12.038_bib95 article-title: Unsupervised feature learning for audio classification using convolutional deep belief networks publication-title: Adv. Neural Inf. Process. Syst. – volume: 170 start-page: 251 year: 2015 ident: 10.1016/j.neucom.2016.12.038_bib99 article-title: A comparative study on selecting acoustic modeling units in deep neural networks based large vocabulary chinese speech recognition publication-title: Neurocomputing doi: 10.1016/j.neucom.2014.07.087 – ident: 10.1016/j.neucom.2016.12.038_bib18 – ident: 10.1016/j.neucom.2016.12.038_bib33 doi: 10.1109/ICASSP.2013.6639345 – volume: 179 start-page: 238 year: 2016 ident: 10.1016/j.neucom.2016.12.038_bib63 article-title: Non-fragile state estimation for discrete Markovian jumping neural networks publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.11.089 – ident: 10.1016/j.neucom.2016.12.038_bib47 – start-page: 2846 year: 2010 ident: 10.1016/j.neucom.2016.12.038_bib118 article-title: Investigation of full-sequence training of deep belief networks for speech recognition publication-title: INTERSPEECH doi: 10.21437/Interspeech.2010-304 – volume: 29 start-page: 102 issue: 4 year: 2010 ident: 10.1016/j.neucom.2016.12.038_bib80 article-title: Learning 3D mesh segmentation and labeling publication-title: ACM Trans. Graph. (TOG) doi: 10.1145/1778765.1778839 – volume: 39 start-page: 1677 issue: 7 year: 1991 ident: 10.1016/j.neucom.2016.12.038_bib32 article-title: Phonemic hidden markov models with continuous mixture output densities for large vocabulary word recognition publication-title: IEEE Trans. Signal Process. doi: 10.1109/78.134406 – ident: 10.1016/j.neucom.2016.12.038_bib74 – ident: 10.1016/j.neucom.2016.12.038_bib71 doi: 10.1109/ICASSP.2013.6639081 – ident: 10.1016/j.neucom.2016.12.038_bib76 doi: 10.1109/ICASSP.2011.5947700 – volume: 18 start-page: 1 issue: 1 year: 2015 ident: 10.1016/j.neucom.2016.12.038_bib84 article-title: Handwritten hangul recognition using deep convolutional neural networks publication-title: Int. J. Doc. Anal. Recognit. (IJDAR) doi: 10.1007/s10032-014-0229-4 – volume: 182 start-page: 18 year: 2016 ident: 10.1016/j.neucom.2016.12.038_bib166 article-title: Design of non-fragile state estimators for discrete time-delayed neural networks with parameter uncertainties publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.11.079 – volume: 59 start-page: 291 issue: 4–5 year: 1988 ident: 10.1016/j.neucom.2016.12.038_bib15 article-title: Auto-association by multilayer perceptrons and singular value decomposition publication-title: Biol. Cybern. doi: 10.1007/BF00332918 – volume: 22 start-page: 229 issue: 2 year: 2015 ident: 10.1016/j.neucom.2016.12.038_bib81 article-title: NMF-based target source separation using deep neural network publication-title: IEEE Signal Process. Lett. doi: 10.1109/LSP.2014.2354456 – start-page: 2553 year: 2013 ident: 10.1016/j.neucom.2016.12.038_bib148 article-title: Deep neural networks for object detection publication-title: Adv. Neural Inf. Process. Syst. – volume: 12 start-page: 2448 issue: 12 year: 2015 ident: 10.1016/j.neucom.2016.12.038_bib105 article-title: Multiview deep learning for land-use classification publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2015.2483680 – ident: 10.1016/j.neucom.2016.12.038_bib89 doi: 10.1145/1390156.1390224 – ident: 10.1016/j.neucom.2016.12.038_bib77 doi: 10.1109/ICCV.2009.5459469 – volume: 175 start-page: 392 year: 2016 ident: 10.1016/j.neucom.2016.12.038_bib163 article-title: Almost sure H∞ sliding mode control for nonlinear stochastic systems with Markovian switching and time-delays publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.10.071 – start-page: 599 year: 2012 ident: 10.1016/j.neucom.2016.12.038_bib55 article-title: A practical guide to training restricted Boltzmann machines publication-title: Neural Netw.: Tricks Trade – volume: 46 start-page: 139 year: 2016 ident: 10.1016/j.neucom.2016.12.038_bib1 article-title: Breast cancer classification using deep belief networks publication-title: Exp. Syst. Appl. doi: 10.1016/j.eswa.2015.10.015 – volume: 20 start-page: 7 issue: 1 year: 2012 ident: 10.1016/j.neucom.2016.12.038_bib120 article-title: Deep and wide: multiple layers in automatic speech recognition publication-title: IEEE Trans. Audio, Speech, Lang. Process. doi: 10.1109/TASL.2011.2116010 – year: 1982 ident: 10.1016/j.neucom.2016.12.038_bib8 – volume: 34 start-page: 98 issue: 4 year: 2015 ident: 10.1016/j.neucom.2016.12.038_bib9 article-title: Learning visual similarity for product design with convolutional neural networks publication-title: ACM Trans. Graph. (TOG) doi: 10.1145/2766959 – ident: 10.1016/j.neucom.2016.12.038_bib82 doi: 10.1145/2157689.2157740 – ident: 10.1016/j.neucom.2016.12.038_bib53 – volume: 160 start-page: 106 issue: 1 year: 1962 ident: 10.1016/j.neucom.2016.12.038_bib73 article-title: Receptive fields, binocular interaction and functional architecture in the cat's visual cortex publication-title: J. Physiol. doi: 10.1113/jphysiol.1962.sp006837 – ident: 10.1016/j.neucom.2016.12.038_bib35 doi: 10.21437/Interspeech.2011-607 – volume: 60 start-page: 2553 issue: 9 year: 2015 ident: 10.1016/j.neucom.2016.12.038_bib102 article-title: Event-based H∞ consensus control of multi-agent systems with relative output feedback: the finite-horizon case publication-title: IEEE Trans. Autom. Control doi: 10.1109/TAC.2015.2394872 – ident: 10.1016/j.neucom.2016.12.038_bib36 – start-page: 477 year: 2011 ident: 10.1016/j.neucom.2016.12.038_bib5 article-title: An introduction to deep learning publication-title: ESANN – volume: 14 start-page: 1771 issue: 8 year: 2002 ident: 10.1016/j.neucom.2016.12.038_bib56 article-title: Training products of experts by minimizing contrastive divergence publication-title: Neural Comput. doi: 10.1162/089976602760128018 – volume: 3 start-page: e2 year: 2014 ident: 10.1016/j.neucom.2016.12.038_bib31 article-title: A tutorial survey of architectures, algorithms, and applications for deep learning publication-title: APSIPA Trans. Signal Inf. Process. doi: 10.1017/atsip.2013.9 – volume: 32 start-page: 307 issue: 2 year: 1986 ident: 10.1016/j.neucom.2016.12.038_bib79 article-title: Maximum likelihood estimation for multivariate mixture observations of markov chains (corresp.) publication-title: IEEE Trans. Inf. Theory doi: 10.1109/TIT.1986.1057145 – ident: 10.1016/j.neucom.2016.12.038_bib78 doi: 10.1109/CVPR.2012.6248076 – volume: 42 start-page: 105 year: 2015 ident: 10.1016/j.neucom.2016.12.038_bib39 article-title: Adaptive cascade deep convolutional neural networks for face alignment publication-title: Comput. Stand. Interfaces doi: 10.1016/j.csi.2015.06.004 – volume: 48 start-page: 2847 issue: 9 year: 2015 ident: 10.1016/j.neucom.2016.12.038_bib96 article-title: IODA: an input/output deep architecture for image labeling publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2015.03.017 – volume: 529 start-page: 484 issue: 7587 year: 2016 ident: 10.1016/j.neucom.2016.12.038_bib140 article-title: Mastering the game of go with deep neural networks and tree search publication-title: Nature doi: 10.1038/nature16961 – volume: 216 start-page: 657 year: 2016 ident: 10.1016/j.neucom.2016.12.038_bib175 article-title: Passivity analysis for discrete-time neural networks with mixed time-delays and randomly occurring quantization effects publication-title: Neurocomputing doi: 10.1016/j.neucom.2016.08.020 – ident: 10.1016/j.neucom.2016.12.038_bib119 doi: 10.1109/ICASSP.2011.5947494 – ident: 10.1016/j.neucom.2016.12.038_bib40 – volume: 31 start-page: 65 issue: 1 year: 2015 ident: 10.1016/j.neucom.2016.12.038_bib164 article-title: Environmentally robust asr front-end for deep neural network acoustic models publication-title: Comput. Speech Lang. doi: 10.1016/j.csl.2014.11.008 – ident: 10.1016/j.neucom.2016.12.038_bib104 doi: 10.1109/TSP.2016.2634541 – ident: 10.1016/j.neucom.2016.12.038_bib87 – volume: 7 start-page: 14680 issue: 11 year: 2015 ident: 10.1016/j.neucom.2016.12.038_bib66 article-title: Transferring deep convolutional neural networks for the scene classification of high-resolution remote sensing imagery publication-title: Remote Sens. doi: 10.3390/rs71114680 – volume: 24 start-page: 93 issue: 1 year: 2016 ident: 10.1016/j.neucom.2016.12.038_bib146 article-title: Unseen noise estimation using separable deep auto encoder for speech enhancement publication-title: IEEE/ACM Trans. Audio, Speech, Lang. Process. doi: 10.1109/TASLP.2015.2498101 – volume: 313 start-page: 504 issue: 5786 year: 2006 ident: 10.1016/j.neucom.2016.12.038_bib60 article-title: Reducing the dimensionality of data with neural networks publication-title: Science doi: 10.1126/science.1127647 – volume: 59 start-page: 112204 issue: 11 year: 2016 ident: 10.1016/j.neucom.2016.12.038_bib174 article-title: Inferring nonlinear lateral flow immunoassay state-space models via an unscented Kalman filter publication-title: Sci. China Inf. Sci. doi: 10.1007/s11432-016-0280-9 – volume: 74 start-page: 9889 issue: 22 year: 2015 ident: 10.1016/j.neucom.2016.12.038_bib160 article-title: Acoustic to articulatory mapping with deep neural network publication-title: Multimed. Tools Appl. doi: 10.1007/s11042-014-2183-z – volume: 64 start-page: 155 year: 2016 ident: 10.1016/j.neucom.2016.12.038_bib68 article-title: A variance-constrained approach to recursive state estimation for time-varying complex networks with missing measurements publication-title: Automatica doi: 10.1016/j.automatica.2015.11.008 – volume: 74 start-page: 9871 issue: 22 year: 2015 ident: 10.1016/j.neucom.2016.12.038_bib37 article-title: Head motion synthesis from speech using deep neural networks publication-title: Multimed. Tools Appl. doi: 10.1007/s11042-014-2156-2 – volume: 16 start-page: 17315 issue: 8 year: 2015 ident: 10.1016/j.neucom.2016.12.038_bib157 article-title: DeepCNF-D: predicting protein order/disorder regions by weighted deep convolutional neural fields publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms160817315 – volume: 23 start-page: 1469 issue: 9 year: 2015 ident: 10.1016/j.neucom.2016.12.038_bib27 article-title: Data augmentation for deep neural network acoustic modeling publication-title: IEEE/ACM Trans. Audio, Speech Lang. Process. (TASLP) doi: 10.1109/TASLP.2015.2438544 – volume: 2 start-page: 1 issue: 1 year: 2015 ident: 10.1016/j.neucom.2016.12.038_bib122 article-title: Deep learning applications and challenges in big data analytics publication-title: J. Big Data doi: 10.1186/s40537-014-0007-7 – ident: 10.1016/j.neucom.2016.12.038_bib124 doi: 10.1109/CVPR.2015.7298640 – volume: 8 start-page: 684 issue: 4 year: 2016 ident: 10.1016/j.neucom.2016.12.038_bib173 article-title: Deep belief networks for quantitative analysis of a gold immunochromatographic strip publication-title: Cogn. Comput. doi: 10.1007/s12559-016-9404-x – volume: 31 start-page: 65 year: 2016 ident: 10.1016/j.neucom.2016.12.038_bib67 article-title: Estimation, filtering and fusion for networked systems with network-induced phenomena: New progress and prospects publication-title: Inf. Fusion doi: 10.1016/j.inffus.2016.01.001 – volume: 32 start-page: 190 issue: 6 year: 2013 ident: 10.1016/j.neucom.2016.12.038_bib72 article-title: Fine-grained semi-supervised labeling of large shape collections publication-title: ACM Trans. Graph. (TOG) doi: 10.1145/2508363.2508364 – volume: 124 start-page: 127 year: 2016 ident: 10.1016/j.neucom.2016.12.038_bib83 article-title: Deep neural network with weight sparsity control and pre-training extracts hierarchical features and enhances classification performance: Evidence from whole-brain resting-state functional connectivity patterns of schizophrenia publication-title: NeuroImage doi: 10.1016/j.neuroimage.2015.05.018 – volume: 77 start-page: 257 issue: 2 year: 1989 ident: 10.1016/j.neucom.2016.12.038_bib130 article-title: A tutorial on hidden markov models and selected applications in speech recognition publication-title: Proc. IEEE doi: 10.1109/5.18626 – ident: 10.1016/j.neucom.2016.12.038_bib145 – volume: 171 start-page: 444 year: 2016 ident: 10.1016/j.neucom.2016.12.038_bib143 article-title: Resilisent finite-time stabilization of fuzzy stochastic systems with randomly occurring uncertainities and randomly occurring gain fluctuations publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.06.054 – ident: 10.1016/j.neucom.2016.12.038_bib45 – ident: 10.1016/j.neucom.2016.12.038_bib25 doi: 10.1109/CVPR.2012.6248110 – volume: 4 start-page: 345 issue: 4 year: 1990 ident: 10.1016/j.neucom.2016.12.038_bib34 article-title: Large vocabulary word recognition using context-dependent allophonic hidden markov models publication-title: Comput. Speech Lang. doi: 10.1016/0885-2308(90)90015-X – volume: 59 start-page: 1 issue: 7 year: 2016 ident: 10.1016/j.neucom.2016.12.038_bib21 article-title: Pinning controllability of autonomous Boolean control networks publication-title: Sci. China Inf. Sci. doi: 10.1007/s11432-016-5579-8 – start-page: 1137 year: 2006 ident: 10.1016/j.neucom.2016.12.038_bib128 article-title: Efficient learning of sparse representations with an energy-based model publication-title: Adv. Neural Inf. Process. Syst. – ident: 10.1016/j.neucom.2016.12.038_bib151 – ident: 10.1016/j.neucom.2016.12.038_bib54 doi: 10.1109/EMBC.2015.7318984 – volume: 1 start-page: 39 issue: 9 year: 2009 ident: 10.1016/j.neucom.2016.12.038_bib117 article-title: Deep belief networks for phone recognition publication-title: Nips Workshop Deep Learn. Speech Recognit. Relat. Appl. – ident: 10.1016/j.neucom.2016.12.038_bib170 doi: 10.1109/TII.2016.2542208 – volume: 20 start-page: 30 issue: 1 year: 2012 ident: 10.1016/j.neucom.2016.12.038_bib28 article-title: Context-dependent pre-trained deep neural networks for large-vocabulary speech recognition publication-title: IEEE Trans. Audio, Speech, Lang. Process. doi: 10.1109/TASL.2011.2134090 – volume: 2 start-page: 1 issue: 1 year: 2009 ident: 10.1016/j.neucom.2016.12.038_bib10 article-title: Learning deep architectures for AI publication-title: Found. Trends Mach. Learn. doi: 10.1561/2200000006 – ident: 10.1016/j.neucom.2016.12.038_bib17 – ident: 10.1016/j.neucom.2016.12.038_bib51 |
| SSID | ssj0017129 |
| Score | 2.6903508 |
| Snippet | Since the proposal of a fast learning algorithm for deep belief networks in 2006, the deep learning techniques have drawn ever-increasing research interests... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 11 |
| SubjectTerms | Autoencoder Convolutional neural network Deep belief network Deep learning Restricted Boltzmann machine |
| Title | A survey of deep neural network architectures and their applications |
| URI | https://dx.doi.org/10.1016/j.neucom.2016.12.038 |
| Volume | 234 |
| WOSCitedRecordID | wos000395221800002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1872-8286 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017129 issn: 0925-2312 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6FlAMXKC9RaNEeuEVG9fqxm6PVFgGqIiQKirhYXu-scNXaURJH5d939mHHEMRL4mJZ1m6ymvn87Xh2HoS8YkiAcVyIAFLOg1gWyIOpZIYM01BpwcG6Bj6f89lMzOfTD6NR2-XCbK54XYubm-niv6oan6GyTersX6i7_1F8gPeodLyi2vH6R4rPJqt2uQF7cq4AFhNTshIVUbuA78nw6GDVBVBWy8nwKHtostryHaVt_uDdCtm1qa6gDJR6N8J51dpwPahks3XSOyL5UqnGb5DbkfOqaL62Ve-4Bjd2hnD95quBe2cEbnCm6uGW8nazZJyrkSUB2pGOdcERreDMprAPmZh5v6bjUk_Cbld2afU7fO9cD5evUZIm-AeXlFrvrqsY80Ml7Y9mIWYdaIOadknRHbLHeDIVY7KXvTubv--Pn3jIXJFGv_Au59IGBu7-189tmoGdcrFP7vsPDJo5YDwkI6gfkQdd8w7qufwxOc2owwltNDU4oQ4n1OOEfocTijihFid0iJMn5NObs4uTt4FvqRGU-G24xk0XbRYd8TJMExmWrORFGIljAULpQqaRkioFIWGaAsSgS3xdmcaxSmhAyzyKnpJx3dTwjFDJueQpB6nKJFYJiCTRoI9NgK-QaFcfkKgTSl76evOm7clV3gUWXuZOlLkRZR6yHEV5QIJ-1sLVW_nNeN7JO_c2o7MFc4TIL2c-_-eZL8i9LfYPyXi9bOGI3C0362q1fOmxdAs1iJMG |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+survey+of+deep+neural+network+architectures+and+their+applications&rft.jtitle=Neurocomputing+%28Amsterdam%29&rft.au=Liu%2C+Weibo&rft.au=Wang%2C+Zidong&rft.au=Liu%2C+Xiaohui&rft.au=Zeng%2C+Nianyin&rft.date=2017-04-19&rft.pub=Elsevier+B.V&rft.issn=0925-2312&rft.eissn=1872-8286&rft.volume=234&rft.spage=11&rft.epage=26&rft_id=info:doi/10.1016%2Fj.neucom.2016.12.038&rft.externalDocID=S0925231216315533 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-2312&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-2312&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-2312&client=summon |