Evolutionary extreme learning machine based on an improved MOPSO algorithm

Extreme learning machine (ELM), as a single hidden layer feedforward neural network (SLFN), has attracted extensive attention because of its fast learning speed and high accuracy. However, the random selection of input weights and hidden biases is the main reason that deteriorates the generalization...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Neural computing & applications Ročník 37; číslo 12; s. 7733 - 7750
Hlavní autoři: Ling, Qinghua, Tan, Kaimin, Wang, Yuyan, Li, Zexu, Liu, Wenkai
Médium: Journal Article
Jazyk:angličtina
Vydáno: London Springer London 01.04.2025
Springer Nature B.V
Témata:
ISSN:0941-0643, 1433-3058
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Extreme learning machine (ELM), as a single hidden layer feedforward neural network (SLFN), has attracted extensive attention because of its fast learning speed and high accuracy. However, the random selection of input weights and hidden biases is the main reason that deteriorates the generalization performance and stability of ELM network. In this study, an improved ELM (IMOPSO-ELM) is proposed to enhance the generalization performance and convergence stability of the SLFN by using a multi-objective particle swarm optimization (MOPSO) to determine the input parameters including input weights and hidden biases of the SLFN. Firstly, different from the traditional improved ELM based on single-objective evolutionary algorithm, the proposed algorithm used MOPSO to optimize the input weights and hidden biases of SLFN by considering the two objectives including accuracy on the validation set and the 2-norm of the SLFN output weights. Secondly, in order to improve the diversity and convergence of the solution set obtained by MOPSO, an improved MOPSO (IMOPSO) is proposed. The improved MOPSO uses a new optimal global particle selection strategy, by randomly dividing the population into several subpopulations, each subpopulation uses different particle information in the external archive to guide the subpopulation update, and uses the external archive set as the platform to share the information between sub-swarms. Finally, the experiment on the four regression problems and four classification problems verifies the effectiveness of the approach in improving ELM generalization performance and performance stability.
AbstractList Extreme learning machine (ELM), as a single hidden layer feedforward neural network (SLFN), has attracted extensive attention because of its fast learning speed and high accuracy. However, the random selection of input weights and hidden biases is the main reason that deteriorates the generalization performance and stability of ELM network. In this study, an improved ELM (IMOPSO-ELM) is proposed to enhance the generalization performance and convergence stability of the SLFN by using a multi-objective particle swarm optimization (MOPSO) to determine the input parameters including input weights and hidden biases of the SLFN. Firstly, different from the traditional improved ELM based on single-objective evolutionary algorithm, the proposed algorithm used MOPSO to optimize the input weights and hidden biases of SLFN by considering the two objectives including accuracy on the validation set and the 2-norm of the SLFN output weights. Secondly, in order to improve the diversity and convergence of the solution set obtained by MOPSO, an improved MOPSO (IMOPSO) is proposed. The improved MOPSO uses a new optimal global particle selection strategy, by randomly dividing the population into several subpopulations, each subpopulation uses different particle information in the external archive to guide the subpopulation update, and uses the external archive set as the platform to share the information between sub-swarms. Finally, the experiment on the four regression problems and four classification problems verifies the effectiveness of the approach in improving ELM generalization performance and performance stability.
Author Tan, Kaimin
Liu, Wenkai
Ling, Qinghua
Li, Zexu
Wang, Yuyan
Author_xml – sequence: 1
  givenname: Qinghua
  surname: Ling
  fullname: Ling, Qinghua
  email: jsjxy_lqh@just.edu.cn
  organization: School of Computer Science, Jiangsu University of Science and Technology
– sequence: 2
  givenname: Kaimin
  surname: Tan
  fullname: Tan, Kaimin
  organization: School of Computer Science, Jiangsu University of Science and Technology
– sequence: 3
  givenname: Yuyan
  surname: Wang
  fullname: Wang, Yuyan
  organization: School of Computer Science, Jiangsu University of Science and Technology
– sequence: 4
  givenname: Zexu
  surname: Li
  fullname: Li, Zexu
  organization: School of Computer Science, Jiangsu University of Science and Technology
– sequence: 5
  givenname: Wenkai
  surname: Liu
  fullname: Liu, Wenkai
  organization: School of Computer Science, Jiangsu University of Science and Technology
BookMark eNp9kF1LwzAUhoNMcJv-Aa8CXldPmtO0vZQxv5hMUK9DlqVbRpvOpBv6782sIHixqxDyPue8eUZk4FpnCLlkcM0A8psAkKUsgRQTBlleJHhChgw5TzhkxYAMocT4LJCfkVEIGwBAUWRD8jTdt_Wus61T_ouaz86bxtDaKO-sW9FG6bV1hi5UMEvaOqoctc3Wt_t4fZ6_vM6pqlett926OSenlaqDufg9x-T9bvo2eUhm8_vHye0s0TwWSJgoWWFyVmhgqKDIU6MrnZeodVoKqNK8QlgsM41MC0C2RJVxBJUClgs0mo_JVT831vjYmdDJTbvzLq6UnBVCCGQij6miT2nfhuBNJbXt1OGjnVe2lgzkwZzszcloTv6YkxjR9B-69baJfo5DvIdCDLuV8X-tjlDfBqKBSw
CitedBy_id crossref_primary_10_3390_en18184952
crossref_primary_10_1007_s00521_025_11519_5
Cites_doi 10.1109/TEVC.2006.886448
10.1109/IJCNN.2004.1380068
10.1109/MHS.1995.494215
10.1109/TNNLS.2020.3027293
10.1016/j.ijhydene.2021.06.046
10.1016/j.neucom.2005.12.126
10.1162/106365600568167
10.1109/TNN.2006.875977
10.1007/s10489-018-1322-z
10.1109/TITS.2021.3086808
10.1109/TCYB.2019.2922287
10.1016/j.energy.2022.123773
10.1016/j.jclepro.2022.130414
10.1016/j.engappai.2010.06.009
10.1016/j.neucom.2011.12.062
10.1109/TEVC.2004.826067
10.1109/TCYB.2020.3015756
10.1162/106365600568202
10.1109/IJCNN.2013.6706751
10.1109/18.661502
10.1007/s10489-021-02665-z
10.1109/TCYB.2019.2949204
10.1007/s10489-018-1282-3
10.1016/j.eswa.2021.115579
10.1109/TEVC.2012.2227145
10.1109/TEVC.2018.2875430
10.1007/s10489-022-04284-8
10.1016/j.neucom.2014.10.006
10.1016/j.patcog.2005.03.028
10.1109/ICACI.2015.7184751
10.1016/j.est.2022.104996
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright Springer Nature B.V. Apr 2025
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: Copyright Springer Nature B.V. Apr 2025
DBID AAYXX
CITATION
DOI 10.1007/s00521-024-10578-4
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1433-3058
EndPage 7750
ExternalDocumentID 10_1007_s00521_024_10578_4
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61976108
  funderid: http://dx.doi.org/10.13039/501100001809
GroupedDBID -Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29N
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
53G
5QI
5VS
67Z
6NX
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBE
ABDBF
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACUHS
ACZOJ
ADHHG
ADHIR
ADHKG
ADIMF
ADKFA
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFDZB
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
B-.
B0M
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EBLON
EBS
ECS
EDO
EIOEI
EJD
EMI
EMK
EPL
ESBYG
EST
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9O
PF0
PHGZT
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
ZMTXR
~8M
~EX
AAYXX
ABBRH
ABFSG
ABRTQ
ACSTC
AEZWR
AFFHD
AFHIU
AFOHR
AGQPQ
AHWEU
AIXLP
ATHPR
CITATION
PHGZM
PQGLB
ID FETCH-LOGICAL-c3064-16918e718c014a0872ecfc794cc2960f27f40bd5c41c6041d4a5340a2049b4ec3
IEDL.DBID RSV
ISSN 0941-0643
IngestDate Wed Nov 05 08:27:40 EST 2025
Tue Nov 18 22:02:26 EST 2025
Sat Nov 29 08:03:13 EST 2025
Sun Apr 06 01:10:41 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords Generalization performance
IMOPSO
Extreme learning machine
Performance stability
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3064-16918e718c014a0872ecfc794cc2960f27f40bd5c41c6041d4a5340a2049b4ec3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3186664167
PQPubID 2043988
PageCount 18
ParticipantIDs proquest_journals_3186664167
crossref_citationtrail_10_1007_s00521_024_10578_4
crossref_primary_10_1007_s00521_024_10578_4
springer_journals_10_1007_s00521_024_10578_4
PublicationCentury 2000
PublicationDate 20250400
PublicationDateYYYYMMDD 2025-04-01
PublicationDate_xml – month: 4
  year: 2025
  text: 20250400
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: Heidelberg
PublicationTitle Neural computing & applications
PublicationTitleAbbrev Neural Comput & Applic
PublicationYear 2025
Publisher Springer London
Springer Nature B.V
Publisher_xml – name: Springer London
– name: Springer Nature B.V
References D Li (10578_CR13) 2022; 250
M Zhang (10578_CR11) 2021; 46
F Han (10578_CR24) 2022; 52
XF Liu (10578_CR26) 2019; 23
Y Hu (10578_CR29) 2020; 51
WB Langdon (10578_CR16) 2007; 11
B Wu (10578_CR25) 2021; 51
C Fernández (10578_CR8) 2019; 49
QY Zhu (10578_CR3) 2005; 38
C Zhao (10578_CR30) 2021; 32
W Chen (10578_CR5) 2022; 53
10578_CR33
10578_CR15
H Lin (10578_CR28) 2023; 23
10578_CR34
Y Wang (10578_CR6) 2019; 49
ZA Xue (10578_CR7) 2020; 15
S Yang (10578_CR22) 2013; 17
10578_CR19
P Bartlett (10578_CR31) 1998; 44
Y Xu (10578_CR17) 2006
JD Knowles (10578_CR23) 2000; 8
S Suresh (10578_CR9) 2010; 23
GB Huang (10578_CR2) 2006; 17
W Sun (10578_CR14) 2022; 338
L Li (10578_CR27) 2019; 51
F Han (10578_CR18) 2013; 116
10578_CR1
E Zitzler (10578_CR32) 2000; 8
J Dou (10578_CR35) 2022; 52
10578_CR20
CAC Coello (10578_CR21) 2004; 8
GB Huang (10578_CR4) 2006; 70
D Wang (10578_CR10) 2015; 151
LL Li (10578_CR12) 2021; 184
References_xml – volume: 15
  start-page: 41
  year: 2020
  ident: 10578_CR7
  publication-title: Electr Eng
– volume: 11
  start-page: 561
  issue: 5
  year: 2007
  ident: 10578_CR16
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/TEVC.2006.886448
– ident: 10578_CR1
  doi: 10.1109/IJCNN.2004.1380068
– ident: 10578_CR34
– ident: 10578_CR15
  doi: 10.1109/MHS.1995.494215
– volume: 32
  start-page: 5179
  issue: 11
  year: 2021
  ident: 10578_CR30
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2020.3027293
– volume: 46
  start-page: 28270
  issue: 55
  year: 2021
  ident: 10578_CR11
  publication-title: Int J Hydrog Energy
  doi: 10.1016/j.ijhydene.2021.06.046
– volume: 70
  start-page: 489
  issue: 1–3
  year: 2006
  ident: 10578_CR4
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2005.12.126
– volume: 8
  start-page: 149
  issue: 2
  year: 2000
  ident: 10578_CR23
  publication-title: Evol Comput
  doi: 10.1162/106365600568167
– volume: 17
  start-page: 879
  issue: 4
  year: 2006
  ident: 10578_CR2
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/TNN.2006.875977
– volume: 49
  start-page: 1161
  year: 2019
  ident: 10578_CR6
  publication-title: Appl Intell
  doi: 10.1007/s10489-018-1322-z
– volume: 23
  start-page: 16786
  issue: 9
  year: 2023
  ident: 10578_CR28
  publication-title: IEEE Trans Intell Transp Syst
  doi: 10.1109/TITS.2021.3086808
– volume: 51
  start-page: 2055
  issue: 4
  year: 2019
  ident: 10578_CR27
  publication-title: IEEE Trans Cybernet
  doi: 10.1109/TCYB.2019.2922287
– volume: 250
  start-page: 123773
  year: 2022
  ident: 10578_CR13
  publication-title: Energy
  doi: 10.1016/j.energy.2022.123773
– volume: 338
  start-page: 130414
  year: 2022
  ident: 10578_CR14
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2022.130414
– volume: 23
  start-page: 1149
  issue: 7
  year: 2010
  ident: 10578_CR9
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2010.06.009
– volume: 116
  start-page: 87
  year: 2013
  ident: 10578_CR18
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2011.12.062
– volume: 8
  start-page: 256
  issue: 3
  year: 2004
  ident: 10578_CR21
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/TEVC.2004.826067
– volume: 51
  start-page: 874
  issue: 2
  year: 2020
  ident: 10578_CR29
  publication-title: IEEE Trans Cybernet
  doi: 10.1109/TCYB.2020.3015756
– volume: 8
  start-page: 173
  issue: 2
  year: 2000
  ident: 10578_CR32
  publication-title: Evol Comput
  doi: 10.1162/106365600568202
– ident: 10578_CR33
– ident: 10578_CR20
  doi: 10.1109/IJCNN.2013.6706751
– volume: 44
  start-page: 525
  issue: 2
  year: 1998
  ident: 10578_CR31
  publication-title: IEEE Trans Inform Theory
  doi: 10.1109/18.661502
– volume: 52
  start-page: 5784
  year: 2022
  ident: 10578_CR24
  publication-title: Appl Intell
  doi: 10.1007/s10489-021-02665-z
– volume: 51
  start-page: 3738
  issue: 7
  year: 2021
  ident: 10578_CR25
  publication-title: IEEE Trans Cybernet
  doi: 10.1109/TCYB.2019.2949204
– volume: 49
  start-page: 532
  year: 2019
  ident: 10578_CR8
  publication-title: Appl Intell
  doi: 10.1007/s10489-018-1282-3
– volume: 184
  start-page: 115579
  year: 2021
  ident: 10578_CR12
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2021.115579
– volume: 17
  start-page: 721
  issue: 5
  year: 2013
  ident: 10578_CR22
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/TEVC.2012.2227145
– volume: 23
  start-page: 587
  issue: 4
  year: 2019
  ident: 10578_CR26
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/TEVC.2018.2875430
– volume: 53
  start-page: 15476
  issue: 12
  year: 2022
  ident: 10578_CR5
  publication-title: Appl Intell
  doi: 10.1007/s10489-022-04284-8
– volume: 151
  start-page: 883
  year: 2015
  ident: 10578_CR10
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2014.10.006
– volume: 38
  start-page: 1759
  issue: 10
  year: 2005
  ident: 10578_CR3
  publication-title: Pattern Recognit
  doi: 10.1016/j.patcog.2005.03.028
– start-page: 644
  volume-title: International symposium on neural networks
  year: 2006
  ident: 10578_CR17
– ident: 10578_CR19
  doi: 10.1109/ICACI.2015.7184751
– volume: 52
  start-page: 104996
  year: 2022
  ident: 10578_CR35
  publication-title: J Energy Storage
  doi: 10.1016/j.est.2022.104996
SSID ssj0004685
Score 2.3765984
Snippet Extreme learning machine (ELM), as a single hidden layer feedforward neural network (SLFN), has attracted extensive attention because of its fast learning...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 7733
SubjectTerms Algorithms
Archives & records
Artificial Intelligence
Artificial neural networks
Bias
Computational Biology/Bioinformatics
Computational Science and Engineering
Computer Science
Convergence
Data Mining and Knowledge Discovery
Evolutionary algorithms
Image Processing and Computer Vision
Machine learning
Multiple objective analysis
Particle swarm optimization
Probability and Statistics in Computer Science
S.I.: From Theory to Practice: Real-World Applications of AI in Data Science
Special Issue on From Theory to Practice: Real-World Applications of AI in Data Science
Stability
Title Evolutionary extreme learning machine based on an improved MOPSO algorithm
URI https://link.springer.com/article/10.1007/s00521-024-10578-4
https://www.proquest.com/docview/3186664167
Volume 37
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: Springer Journals New Starts & Take-Overs Collection
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fS8MwED50-uCL8ydOp-TBNw20adLWR5ENEd2GU9lbSdNkDrZOujnwvzfJ0k1FBX0sTUO53OXuS-7uAzjNSBRxRSPMFDUAJctwqiTDAVNah1QoQ2FZS26jVivu9S46rihsUma7l1eSdqdeFLuZE0wNfQnFhps2xnQV1rS7iw1hw3336UM1pCXi1LjF5PTQwJXKfD_HZ3e0jDG_XItab9Os_u8_t2DTRZfocq4O27Ai8x2olswNyBnyLtw0Zk7lePGG9P5sTgmRY5Doo5HNsJTIuLgMjXPEczSwpw_68a7d6bYRH_bHxWD6PNqDx2bj4eoaO1YFLAzawKY7Tiy1SxIaHXEvjogUSmizFIJoOKNIpKiXZkxQX4Qe9TPKWUA9TjSWSKkUwT5U8nEuDwClTPgBZcrnyuAak6pKCVHU5M0GGSM18EvhJsK1HDfMF8Nk0SzZCivRwkqssBJag7PFNy_zhhu_jq6Xa5Y445skgWniF-pIM6rBeblGy9c_z3b4t-FHsEEMG7DN46lDZVq8ymNYF7PpYFKcWKV8B5YP1-8
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED90Cvri_MTp1Dz4poU2TT98FNmYui_clL2FNk3mYOukmwP_e5Ms3VRU0MfSNJTLXe5-yd39AM4THASRIIHlCaIASpJYseCe5XpC6pDwuc80a0k9aDbDXu-qbYrCJnm2e34lqXfqRbGbOsGU0BcTS3HThhZZhTUiPZbqmP_QefpQDamJOCVuUTk9xDWlMt_P8dkdLWPML9ei2ttUi__7z23YMtElup6rww6s8HQXijlzAzKGvAd3lZlRuSh7Q3J_VqeEyDBI9NFIZ1hypFxcgsYpilI00KcP8rHRandaKBr2x9lg-jzah8dqpXtTswyrgsUU2rBUd5yQS5fEJDqK7DDAnAkmzZIxLOGMwIEgdpx4jDjMt4mTkMhziR1hiSViwpl7AIV0nPJDQLHHHJd4womEwjUqVZVgLIjKm3UTD5fAyYVLmWk5rpgvhnTRLFkLi0phUS0sSkpwsfjmZd5w49fR5XzNqDG-CXVVEz9fRppBCS7zNVq-_nm2o78NP4ONWrdRp_Xb5v0xbGLFDKxzespQmGav_ATW2Ww6mGSnWkHfAb4o2tM
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bT8IwFD5RNMYX8RpR1D74potb1118NArxgkCCGt6WrWuRBAaBSeK_t6dsgEZNjI_L2mY5Pd3p137nfACnMfW8UDLPcCRDgBLHRiSFY9iOVD4kXeFyrVpS8-p1v92-bC5k8Wu2e34lOc1pwCpNSXoxjOXFLPENTzMVDKbMQJ1a32DLsMKQSI94vfWykBmpRTkVhkF-D7OztJnvx_gcmub7zS9XpDryVIv__-ZN2Mh2neRq6iZbsCSSbSjmig4kW-A7cF-ZZK4Yjt6J-m_j6SHJlCU6pK-Zl4Jg6IvJICFhQrr6VEI9PjaarQYJe53BqJu-9nfhuVp5ur41MrUFgyMKMbBqji9UqOIKNYWm71HBJVfLlXOqYI6knmRmFDucWdw1mRWz0LGZGVKFMSImuL0HhWSQiH0gkcMtmznSCiXiHaSwMkolQz6tHTu0BFZu6IBnpchREaMXzIooa2MFyliBNlbASnA26zOcFuL4tXU5n78gW5TjwMbifq7agXolOM_na_7659EO_tb8BNaaN9Wgdld_OIR1ioLBmupThkI6ehNHsMonaXc8Ota--gH6RuO3
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evolutionary+extreme+learning+machine+based+on+an+improved+MOPSO+algorithm&rft.jtitle=Neural+computing+%26+applications&rft.au=Ling%2C+Qinghua&rft.au=Tan%2C+Kaimin&rft.au=Wang%2C+Yuyan&rft.au=Li%2C+Zexu&rft.date=2025-04-01&rft.issn=0941-0643&rft.eissn=1433-3058&rft.volume=37&rft.issue=12&rft.spage=7733&rft.epage=7750&rft_id=info:doi/10.1007%2Fs00521-024-10578-4&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00521_024_10578_4
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0941-0643&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0941-0643&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0941-0643&client=summon