A LiDAR based obstacle detection framework for railway

Obstacle detection on the railway, a crucial operational safety concern, is a complex task that encompasses a multitude of challenges. While Machine Learning (ML) algorithms are commonly employed in analogous applications such as autonomous car driving [1] [2], the railway field faces a significant...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:EPJ Web of conferences Jg. 305; S. 27
Hauptverfasser: Dias, Susana, Sousa, Pedro, Afonso, Francisco, Viriato, Nuno, Tavares, Paulo, Moreira, Pedro
Format: Journal Article Tagungsbericht
Sprache:Englisch
Veröffentlicht: Les Ulis EDP Sciences 01.01.2024
Schlagworte:
ISSN:2100-014X, 2101-6275, 2100-014X
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Obstacle detection on the railway, a crucial operational safety concern, is a complex task that encompasses a multitude of challenges. While Machine Learning (ML) algorithms are commonly employed in analogous applications such as autonomous car driving [1] [2], the railway field faces a significant barrier due to the scarcity of available data (particularly images), rendering conventional ML approaches impractical. In response to this challenge, this study proposes and evaluates a framework which uses LiDAR (Light Detection and Ranging) data for obstacle detection on the railways. The framework aims to address the limitations posed by image data scarcity while enhancing operational safety in railway environments. The developed methodology combines the use of a long-range LiDAR capable of detecting obstacles at distances of up to 500 meters, with the train’s GPS (Global Positioning System) coordinates to accurately determine its position relative to detected obstacles. The LiDAR data is processed using a data fusion approach, where pre-existing knowledge regarding the track topography is combined with a clustering algorithm, specifically DBSCAN (Density-based spatial clustering of applications with noise), to identify and classify potential obstacles at a pre-defined distance. Tests of the proposed framework were conducted within the confines of a moving locomotive, specifically the CP 2600-2620 series, along a designated section of the Contumil-Leixões line. These tests served to validate the effectiveness and feasibility of the approach under real-world operating conditions. Overall, the utilization of LiDAR data coupled with advanced algorithms presents a promising avenue for enhancing obstacle detection capabilities in railway operations. By overcoming the challenges associated with data scarcity, this framework holds the potential to significantly improve operational safety and efficiency within railway networks. Further research and testing are warranted to validate the framework’s performance across diverse railway environments and operating conditions.
AbstractList Obstacle detection on the railway, a crucial operational safety concern, is a complex task that encompasses a multitude of challenges. While Machine Learning (ML) algorithms are commonly employed in analogous applications such as autonomous car driving [1] [2], the railway field faces a significant barrier due to the scarcity of available data (particularly images), rendering conventional ML approaches impractical. In response to this challenge, this study proposes and evaluates a framework which uses LiDAR (Light Detection and Ranging) data for obstacle detection on the railways. The framework aims to address the limitations posed by image data scarcity while enhancing operational safety in railway environments. The developed methodology combines the use of a long-range LiDAR capable of detecting obstacles at distances of up to 500 meters, with the train’s GPS (Global Positioning System) coordinates to accurately determine its position relative to detected obstacles. The LiDAR data is processed using a data fusion approach, where pre-existing knowledge regarding the track topography is combined with a clustering algorithm, specifically DBSCAN (Density-based spatial clustering of applications with noise), to identify and classify potential obstacles at a pre-defined distance. Tests of the proposed framework were conducted within the confines of a moving locomotive, specifically the CP 2600-2620 series, along a designated section of the Contumil-Leixões line. These tests served to validate the effectiveness and feasibility of the approach under real-world operating conditions. Overall, the utilization of LiDAR data coupled with advanced algorithms presents a promising avenue for enhancing obstacle detection capabilities in railway operations. By overcoming the challenges associated with data scarcity, this framework holds the potential to significantly improve operational safety and efficiency within railway networks. Further research and testing are warranted to validate the framework’s performance across diverse railway environments and operating conditions.
Obstacle detection on the railway, a crucial operational safety concern, is a complex task that encompasses a multitude of challenges. While Machine Learning (ML) algorithms are commonly employed in analogous applications such as autonomous car driving [1] [2], the railway field faces a significant barrier due to the scarcity of available data (particularly images), rendering conventional ML approaches impractical.In response to this challenge, this study proposes and evaluates a framework which uses LiDAR (Light Detection and Ranging) data for obstacle detection on the railways. The framework aims to address the limitations posed by image data scarcity while enhancing operational safety in railway environments.The developed methodology combines the use of a long-range LiDAR capable of detecting obstacles at distances of up to 500 meters, with the train’s GPS (Global Positioning System) coordinates to accurately determine its position relative to detected obstacles. The LiDAR data is processed using a data fusion approach, where pre-existing knowledge regarding the track topography is combined with a clustering algorithm, specifically DBSCAN (Density-based spatial clustering of applications with noise), to identify and classify potential obstacles at a pre-defined distance.Tests of the proposed framework were conducted within the confines of a moving locomotive, specifically the CP 2600-2620 series, along a designated section of the Contumil-Leixões line. These tests served to validate the effectiveness and feasibility of the approach under real-world operating conditions.Overall, the utilization of LiDAR data coupled with advanced algorithms presents a promising avenue for enhancing obstacle detection capabilities in railway operations. By overcoming the challenges associated with data scarcity, this framework holds the potential to significantly improve operational safety and efficiency within railway networks. Further research and testing are warranted to validate the framework’s performance across diverse railway environments and operating conditions.
Author Tavares, Paulo
Viriato, Nuno
Dias, Susana
Afonso, Francisco
Sousa, Pedro
Moreira, Pedro
Author_xml – sequence: 1
  givenname: Susana
  surname: Dias
  fullname: Dias, Susana
– sequence: 2
  givenname: Pedro
  surname: Sousa
  fullname: Sousa, Pedro
– sequence: 3
  givenname: Francisco
  surname: Afonso
  fullname: Afonso, Francisco
– sequence: 4
  givenname: Nuno
  surname: Viriato
  fullname: Viriato, Nuno
– sequence: 5
  givenname: Paulo
  surname: Tavares
  fullname: Tavares, Paulo
– sequence: 6
  givenname: Pedro
  surname: Moreira
  fullname: Moreira, Pedro
BookMark eNp9UE1Lw0AQXUTBWvsPPAQ8x85-JVlvpX4VCoIoeFsm-yGpbbZuUkr_vYmtUDzIHGYY3nvz5l2Q0zrUjpArCjcUJB279cKE2o8ZMMFBAgDLT8iAUYAUqHg_PZrPyahpFh0EuFJcZgOSTZJ5dTd5SUpsnE1C2bRoli6xrnWmrUKd-Igrtw3xM_EhJhGr5RZ3l-TM47Jxo0MfkreH-9fpUzp_fpxNJ_PUcMjyVBjPFEUvPGOO-0KitIVlWQa2ULSUmVfcOA8g8hKRYi6pzSjPvcyR5gXlQzLb69qAC72O1QrjTges9M8ixA-Nsa06x1oIwylXIC0TgjmjZGY6WamMKgpPsdO63mutY_jauKbVi7CJdWdfc6oE4131F2_3KBND00Tntala7JNo-981Bd3Hrg-x6-PYO7L4Q_61_C_tG0eLhxE
CitedBy_id crossref_primary_10_3390_app15063118
Cites_doi 10.1016/j.geomorph.2010.01.002
10.1016/j.cag.2021.07.003
10.1109/PARC59193.2024.10486339
10.3390/s23063335
10.1109/JSEN.2021.3066714
10.1109/TITS.2024.3412170
10.1007/s11370-024-00515-8
10.1016/j.enggeo.2015.05.012
10.3390/s21062140
10.36227/techrxiv.20442858.v1
ContentType Journal Article
Conference Proceeding
Copyright 2024. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOA
DOI 10.1051/epjconf/202430500027
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
ProQuest Technology Collection
ProQuest One Community College
ProQuest Central Korea
SciTech Premium Collection
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Proquest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList CrossRef
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: ProQuest Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2100-014X
ExternalDocumentID oai_doaj_org_article_44c313905d2442ec956c47b59c988f1a
10_1051_epjconf_202430500027
Genre Conference Proceeding
GroupedDBID 4.4
5VS
8FE
8FG
AAFWJ
AAOGA
AAYXX
ABDBF
ABZDU
ACACO
ACRPL
ACUHS
ADBBV
ADMLS
ADNMO
AFFHD
AFKRA
AFPKN
AGQPQ
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
E3Z
EBS
EJD
ESX
GI~
GROUPED_DOAJ
GX1
HCIFZ
HH5
IPNFZ
KQ8
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
RIG
RNS
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-c3067-4cf291af4f22e3f85a5d8d2660d891b56f93cef0047baa1a751d6137f57a17813
IEDL.DBID DOA
ISSN 2100-014X
2101-6275
IngestDate Fri Oct 03 12:37:06 EDT 2025
Sat Aug 23 14:44:00 EDT 2025
Tue Nov 18 22:42:14 EST 2025
Sat Nov 29 03:56:16 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3067-4cf291af4f22e3f85a5d8d2660d891b56f93cef0047baa1a751d6137f57a17813
Notes ObjectType-Conference Proceeding-1
SourceType-Conference Papers & Proceedings-1
content type line 21
OpenAccessLink https://doaj.org/article/44c313905d2442ec956c47b59c988f1a
PQID 3194232321
PQPubID 1796373
ParticipantIDs doaj_primary_oai_doaj_org_article_44c313905d2442ec956c47b59c988f1a
proquest_journals_3194232321
crossref_citationtrail_10_1051_epjconf_202430500027
crossref_primary_10_1051_epjconf_202430500027
PublicationCentury 2000
PublicationDate 20240101
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 01
  year: 2024
  text: 20240101
  day: 01
PublicationDecade 2020
PublicationPlace Les Ulis
PublicationPlace_xml – name: Les Ulis
PublicationTitle EPJ Web of conferences
PublicationYear 2024
Publisher EDP Sciences
Publisher_xml – name: EDP Sciences
References R2
Lan (R5) 2010; 118
R3
Yeong (R9) 2021; 21
Zhangyu (R10) 2021; 21
Kromer (R4) 2015; 195
R7
R8
Cao (R6) 2024; 25
Wang (R11) 2021; 2093
R14
R13
R16
R15
Lee (R12) 2024; 17
R17
R1
References_xml – volume: 118
  start-page: 213
  year: 2010
  ident: R5
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2010.01.002
– ident: R13
– ident: R14
– ident: R1
  doi: 10.1016/j.cag.2021.07.003
– ident: R15
  doi: 10.1109/PARC59193.2024.10486339
– ident: R7
– ident: R8
  doi: 10.3390/s23063335
– volume: 21
  start-page: 13442
  issue: 12
  year: 2021
  ident: R10
  publication-title: IEEE Sensors Journal
  doi: 10.1109/JSEN.2021.3066714
– volume: 2093
  start-page: 012032
  issue: 1
  year: 2021
  ident: R11
  publication-title: Journal of Physics: Conference Series
– volume: 25
  start-page: 6427
  issue: 7
  year: 2024
  ident: R6
  publication-title: IEEE Transactions on Intelligent Transportation Systems
  doi: 10.1109/TITS.2024.3412170
– volume: 17
  start-page: 95
  issue: 2
  year: 2024
  ident: R12
  publication-title: Intelligent Service Robotics
  doi: 10.1007/s11370-024-00515-8
– volume: 195
  start-page: 93
  year: 2015
  ident: R4
  publication-title: Engineering Geology
  doi: 10.1016/j.enggeo.2015.05.012
– volume: 21
  start-page: 2104
  issue: 6
  year: 2021
  ident: R9
  publication-title: Sensors
  doi: 10.3390/s21062140
– ident: R3
– ident: R2
  doi: 10.36227/techrxiv.20442858.v1
– ident: R16
– ident: R17
SSID ssj0000399356
Score 2.2913995
Snippet Obstacle detection on the railway, a crucial operational safety concern, is a complex task that encompasses a multitude of challenges. While Machine Learning...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 27
SubjectTerms Algorithms
Autonomous cars
Clustering
Data integration
Global positioning systems
GPS
Lidar
Locomotives
Machine learning
Obstacle avoidance
Railways
SummonAdditionalLinks – databaseName: Advanced Technologies & Aerospace Database
  dbid: P5Z
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JSwMxGA1aFTy5VaxWycFr6CQzaTInqRsepBRRKF6GTBaplE5tq-K_N1860yqCHrzOApn5krxvy3sInVrHYqNkREzEDEmYFiRlxvmFp0SqBDNJ7oLYhOh2Zb-f9sqE27Rsq6z2xLBRm0JDjrzlpwrUFGNGz8YvBFSjoLpaSmisojVgSQDphh5_XORYIkDfIODqAxtKgJC3Oj3HacuOn33I6SD8B96rUIT7hk6BxP_HHh2A53rrv0PeRvXlmT7cW6DVDlqxo120ERpA9XQPtTv4dnDZucMAawYXufca_YzCxs5Cs9YIu6qNC3s_F0_UYPiuPuro4frq_uKGlJoKRENwQBLtWEqVSxxjNnaSK26k8SgdGZnSnLddGmvrgEQyV4oqwanxiC8cF4oKSeN9VBsVI3uAsFQmyuOcR21mE-vDKAbejXLCg16eO95AcfUvM10SjoPuxTALhW9Os9IC2VcLNBBZvDWeE2788fw5mGnxLNBlhwvF5CkrV1-WJDr2rm7EjfdmmNU-KNT-A3mqUykdVQ3UrCyYlWt4mi3Nd_j77SO0CSOaJ2aaqDabvNpjtK7fZoPp5CRMyU9gHeWt
  priority: 102
  providerName: ProQuest
Title A LiDAR based obstacle detection framework for railway
URI https://www.proquest.com/docview/3194232321
https://doaj.org/article/44c313905d2442ec956c47b59c988f1a
Volume 305
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2100-014X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000399356
  issn: 2100-014X
  databaseCode: DOA
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2100-014X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000399356
  issn: 2100-014X
  databaseCode: M~E
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 2100-014X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000399356
  issn: 2100-014X
  databaseCode: P5Z
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2100-014X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000399356
  issn: 2100-014X
  databaseCode: BENPR
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content Database
  customDbUrl:
  eissn: 2100-014X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000399356
  issn: 2100-014X
  databaseCode: PIMPY
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PS8MwFA4yFbyIP3E6Rw5ey5q0aZLjphsKOspQmF5KfsJkbGObiv-9SdqNiYddvPQQUhrea_J9r-_1ewDcGIsTLVgc6RjrKMWKRhxr6zaeoFxQrFNpQ7MJ2u-z4ZDnG62-fE1YKQ9cGq6VpipxLCUm2gERNsrxeZVSSbjijFkUqFFM-UYwFc5gj7skW_0rR1DLzN5dgGl9sO9VrkLK7RcWBcn-PydygJneETis-CFsl-s6BjtmcgL2Q52mWpyCrA0fR3ftAfToo-FUOnLn5kFtlqGmagLtqtoKOjoK52I0_hLfZ-Cl132-vY-q1geR8hw-SpXFHAmbWoxNYhkRRDPtwDTWjCNJMssTZazXepRCIEEJ0g6YqSVUIMpQcg5qk-nEXADIhI5lIkmcYZMaF-1gT0KEpQ6bpLSkDpKVEQpV6YL79hTjIuSnCSoq0xWbpquDaH3XrNTF2DK_4-27nutVrcOA83VR-brY5us6aKy8U1RbbVG4M8QnmxOMLv_jGVfgwK-7_MrSALXl_MNcgz31uRwt5k2w2-n280EzvG3umpM3N5Y_POWvPy3y1tY
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFAQnXq0IFNgDHFf1rr1Z-4BQoVSNmkYRKlI5Let9oKAqSZOUqn-K38jMxk5BSHDqgau9ttae2fnmPQCvQpS5t2XGfSY9L6TTvJI-4sGzurJa-qKOadiEHg7L09NqtAE_2loYSqtsZWIS1H7qyEe-i6xCMcVcirezc05Toyi62o7QWLHFUbi6RJNt8aa_j_R9LeXBh5P3h7yZKsAdqce8cFFWwsYiShnyWCqrfOkRpzJfVqJWvVjlLkRqo1hbK6xWwiPm6ai0FboUOb73FmwWxOwd2Bz1j0ef116djPA-jYxFU0pwagHc1uspsRtm39DIjeRwoE5bKez3Gx6msQF_oEKCuoP7_9tPegBb11WLbLTG44ewESaP4E5KcXWLx9DbY4Px_t5HRsDt2bRGvRjPDPNhmdLRJiy2iWoMNXk2t-OzS3u1BZ9uZOvb0JlMJ-EJsNL6rM5rlfVkKAIaipL0Nxs1wnpdR9WFvKWdcU1LdZrscWZSaF8J01Dc_ErxLvD1U7NVS5F_rH9HbLFeSw3B04Xp_Ktp5IspCpejMp8pj_qaDA7NXocfqCpXlWUUtgs7LceYRkotzDW7PP377Zdw9_DkeGAG_eHRM7hHu1u5oXags5xfhOdw231fjhfzF82BYPDlptnrJ-NWQnw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=EPJ+Web+of+conferences&rft.atitle=A+LiDAR+based+obstacle+detection+framework+for+railway&rft.au=Dias%2C+Susana&rft.au=Sousa%2C+Pedro&rft.au=Afonso%2C+Francisco&rft.au=Viriato%2C+Nuno&rft.date=2024-01-01&rft.pub=EDP+Sciences&rft.issn=2101-6275&rft.eissn=2100-014X&rft.volume=305&rft_id=info:doi/10.1051%2Fepjconf%2F202430500027
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2100-014X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2100-014X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2100-014X&client=summon