Short‐Term Precipitation Prediction for Contiguous United States Using Deep Learning

Accurate short‐term weather prediction, essential for many aspects of life, relies mainly on forecasts from numerical weather models. Here, we report results supporting strongly deep learning as a viable, alternative approach. A 3D convolutional neural network, which uses a single frame of meteorolo...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Geophysical research letters Ročník 49; číslo 8
Hlavní autoři: Chen, Guoxing, Wang, Wei‐Chyung
Médium: Journal Article
Jazyk:angličtina
Vydáno: Washington John Wiley & Sons, Inc 28.04.2022
Témata:
ISSN:0094-8276, 1944-8007
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Accurate short‐term weather prediction, essential for many aspects of life, relies mainly on forecasts from numerical weather models. Here, we report results supporting strongly deep learning as a viable, alternative approach. A 3D convolutional neural network, which uses a single frame of meteorology fields as input to predict the precipitation spatial distribution, is developed based on 39‐years (1980–2018) data of meteorology and daily precipitation over the contiguous United States. Results show that the trained network outperforms the state‐of‐the‐art weather models in predicting daily total precipitation, and the superiority of the network extends to forecast leads up to 5 days. Combining the network predictions with the weather‐model forecasts significantly improves the accuracy of model forecasts, especially for heavy‐precipitation events. Furthermore, the millisecond‐scale inference time of the network facilitates large ensemble predictions for extra accuracy improvement. These results demonstrate the promising prospects of deep learning in short‐term weather predictions. Plain Language Summary Accurate weather prediction is essential for many aspects of life, notably the early warning of extreme weather events such as rainstorms. Short‐term predictions of these events rely on forecasts from first‐principle numerical weather models, in which, despite much improvement in the past few decades, outstanding issues remain concerning model uncertainties and fast‐growing demands for computation and storage resources. The recent advance of deep learning offers a viable alternative approach. Here we develop a 3D convolutional neural network that uses a single frame of meteorology to predict daily precipitation spatial distribution and demonstrate its superiorities in three aspects. First, the network better predicts daily total precipitation over the contiguous United States than the state‐of‐the‐art weather models for forecast leads up to 5 days. Second, the weighting average of the network predictions and the weather‐model forecasts is more accurate than the model forecasts alone, suggesting a potential approach for improving model forecasts; third, the network prediction via inference is so fast that large ensemble predictions can be conducted to further improve the prediction accuracy. Thus, it is concluded that more research on deep learning for short‐term weather predictions should be actively pursued. Key Points A neural network outperforms numerical models in predicting daily total precipitation for contiguous US with forecast leads up to 5 days Combining the network prediction with the weather‐model forecast can significantly improve the model forecast accuracy The millisecond‐scale inference time of the network facilitates large ensemble predictions for extra accuracy improvement
AbstractList Accurate short‐term weather prediction, essential for many aspects of life, relies mainly on forecasts from numerical weather models. Here, we report results supporting strongly deep learning as a viable, alternative approach. A 3D convolutional neural network, which uses a single frame of meteorology fields as input to predict the precipitation spatial distribution, is developed based on 39‐years (1980–2018) data of meteorology and daily precipitation over the contiguous United States. Results show that the trained network outperforms the state‐of‐the‐art weather models in predicting daily total precipitation, and the superiority of the network extends to forecast leads up to 5 days. Combining the network predictions with the weather‐model forecasts significantly improves the accuracy of model forecasts, especially for heavy‐precipitation events. Furthermore, the millisecond‐scale inference time of the network facilitates large ensemble predictions for extra accuracy improvement. These results demonstrate the promising prospects of deep learning in short‐term weather predictions. Accurate weather prediction is essential for many aspects of life, notably the early warning of extreme weather events such as rainstorms. Short‐term predictions of these events rely on forecasts from first‐principle numerical weather models, in which, despite much improvement in the past few decades, outstanding issues remain concerning model uncertainties and fast‐growing demands for computation and storage resources. The recent advance of deep learning offers a viable alternative approach. Here we develop a 3D convolutional neural network that uses a single frame of meteorology to predict daily precipitation spatial distribution and demonstrate its superiorities in three aspects. First, the network better predicts daily total precipitation over the contiguous United States than the state‐of‐the‐art weather models for forecast leads up to 5 days. Second, the weighting average of the network predictions and the weather‐model forecasts is more accurate than the model forecasts alone, suggesting a potential approach for improving model forecasts; third, the network prediction via inference is so fast that large ensemble predictions can be conducted to further improve the prediction accuracy. Thus, it is concluded that more research on deep learning for short‐term weather predictions should be actively pursued. A neural network outperforms numerical models in predicting daily total precipitation for contiguous US with forecast leads up to 5 days Combining the network prediction with the weather‐model forecast can significantly improve the model forecast accuracy The millisecond‐scale inference time of the network facilitates large ensemble predictions for extra accuracy improvement
Accurate short‐term weather prediction, essential for many aspects of life, relies mainly on forecasts from numerical weather models. Here, we report results supporting strongly deep learning as a viable, alternative approach. A 3D convolutional neural network, which uses a single frame of meteorology fields as input to predict the precipitation spatial distribution, is developed based on 39‐years (1980–2018) data of meteorology and daily precipitation over the contiguous United States. Results show that the trained network outperforms the state‐of‐the‐art weather models in predicting daily total precipitation, and the superiority of the network extends to forecast leads up to 5 days. Combining the network predictions with the weather‐model forecasts significantly improves the accuracy of model forecasts, especially for heavy‐precipitation events. Furthermore, the millisecond‐scale inference time of the network facilitates large ensemble predictions for extra accuracy improvement. These results demonstrate the promising prospects of deep learning in short‐term weather predictions.
Accurate short‐term weather prediction, essential for many aspects of life, relies mainly on forecasts from numerical weather models. Here, we report results supporting strongly deep learning as a viable, alternative approach. A 3D convolutional neural network, which uses a single frame of meteorology fields as input to predict the precipitation spatial distribution, is developed based on 39‐years (1980–2018) data of meteorology and daily precipitation over the contiguous United States. Results show that the trained network outperforms the state‐of‐the‐art weather models in predicting daily total precipitation, and the superiority of the network extends to forecast leads up to 5 days. Combining the network predictions with the weather‐model forecasts significantly improves the accuracy of model forecasts, especially for heavy‐precipitation events. Furthermore, the millisecond‐scale inference time of the network facilitates large ensemble predictions for extra accuracy improvement. These results demonstrate the promising prospects of deep learning in short‐term weather predictions. Plain Language Summary Accurate weather prediction is essential for many aspects of life, notably the early warning of extreme weather events such as rainstorms. Short‐term predictions of these events rely on forecasts from first‐principle numerical weather models, in which, despite much improvement in the past few decades, outstanding issues remain concerning model uncertainties and fast‐growing demands for computation and storage resources. The recent advance of deep learning offers a viable alternative approach. Here we develop a 3D convolutional neural network that uses a single frame of meteorology to predict daily precipitation spatial distribution and demonstrate its superiorities in three aspects. First, the network better predicts daily total precipitation over the contiguous United States than the state‐of‐the‐art weather models for forecast leads up to 5 days. Second, the weighting average of the network predictions and the weather‐model forecasts is more accurate than the model forecasts alone, suggesting a potential approach for improving model forecasts; third, the network prediction via inference is so fast that large ensemble predictions can be conducted to further improve the prediction accuracy. Thus, it is concluded that more research on deep learning for short‐term weather predictions should be actively pursued. Key Points A neural network outperforms numerical models in predicting daily total precipitation for contiguous US with forecast leads up to 5 days Combining the network prediction with the weather‐model forecast can significantly improve the model forecast accuracy The millisecond‐scale inference time of the network facilitates large ensemble predictions for extra accuracy improvement
Author Chen, Guoxing
Wang, Wei‐Chyung
Author_xml – sequence: 1
  givenname: Guoxing
  orcidid: 0000-0002-6858-1740
  surname: Chen
  fullname: Chen, Guoxing
  email: chenguoxing@fudan.edu.cn
  organization: Shanghai Qi Zhi Institute
– sequence: 2
  givenname: Wei‐Chyung
  orcidid: 0000-0003-2397-8100
  surname: Wang
  fullname: Wang, Wei‐Chyung
  organization: State University of New York
BookMark eNqFkE1OwzAUhC1UJNrCjgNEYkvh-SexvUQFClIkEG3ZRk5iF1dtHOxEqDuOwBk5CSntArGA1ZuRvnkjzQD1KldphE4xXGAg8pIAIZMUJJfADlAfS8ZGAoD3UB9Adprw5AgNQlgCAAWK--h5-uJ88_n-MdN-HT16XdjaNqqxrtq60hbf0jgfjV3V2EXr2hDNK9voMpp2oO5csNUiuta6jlKtfNW5Y3Ro1Crok_0dovntzWx8N0ofJvfjq3RUUEjwKGeJ0EobI-JcmJwbSRVmEtM84VxKohTncVkYKkrOFAbBtIqZIDHRgkAh6RCd7f7W3r22OjTZ0rW-6iozksRxzAUn0FHnO6rwLgSvTVZ7u1Z-k2HItstlP5frcPILL_aTNF7Z1T-hN7vSmz8LsslTmjDAmH4BgFCBgw
CitedBy_id crossref_primary_10_3390_atmos15040453
crossref_primary_10_5194_hess_27_1945_2023
crossref_primary_10_3724_j_1006_8775_2025_031
crossref_primary_10_1029_2023GL104406
crossref_primary_10_3390_rs15061684
crossref_primary_10_5194_hess_29_2023_2025
crossref_primary_10_1038_s41598_025_12953_0
crossref_primary_10_1038_s43247_025_02347_5
crossref_primary_10_3724_j_1006_8775_2024_028
crossref_primary_10_1029_2023JD040698
crossref_primary_10_3390_atmos15060689
crossref_primary_10_1029_2023JD039311
crossref_primary_10_3390_w15061019
crossref_primary_10_1007_s11269_024_03815_x
crossref_primary_10_1007_s13351_024_3211_1
crossref_primary_10_3390_rs16010052
crossref_primary_10_1029_2023EA003129
crossref_primary_10_1186_s40562_024_00341_x
crossref_primary_10_1016_j_atmosres_2024_107226
crossref_primary_10_1007_s12145_024_01554_6
crossref_primary_10_1029_2022MS003415
crossref_primary_10_1016_j_isprsjprs_2023_11_021
crossref_primary_10_1029_2024JD041914
crossref_primary_10_1088_1748_9326_ad661f
crossref_primary_10_3390_w14172632
crossref_primary_10_1029_2022JD037041
crossref_primary_10_3390_atmos14010025
crossref_primary_10_1038_s41598_022_11936_9
crossref_primary_10_1016_j_neucom_2022_06_016
crossref_primary_10_1029_2025JH000675
crossref_primary_10_1007_s12145_024_01289_4
Cites_doi 10.5194/gmd-12-2797-2019
10.1002/wcc.535
10.1098/rsta.2020.0083
10.1002/qj.828
10.1109/lgrs.2021.3072618
10.1098/rsta.2020.0097
10.1029/2018gl077787
10.1002/2014rg000468
10.5194/gmd-12-4261-2019
10.1038/s41598-019-49242-6
10.1175/2007mwr2123.1
10.1029/2019ea000636
10.1175/mwr-d-18-0187.1
10.1002/wea.3913
10.1175/jhm583.1
10.1175/jcli-d-16-0758.1
10.1029/2020ms002076
10.1029/2020ms002365
10.1175/jcli-d-16-0570.1
10.1029/2020gl089102
10.1002/qj.3654
10.3390/atmos11010111
10.1016/j.neunet.2006.01.002
10.5194/esd-9-969-2018
10.1038/nature14956
10.1029/2007jd009132
10.1038/s41586-019-0912-1
10.1029/2018gl080704
10.1038/s41586-019-1559-7
10.1038/nature08281
10.1038/s41586-021-03854-z
10.1126/science.aav7274
10.5194/gmd-11-3999-2018
10.1175/bams-d-15-00268.1
10.1175/mwr-d-20-0144.1
10.1155/2012/649450
10.1073/pnas.1810286115
10.12006/j.issn.1673-1719.2019.067
10.1029/2019ms001705
10.1073/pnas.1514043113
ContentType Journal Article
Copyright 2022. American Geophysical Union. All Rights Reserved.
Copyright_xml – notice: 2022. American Geophysical Union. All Rights Reserved.
DBID AAYXX
CITATION
7TG
7TN
8FD
F1W
FR3
H8D
H96
KL.
KR7
L.G
L7M
DOI 10.1029/2022GL097904
DatabaseName CrossRef
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Oceanic Abstracts
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Meteorological & Geoastrophysical Abstracts - Academic
DatabaseTitleList CrossRef
Aerospace Database

DeliveryMethod fulltext_linktorsrc
Discipline Geology
Physics
EISSN 1944-8007
EndPage n/a
ExternalDocumentID 10_1029_2022GL097904
GRL64011
Genre article
GeographicLocations United States--US
GeographicLocations_xml – name: United States--US
GrantInformation_xml – fundername: Research Foundation
  funderid: 31972
– fundername: STCSM, Program of Shanghai Academic Research Leader (Shanghai Academic Research Leader)
  funderid: 21230780200
– fundername: National Science Foundation (NSF)
  funderid: 1545917
GroupedDBID -DZ
-~X
05W
0R~
1OB
1OC
24P
33P
50Y
5GY
5VS
702
8-1
8R4
8R5
AAESR
AAFWJ
AAIHA
AAMMB
AAXRX
AAZKR
ABCUV
ABPPZ
ACAHQ
ACCZN
ACGFO
ACGFS
ACGOD
ACIWK
ACNCT
ACPOU
ACTHY
ACXBN
ACXQS
ADBBV
ADEOM
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEFGJ
AENEX
AFBPY
AFGKR
AFRAH
AGXDD
AIDQK
AIDYY
AIURR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALXUD
AMYDB
AVUZU
AZFZN
AZVAB
BENPR
BFHJK
BMXJE
BRXPI
CS3
DCZOG
DPXWK
DRFUL
DRSTM
DU5
EBS
F5P
G-S
GODZA
HZ~
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O9-
OK1
P-X
P2P
P2W
PYCSY
Q2X
R.K
RNS
ROL
SUPJJ
TN5
TWZ
UPT
WBKPD
WH7
WIN
WXSBR
XSW
ZZTAW
~02
~OA
~~A
AAYXX
AFPKN
CITATION
7TG
7TN
8FD
F1W
FR3
H8D
H96
KL.
KR7
L.G
L7M
ID FETCH-LOGICAL-c3061-b468eaeff85b8fb7f93a14913b677992aa775dcf38d74a1084ea548252e820c93
IEDL.DBID WIN
ISICitedReferencesCount 43
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000781872500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0094-8276
IngestDate Fri Jul 25 10:48:14 EDT 2025
Sat Nov 29 02:58:07 EST 2025
Tue Nov 18 22:14:18 EST 2025
Sun Jul 06 04:45:03 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3061-b468eaeff85b8fb7f93a14913b677992aa775dcf38d74a1084ea548252e820c93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2397-8100
0000-0002-6858-1740
PQID 2655578720
PQPubID 54723
PageCount 9
ParticipantIDs proquest_journals_2655578720
crossref_primary_10_1029_2022GL097904
crossref_citationtrail_10_1029_2022GL097904
wiley_primary_10_1029_2022GL097904_GRL64011
PublicationCentury 2000
PublicationDate 28 April 2022
PublicationDateYYYYMMDD 2022-04-28
PublicationDate_xml – month: 04
  year: 2022
  text: 28 April 2022
  day: 28
PublicationDecade 2020
PublicationPlace Washington
PublicationPlace_xml – name: Washington
PublicationTitle Geophysical research letters
PublicationYear 2022
Publisher John Wiley & Sons, Inc
Publisher_xml – name: John Wiley & Sons, Inc
References 2011; 137
2019; 9
2012; 2012
2019; 6
2019; 11
2015; 53
2018; 146
2021; 149
2019; 12
2019; 566
2008
2020; 16
2006; 19
2020; 12
2015; 525
2020; 146
2020; 11
2018; 45
2019; 363
2021; 13
2018; 9
2017; 30
2021; 76
2015; 28
2021; 597
2021
2021; 379
2020
2017; 98
2018; 115
2016; 113
2007; 8
2019
2020; 47
2008; 136
2014
2008; 113
2009; 461
2018; 11
2019; 573
2022; 19
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
Arial P. A. (e_1_2_7_4_1) 2021
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_46_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_27_1
e_1_2_7_28_1
e_1_2_7_29_1
Simonyan K. (e_1_2_7_37_1) 2014
Agrawal S. (e_1_2_7_2_1) 2019
Kaae Sønderby C. (e_1_2_7_18_1) 2020
Shi X. (e_1_2_7_36_1) 2015; 28
e_1_2_7_30_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_20_1
e_1_2_7_38_1
e_1_2_7_39_1
Chen M. (e_1_2_7_10_1) 2008
References_xml – volume: 573
  start-page: 568
  issue: 7775
  year: 2019
  end-page: 572
  article-title: Deep learning for multi‐year ENSO forecasts
  publication-title: Nature
– volume: 136
  start-page: 78
  issue: 1
  year: 2008
  end-page: 97
  article-title: Scale‐selective verification of rainfall accumulations from high‐resolution forecasts of convective events
  publication-title: Monthly Weather Review
– volume: 11
  start-page: 2680
  issue: 8
  year: 2019
  end-page: 2693
  article-title: Can machines learn to predict weather? Using deep learning to predict gridded 500‐hPa geopotential height from historical weather data
  publication-title: Journal of Advances in Modeling Earth Systems
– volume: 137
  start-page: 553
  issue: 656
  year: 2011
  end-page: 597
  article-title: The ERA‐interim reanalysis: Configuration and performance of the data assimilation system
  publication-title: Quarterly Journal of the Royal Meteorological Society
– volume: 113
  start-page: 5781
  issue: 21
  year: 2016
  end-page: 5790
  article-title: Improving our fundamental understanding of the role of aerosol−cloud interactions in the climate system
  publication-title: Proceedings of the National Academy of Sciences
– volume: 13
  issue: 5
  year: 2021
  article-title: Improving convection trigger functions in deep convective parameterization schemes using machine learning
  publication-title: Journal of Advances in Modeling Earth Systems
– volume: 2012
  year: 2012
  article-title: A neural network nonlinear multimodel ensemble to improve precipitation forecasts over continental US
  publication-title: Advances in Meteorology
– volume: 597
  start-page: 672
  issue: 7878
  year: 2021
  end-page: 677
  article-title: Skilful precipitation nowcasting using deep generative models of radar
  publication-title: Nature
– volume: 11
  start-page: 3999
  issue: 10
  year: 2018
  end-page: 4009
  article-title: Challenges and design choices for global weather and climate models based on machine learning
  publication-title: Geoscientific Model Development
– volume: 6
  start-page: 1877
  issue: 10
  year: 2019
  end-page: 1886
  article-title: Classification of ice crystal habits observed from airborne cloud particle imager by deep transfer learning
  publication-title: Earth and Space Science
– volume: 146
  start-page: 3885
  issue: 11
  year: 2018
  end-page: 3900
  article-title: Neural networks for postprocessing ensemble weather forecasts
  publication-title: Monthly Weather Review
– volume: 45
  start-page: 8665
  issue: 16
  year: 2018
  end-page: 8672
  article-title: Cloudnet: Ground‐based cloud classification with deep convolutional neural network
  publication-title: Geophysical Research Letters
– year: 2021
– volume: 45
  start-page: 12616
  issue: 22
  year: 2018
  end-page: 12622
  article-title: Toward data‐driven weather and climate forecasting: Approximating a simple general circulation model with deep learning
  publication-title: Geophysical Research Letters
– volume: 566
  start-page: 195
  issue: 7743
  year: 2019
  end-page: 204
  article-title: Deep learning and process understanding for data‐driven Earth system science
  publication-title: Nature
– volume: 461
  start-page: 607
  issue: 7264
  year: 2009
  end-page: 613
  article-title: Untangling aerosol effects on clouds and precipitation in a buffered system
  publication-title: Nature
– volume: 28
  start-page: 802
  year: 2015
  end-page: 810
  article-title: Convolutional LSTM network: A machine learning approach for precipitation nowcasting
  publication-title: Advances in Neural Information Processing Systems
– volume: 8
  start-page: 607
  issue: 3
  year: 2007
  end-page: 626
  article-title: A gauge‐based analysis of daily precipitation over East Asia
  publication-title: Journal of Hydrometeorology
– volume: 9
  issue: 5
  year: 2018
  article-title: Data assimilation in the geosciences: An overview of methods, issues, and perspectives
  publication-title: WIREs Climate Change
– volume: 9
  issue: 1
  year: 2019
  article-title: Application of the deep learning for the prediction of rainfall in Southern Taiwan
  publication-title: Scientific Reports
– volume: 12
  start-page: 2797
  issue: 7
  year: 2019
  end-page: 2809
  article-title: Weather and climate forecasting with neural networks: Using general circulation models (GCMs) with different complexity as a study ground
  publication-title: Geoscientific Model Development
– volume: 149
  start-page: 419
  issue: 2
  year: 2021
  end-page: 441
  article-title: Impact of increasing horizontal and vertical resolution during the HWRF Hybrid EnVar data assimilation on the analysis and prediction of Hurricane Patricia (2015)
  publication-title: Monthly Weather Review
– volume: 379
  issue: 2194
  year: 2021
  article-title: Opportunities and challenges for machine learning in weather and climate modelling: Hard, medium and soft AI
  publication-title: Philosophical Transactions of the Royal Society A: Mathematical, Physical & Engineering Sciences
– year: 2014
– volume: 47
  issue: 17
  year: 2020
  article-title: Applying satellite observations of tropical cyclone internal structures to rapid intensification forecast with machine learning
  publication-title: Geophysical Research Letters
– volume: 115
  start-page: 9684
  issue: 39
  year: 2018
  end-page: 9689
  article-title: Deep learning to represent subgrid processes in climate models
  publication-title: Proceedings of the National Academy of Sciences
– volume: 379
  issue: 2194
  year: 2021
  article-title: Can deep learning beat numerical weather prediction?
  publication-title: Philosophical Transactions of the Royal Society A: Mathematical, Physical & Engineering Sciences
– volume: 12
  issue: 9
  year: 2020
  article-title: A moist physics parameterization based on deep learning
  publication-title: Journal of Advances in Modeling Earth Systems
– volume: 30
  start-page: 1643
  issue: 5
  year: 2017
  end-page: 1664
  article-title: Land surface precipitation in MERRA‐2
  publication-title: Journal of Climate
– volume: 30
  start-page: 5419
  issue: 14
  year: 2017
  end-page: 5454
  article-title: The Modern‐Era retrospective analysis for research and applications, version 2 (MERRA‐2)
  publication-title: Journal of Climate
– volume: 9
  start-page: 969
  issue: 3
  year: 2018
  end-page: 983
  article-title: Using network theory and machine learning to predict El Niño
  publication-title: Earth System Dynamics
– volume: 98
  start-page: 565
  issue: 3
  year: 2017
  end-page: 588
  article-title: Stochastic parameterization: Toward a new view of weather and climate models
  publication-title: Bulletin of the American Meteorological Society
– volume: 11
  issue: 1
  year: 2020
  article-title: The development of a quantitative precipitation forecast correction technique based on machine learning for hydrological applications
  publication-title: Atmosphere
– volume: 76
  start-page: 95
  issue: 3
  year: 2021
  end-page: 97
  article-title: The use of satellite data in numerical weather prediction
  publication-title: Weather
– volume: 146
  start-page: 49
  issue: 726
  year: 2020
  end-page: 68
  article-title: Assimilation of satellite data in numerical weather prediction. Part I: The early years
  publication-title: Quarterly Journal of the Royal Meteorological Society
– year: 2008
– year: 2020
– volume: 19
  start-page: 122
  issue: 2
  year: 2006
  end-page: 134
  article-title: Complex hybrid models combining deterministic and machine learning components for numerical climate modeling and weather prediction
  publication-title: Earth Sciences and Environmental Applications of Computational Intelligence
– volume: 113
  issue: D4
  year: 2008
  article-title: Assessing objective techniques for gauge‐based analyses of global daily precipitation
  publication-title: Journal of Geophysical Research
– volume: 12
  start-page: 4261
  issue: 10
  year: 2019
  end-page: 4274
  article-title: Fast domain‐aware neural network emulation of a planetary boundary layer parameterization in a numerical weather forecast model
  publication-title: Geoscientific Model Development
– volume: 53
  issue: 2
  year: 2015
  article-title: Representation of microphysical processes in cloud‐resolving models: Spectral (bin) microphysics versus bulk parameterization
  publication-title: Reviews of Geophysics
– volume: 525
  start-page: 47
  issue: 7567
  year: 2015
  end-page: 55
  article-title: The quiet revolution of numerical weather prediction
  publication-title: Nature
– volume: 363
  start-page: 342
  issue: 6425
  year: 2019
  end-page: 344
  article-title: Advances in weather prediction
  publication-title: Science
– volume: 16
  start-page: 263
  issue: 3
  year: 2020
  end-page: 275
  article-title: Prediction of summer precipitation in China based on LSTM network
  publication-title: Climate Change Research
– volume: 19
  start-page: 1
  year: 2022
  end-page: 5
  article-title: A novel ground‐based cloud image segmentation method by using deep transfer learning
  publication-title: IEEE Geoscience and Remote Sensing Letters
– year: 2019
– ident: e_1_2_7_32_1
  doi: 10.5194/gmd-12-2797-2019
– ident: e_1_2_7_7_1
  doi: 10.1002/wcc.535
– ident: e_1_2_7_8_1
  doi: 10.1098/rsta.2020.0083
– ident: e_1_2_7_11_1
  doi: 10.1002/qj.828
– ident: e_1_2_7_47_1
  doi: 10.1109/lgrs.2021.3072618
– ident: e_1_2_7_33_1
  doi: 10.1098/rsta.2020.0097
– ident: e_1_2_7_45_1
  doi: 10.1029/2018gl077787
– ident: e_1_2_7_19_1
  doi: 10.1002/2014rg000468
– ident: e_1_2_7_40_1
  doi: 10.5194/gmd-12-4261-2019
– ident: e_1_2_7_44_1
  doi: 10.1038/s41598-019-49242-6
– ident: e_1_2_7_29_1
  doi: 10.1175/2007mwr2123.1
– ident: e_1_2_7_42_1
  doi: 10.1029/2019ea000636
– ident: e_1_2_7_24_1
  doi: 10.1175/mwr-d-18-0187.1
– ident: e_1_2_7_30_1
  doi: 10.1002/wea.3913
– ident: e_1_2_7_43_1
  doi: 10.1175/jhm583.1
– ident: e_1_2_7_15_1
  doi: 10.1175/jcli-d-16-0758.1
– ident: e_1_2_7_17_1
  doi: 10.1029/2020ms002076
– ident: e_1_2_7_46_1
  doi: 10.1029/2020ms002365
– ident: e_1_2_7_27_1
  doi: 10.1175/jcli-d-16-0570.1
– ident: e_1_2_7_39_1
  doi: 10.1029/2020gl089102
– ident: e_1_2_7_13_1
  doi: 10.1002/qj.3654
– ident: e_1_2_7_20_1
  doi: 10.3390/atmos11010111
– ident: e_1_2_7_21_1
  doi: 10.1016/j.neunet.2006.01.002
– ident: e_1_2_7_23_1
  doi: 10.5194/esd-9-969-2018
– ident: e_1_2_7_5_1
  doi: 10.1038/nature14956
– ident: e_1_2_7_9_1
  doi: 10.1029/2007jd009132
– volume-title: MetNet: A neural weather model for precipitation forecasting
  year: 2020
  ident: e_1_2_7_18_1
– ident: e_1_2_7_28_1
  doi: 10.1038/s41586-019-0912-1
– ident: e_1_2_7_31_1
  doi: 10.1029/2018gl080704
– ident: e_1_2_7_16_1
  doi: 10.1038/s41586-019-1559-7
– ident: e_1_2_7_38_1
  doi: 10.1038/nature08281
– ident: e_1_2_7_26_1
  doi: 10.1038/s41586-021-03854-z
– ident: e_1_2_7_3_1
  doi: 10.1126/science.aav7274
– ident: e_1_2_7_12_1
  doi: 10.5194/gmd-11-3999-2018
– volume-title: Machine learning for precipitation nowcasting from radar images
  year: 2019
  ident: e_1_2_7_2_1
– volume-title: Climate change 2021: The physical science basis. Contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change
  year: 2021
  ident: e_1_2_7_4_1
– ident: e_1_2_7_6_1
  doi: 10.1175/bams-d-15-00268.1
– volume-title: CPC Unified Gauge‐based Analysis of Global Daily Precipiation. Presented at the Western Pacific Geophysics Meeting
  year: 2008
  ident: e_1_2_7_10_1
– ident: e_1_2_7_14_1
  doi: 10.1175/mwr-d-20-0144.1
– ident: e_1_2_7_22_1
  doi: 10.1155/2012/649450
– ident: e_1_2_7_25_1
  doi: 10.1073/pnas.1810286115
– volume: 28
  start-page: 802
  year: 2015
  ident: e_1_2_7_36_1
  article-title: Convolutional LSTM network: A machine learning approach for precipitation nowcasting
  publication-title: Advances in Neural Information Processing Systems
– ident: e_1_2_7_35_1
  doi: 10.12006/j.issn.1673-1719.2019.067
– ident: e_1_2_7_41_1
  doi: 10.1029/2019ms001705
– ident: e_1_2_7_34_1
  doi: 10.1073/pnas.1514043113
– volume-title: Very deep convolutional networks for large‐scale image recognition
  year: 2014
  ident: e_1_2_7_37_1
SSID ssj0003031
Score 2.5746846
Snippet Accurate short‐term weather prediction, essential for many aspects of life, relies mainly on forecasts from numerical weather models. Here, we report results...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Accuracy
Artificial neural networks
Computation
Daily
Daily precipitation
Deep learning
Distribution
Emergency warning programs
Extreme weather
Inference
Meteorology
Model accuracy
Modelling
neural network
Neural networks
Precipitation
precipitation prediction
Predictions
Rain
Rainstorms
short‐term weather prediction
Spatial distribution
Storage
VGG
Weather
Weather forecasting
Title Short‐Term Precipitation Prediction for Contiguous United States Using Deep Learning
URI https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2022GL097904
https://www.proquest.com/docview/2655578720
Volume 49
WOSCitedRecordID wos000781872500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Journals
  customDbUrl:
  eissn: 1944-8007
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003031
  issn: 0094-8276
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 1944-8007
  dateEnd: 20231207
  omitProxy: false
  ssIdentifier: ssj0003031
  issn: 0094-8276
  databaseCode: WIN
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NjtMwELZQF6S9sPyt2KVUPsAJRSSOE9tHtKUFKapWS1t6i2xn0q20aqtNuxI3HoFn5El27LilHEBC3JLIjhP_zHwzHn9DyBuw2kn9JBIphwhVgImUrHmUA68Q31c29g63aSFGIzmbqcvgcHNnYVp-iL3Dza0ML6_dAtemCWQDjiMTrXY2LGIllKcDxfZcAoOvn0d7QYzSuU2Yp3gkmchD3DtWf39Y-XeN9AtmHoJVr20GJ__7nU_I44Az6Yd2YjwlD2D5jDwa-jy-3_DKR37a5jmZfrlGBP7z-48xymh66cgu1oG3291VC3_wgSK2pY7JajHfrrYNbaEqbaEq9XEHtA-wpoGvdf6CTAYfxxefopBsIbJoNSSR4bkEDXUtMyNrI2qVarSektTkQijFtBYiq2ydykpwncSSg0Zrh2UMEERYlZ6SznK1hJeEuhxYDIzRlqfccqkBQYvhEBvQdZ7CGXm36_DShj9yCTFuSr8jzlR52Gdn5O2-9Lpl4PhDue5u7MqwDpuS5VnmZBKLsVE_Sn99Rzm8KnK0OJPzfyr9ihy7526Ticku6Wxut_CaPLR3m0Vz2yNH_avBpOj5yXkP0aLg4g
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LTtwwFLUqoIINj1JUXsULWFVRE8eJ7SUCZkCEEYIpZRfZzg2MVA0jhkFi10_oN_IlXDueYbooUsUuka7z8OP63Gv7HEJ2wWrn9ZNIpBwinAJMpGTNoxx4hfi-srFPuF0VotOR19fqPOicurMwDT_EJOHmRob3126Au4R0YBtwJJkYtrN2ESuhHB_oLEes4bQbfp50Jq4Y_XMjmad4JJnIw853LP99uvTfc9Ir0JyGq36-aS29-0uXyWKAmnS_6Rsr5AP0P5GPbS_l-4RXfvOnHa6Sq8tbBOHPv_900U3Tc8d3MQjU3e6u6vmzDxThLXVkVr2b0d1oSBu0Shu0Sv3WA3oIMKCBsvXmM_nROuoeHEdBbyGyGDgkkeG5BA11LTMjayNqlWoMoJLU5EIoxbQWIqtsncpKcJ3EkoPGgIdlDBBHWJWukZn-XR--EOpksBgYoy1PueVSA-IWwyE2oOs8hXXybVzjpQ1_5DQxfpV-UZypcrrO1snexHrQkHD8w25r3HhlGIrDkuVZ5twSi_GlvpnefEbZvihyDDqTjf-y3iHzx92zoixOOqebZMHZuDUnJrfIzMP9CLbJnH186A3vv_oe-gLgEuNg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELVQWcSFHbHjA5xQROI4sX1ElBZEVFVs4hbZzqRUQqWiFIkbn8A38iXYjinlABLilkgTJ_EyfmOP30NoD7S0Xj8KWEwhMFOACgQvaZACLQy-L3ToFtxuMtZq8dtb0fY6p_YsTMUPMVpwsyPD-Ws7wKFflJ5twJJkmrCdNLNQMGH5QCep1ZGpocn6ReM6Gzlj46Er0TxBA05Y6nPfTQmH489_n5W-oOY4YHUzTmP-39-6gOY82MRHVe9YRBPQW0LTTSfm-2KuXPqnHiyjm8s7A8PfX9-ujKPGbct40ffk3fau6LrTD9gAXGzprLqd4cNwgCu8iiu8il3yAa4D9LEnbe2soOvGydXxaeAVFwJtQocoUDTlIKEseaJ4qVgpYmlCqChWKWNCECkZSwpdxrxgVEYhpyBNyEMSAgZJaBGvolrvoQdrCFshLAJKSU1jqimXYJCLohAqkGUawzo6-KzxXPs_sqoY97nbFiciH6-zdbQ_su5XNBw_2G19Nl7uB-MgJ2mSWMdEQvNS10y_lpE3L7LUhJ3Rxp-sd9FMu97Is7PW-SaatSZ204nwLVR7ehzCNprSz0_dweOO76IfPYXkCQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Short%E2%80%90Term+Precipitation+Prediction+for+Contiguous+United+States+Using+Deep+Learning&rft.jtitle=Geophysical+research+letters&rft.au=Chen%2C+Guoxing&rft.au=Wang%2C+Wei%E2%80%90Chyung&rft.date=2022-04-28&rft.issn=0094-8276&rft.eissn=1944-8007&rft.volume=49&rft.issue=8&rft.epage=n%2Fa&rft_id=info:doi/10.1029%2F2022GL097904&rft.externalDBID=10.1029%252F2022GL097904&rft.externalDocID=GRL64011
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-8276&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-8276&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-8276&client=summon