Short‐Term Precipitation Prediction for Contiguous United States Using Deep Learning
Accurate short‐term weather prediction, essential for many aspects of life, relies mainly on forecasts from numerical weather models. Here, we report results supporting strongly deep learning as a viable, alternative approach. A 3D convolutional neural network, which uses a single frame of meteorolo...
Uloženo v:
| Vydáno v: | Geophysical research letters Ročník 49; číslo 8 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Washington
John Wiley & Sons, Inc
28.04.2022
|
| Témata: | |
| ISSN: | 0094-8276, 1944-8007 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Accurate short‐term weather prediction, essential for many aspects of life, relies mainly on forecasts from numerical weather models. Here, we report results supporting strongly deep learning as a viable, alternative approach. A 3D convolutional neural network, which uses a single frame of meteorology fields as input to predict the precipitation spatial distribution, is developed based on 39‐years (1980–2018) data of meteorology and daily precipitation over the contiguous United States. Results show that the trained network outperforms the state‐of‐the‐art weather models in predicting daily total precipitation, and the superiority of the network extends to forecast leads up to 5 days. Combining the network predictions with the weather‐model forecasts significantly improves the accuracy of model forecasts, especially for heavy‐precipitation events. Furthermore, the millisecond‐scale inference time of the network facilitates large ensemble predictions for extra accuracy improvement. These results demonstrate the promising prospects of deep learning in short‐term weather predictions.
Plain Language Summary
Accurate weather prediction is essential for many aspects of life, notably the early warning of extreme weather events such as rainstorms. Short‐term predictions of these events rely on forecasts from first‐principle numerical weather models, in which, despite much improvement in the past few decades, outstanding issues remain concerning model uncertainties and fast‐growing demands for computation and storage resources. The recent advance of deep learning offers a viable alternative approach. Here we develop a 3D convolutional neural network that uses a single frame of meteorology to predict daily precipitation spatial distribution and demonstrate its superiorities in three aspects. First, the network better predicts daily total precipitation over the contiguous United States than the state‐of‐the‐art weather models for forecast leads up to 5 days. Second, the weighting average of the network predictions and the weather‐model forecasts is more accurate than the model forecasts alone, suggesting a potential approach for improving model forecasts; third, the network prediction via inference is so fast that large ensemble predictions can be conducted to further improve the prediction accuracy. Thus, it is concluded that more research on deep learning for short‐term weather predictions should be actively pursued.
Key Points
A neural network outperforms numerical models in predicting daily total precipitation for contiguous US with forecast leads up to 5 days
Combining the network prediction with the weather‐model forecast can significantly improve the model forecast accuracy
The millisecond‐scale inference time of the network facilitates large ensemble predictions for extra accuracy improvement |
|---|---|
| AbstractList | Accurate short‐term weather prediction, essential for many aspects of life, relies mainly on forecasts from numerical weather models. Here, we report results supporting strongly deep learning as a viable, alternative approach. A 3D convolutional neural network, which uses a single frame of meteorology fields as input to predict the precipitation spatial distribution, is developed based on 39‐years (1980–2018) data of meteorology and daily precipitation over the contiguous United States. Results show that the trained network outperforms the state‐of‐the‐art weather models in predicting daily total precipitation, and the superiority of the network extends to forecast leads up to 5 days. Combining the network predictions with the weather‐model forecasts significantly improves the accuracy of model forecasts, especially for heavy‐precipitation events. Furthermore, the millisecond‐scale inference time of the network facilitates large ensemble predictions for extra accuracy improvement. These results demonstrate the promising prospects of deep learning in short‐term weather predictions.
Accurate weather prediction is essential for many aspects of life, notably the early warning of extreme weather events such as rainstorms. Short‐term predictions of these events rely on forecasts from first‐principle numerical weather models, in which, despite much improvement in the past few decades, outstanding issues remain concerning model uncertainties and fast‐growing demands for computation and storage resources. The recent advance of deep learning offers a viable alternative approach. Here we develop a 3D convolutional neural network that uses a single frame of meteorology to predict daily precipitation spatial distribution and demonstrate its superiorities in three aspects. First, the network better predicts daily total precipitation over the contiguous United States than the state‐of‐the‐art weather models for forecast leads up to 5 days. Second, the weighting average of the network predictions and the weather‐model forecasts is more accurate than the model forecasts alone, suggesting a potential approach for improving model forecasts; third, the network prediction via inference is so fast that large ensemble predictions can be conducted to further improve the prediction accuracy. Thus, it is concluded that more research on deep learning for short‐term weather predictions should be actively pursued.
A neural network outperforms numerical models in predicting daily total precipitation for contiguous US with forecast leads up to 5 days
Combining the network prediction with the weather‐model forecast can significantly improve the model forecast accuracy
The millisecond‐scale inference time of the network facilitates large ensemble predictions for extra accuracy improvement Accurate short‐term weather prediction, essential for many aspects of life, relies mainly on forecasts from numerical weather models. Here, we report results supporting strongly deep learning as a viable, alternative approach. A 3D convolutional neural network, which uses a single frame of meteorology fields as input to predict the precipitation spatial distribution, is developed based on 39‐years (1980–2018) data of meteorology and daily precipitation over the contiguous United States. Results show that the trained network outperforms the state‐of‐the‐art weather models in predicting daily total precipitation, and the superiority of the network extends to forecast leads up to 5 days. Combining the network predictions with the weather‐model forecasts significantly improves the accuracy of model forecasts, especially for heavy‐precipitation events. Furthermore, the millisecond‐scale inference time of the network facilitates large ensemble predictions for extra accuracy improvement. These results demonstrate the promising prospects of deep learning in short‐term weather predictions. Accurate short‐term weather prediction, essential for many aspects of life, relies mainly on forecasts from numerical weather models. Here, we report results supporting strongly deep learning as a viable, alternative approach. A 3D convolutional neural network, which uses a single frame of meteorology fields as input to predict the precipitation spatial distribution, is developed based on 39‐years (1980–2018) data of meteorology and daily precipitation over the contiguous United States. Results show that the trained network outperforms the state‐of‐the‐art weather models in predicting daily total precipitation, and the superiority of the network extends to forecast leads up to 5 days. Combining the network predictions with the weather‐model forecasts significantly improves the accuracy of model forecasts, especially for heavy‐precipitation events. Furthermore, the millisecond‐scale inference time of the network facilitates large ensemble predictions for extra accuracy improvement. These results demonstrate the promising prospects of deep learning in short‐term weather predictions. Plain Language Summary Accurate weather prediction is essential for many aspects of life, notably the early warning of extreme weather events such as rainstorms. Short‐term predictions of these events rely on forecasts from first‐principle numerical weather models, in which, despite much improvement in the past few decades, outstanding issues remain concerning model uncertainties and fast‐growing demands for computation and storage resources. The recent advance of deep learning offers a viable alternative approach. Here we develop a 3D convolutional neural network that uses a single frame of meteorology to predict daily precipitation spatial distribution and demonstrate its superiorities in three aspects. First, the network better predicts daily total precipitation over the contiguous United States than the state‐of‐the‐art weather models for forecast leads up to 5 days. Second, the weighting average of the network predictions and the weather‐model forecasts is more accurate than the model forecasts alone, suggesting a potential approach for improving model forecasts; third, the network prediction via inference is so fast that large ensemble predictions can be conducted to further improve the prediction accuracy. Thus, it is concluded that more research on deep learning for short‐term weather predictions should be actively pursued. Key Points A neural network outperforms numerical models in predicting daily total precipitation for contiguous US with forecast leads up to 5 days Combining the network prediction with the weather‐model forecast can significantly improve the model forecast accuracy The millisecond‐scale inference time of the network facilitates large ensemble predictions for extra accuracy improvement |
| Author | Chen, Guoxing Wang, Wei‐Chyung |
| Author_xml | – sequence: 1 givenname: Guoxing orcidid: 0000-0002-6858-1740 surname: Chen fullname: Chen, Guoxing email: chenguoxing@fudan.edu.cn organization: Shanghai Qi Zhi Institute – sequence: 2 givenname: Wei‐Chyung orcidid: 0000-0003-2397-8100 surname: Wang fullname: Wang, Wei‐Chyung organization: State University of New York |
| BookMark | eNqFkE1OwzAUhC1UJNrCjgNEYkvh-SexvUQFClIkEG3ZRk5iF1dtHOxEqDuOwBk5CSntArGA1ZuRvnkjzQD1KldphE4xXGAg8pIAIZMUJJfADlAfS8ZGAoD3UB9Adprw5AgNQlgCAAWK--h5-uJ88_n-MdN-HT16XdjaNqqxrtq60hbf0jgfjV3V2EXr2hDNK9voMpp2oO5csNUiuta6jlKtfNW5Y3Ro1Crok_0dovntzWx8N0ofJvfjq3RUUEjwKGeJ0EobI-JcmJwbSRVmEtM84VxKohTncVkYKkrOFAbBtIqZIDHRgkAh6RCd7f7W3r22OjTZ0rW-6iozksRxzAUn0FHnO6rwLgSvTVZ7u1Z-k2HItstlP5frcPILL_aTNF7Z1T-hN7vSmz8LsslTmjDAmH4BgFCBgw |
| CitedBy_id | crossref_primary_10_3390_atmos15040453 crossref_primary_10_5194_hess_27_1945_2023 crossref_primary_10_3724_j_1006_8775_2025_031 crossref_primary_10_1029_2023GL104406 crossref_primary_10_3390_rs15061684 crossref_primary_10_5194_hess_29_2023_2025 crossref_primary_10_1038_s41598_025_12953_0 crossref_primary_10_1038_s43247_025_02347_5 crossref_primary_10_3724_j_1006_8775_2024_028 crossref_primary_10_1029_2023JD040698 crossref_primary_10_3390_atmos15060689 crossref_primary_10_1029_2023JD039311 crossref_primary_10_3390_w15061019 crossref_primary_10_1007_s11269_024_03815_x crossref_primary_10_1007_s13351_024_3211_1 crossref_primary_10_3390_rs16010052 crossref_primary_10_1029_2023EA003129 crossref_primary_10_1186_s40562_024_00341_x crossref_primary_10_1016_j_atmosres_2024_107226 crossref_primary_10_1007_s12145_024_01554_6 crossref_primary_10_1029_2022MS003415 crossref_primary_10_1016_j_isprsjprs_2023_11_021 crossref_primary_10_1029_2024JD041914 crossref_primary_10_1088_1748_9326_ad661f crossref_primary_10_3390_w14172632 crossref_primary_10_1029_2022JD037041 crossref_primary_10_3390_atmos14010025 crossref_primary_10_1038_s41598_022_11936_9 crossref_primary_10_1016_j_neucom_2022_06_016 crossref_primary_10_1029_2025JH000675 crossref_primary_10_1007_s12145_024_01289_4 |
| Cites_doi | 10.5194/gmd-12-2797-2019 10.1002/wcc.535 10.1098/rsta.2020.0083 10.1002/qj.828 10.1109/lgrs.2021.3072618 10.1098/rsta.2020.0097 10.1029/2018gl077787 10.1002/2014rg000468 10.5194/gmd-12-4261-2019 10.1038/s41598-019-49242-6 10.1175/2007mwr2123.1 10.1029/2019ea000636 10.1175/mwr-d-18-0187.1 10.1002/wea.3913 10.1175/jhm583.1 10.1175/jcli-d-16-0758.1 10.1029/2020ms002076 10.1029/2020ms002365 10.1175/jcli-d-16-0570.1 10.1029/2020gl089102 10.1002/qj.3654 10.3390/atmos11010111 10.1016/j.neunet.2006.01.002 10.5194/esd-9-969-2018 10.1038/nature14956 10.1029/2007jd009132 10.1038/s41586-019-0912-1 10.1029/2018gl080704 10.1038/s41586-019-1559-7 10.1038/nature08281 10.1038/s41586-021-03854-z 10.1126/science.aav7274 10.5194/gmd-11-3999-2018 10.1175/bams-d-15-00268.1 10.1175/mwr-d-20-0144.1 10.1155/2012/649450 10.1073/pnas.1810286115 10.12006/j.issn.1673-1719.2019.067 10.1029/2019ms001705 10.1073/pnas.1514043113 |
| ContentType | Journal Article |
| Copyright | 2022. American Geophysical Union. All Rights Reserved. |
| Copyright_xml | – notice: 2022. American Geophysical Union. All Rights Reserved. |
| DBID | AAYXX CITATION 7TG 7TN 8FD F1W FR3 H8D H96 KL. KR7 L.G L7M |
| DOI | 10.1029/2022GL097904 |
| DatabaseName | CrossRef Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Oceanic Abstracts Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Meteorological & Geoastrophysical Abstracts - Academic |
| DatabaseTitleList | CrossRef Aerospace Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geology Physics |
| EISSN | 1944-8007 |
| EndPage | n/a |
| ExternalDocumentID | 10_1029_2022GL097904 GRL64011 |
| Genre | article |
| GeographicLocations | United States--US |
| GeographicLocations_xml | – name: United States--US |
| GrantInformation_xml | – fundername: Research Foundation funderid: 31972 – fundername: STCSM, Program of Shanghai Academic Research Leader (Shanghai Academic Research Leader) funderid: 21230780200 – fundername: National Science Foundation (NSF) funderid: 1545917 |
| GroupedDBID | -DZ -~X 05W 0R~ 1OB 1OC 24P 33P 50Y 5GY 5VS 702 8-1 8R4 8R5 AAESR AAFWJ AAIHA AAMMB AAXRX AAZKR ABCUV ABPPZ ACAHQ ACCZN ACGFO ACGFS ACGOD ACIWK ACNCT ACPOU ACTHY ACXBN ACXQS ADBBV ADEOM ADKYN ADMGS ADOZA ADXAS ADZMN AEFGJ AENEX AFBPY AFGKR AFRAH AGXDD AIDQK AIDYY AIURR ALMA_UNASSIGNED_HOLDINGS ALUQN ALXUD AMYDB AVUZU AZFZN AZVAB BENPR BFHJK BMXJE BRXPI CS3 DCZOG DPXWK DRFUL DRSTM DU5 EBS F5P G-S GODZA HZ~ LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MSFUL MSSTM MXFUL MXSTM MY~ O9- OK1 P-X P2P P2W PYCSY Q2X R.K RNS ROL SUPJJ TN5 TWZ UPT WBKPD WH7 WIN WXSBR XSW ZZTAW ~02 ~OA ~~A AAYXX AFPKN CITATION 7TG 7TN 8FD F1W FR3 H8D H96 KL. KR7 L.G L7M |
| ID | FETCH-LOGICAL-c3061-b468eaeff85b8fb7f93a14913b677992aa775dcf38d74a1084ea548252e820c93 |
| IEDL.DBID | WIN |
| ISICitedReferencesCount | 43 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000781872500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0094-8276 |
| IngestDate | Fri Jul 25 10:48:14 EDT 2025 Sat Nov 29 02:58:07 EST 2025 Tue Nov 18 22:14:18 EST 2025 Sun Jul 06 04:45:03 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 8 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3061-b468eaeff85b8fb7f93a14913b677992aa775dcf38d74a1084ea548252e820c93 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-2397-8100 0000-0002-6858-1740 |
| PQID | 2655578720 |
| PQPubID | 54723 |
| PageCount | 9 |
| ParticipantIDs | proquest_journals_2655578720 crossref_primary_10_1029_2022GL097904 crossref_citationtrail_10_1029_2022GL097904 wiley_primary_10_1029_2022GL097904_GRL64011 |
| PublicationCentury | 2000 |
| PublicationDate | 28 April 2022 |
| PublicationDateYYYYMMDD | 2022-04-28 |
| PublicationDate_xml | – month: 04 year: 2022 text: 28 April 2022 day: 28 |
| PublicationDecade | 2020 |
| PublicationPlace | Washington |
| PublicationPlace_xml | – name: Washington |
| PublicationTitle | Geophysical research letters |
| PublicationYear | 2022 |
| Publisher | John Wiley & Sons, Inc |
| Publisher_xml | – name: John Wiley & Sons, Inc |
| References | 2011; 137 2019; 9 2012; 2012 2019; 6 2019; 11 2015; 53 2018; 146 2021; 149 2019; 12 2019; 566 2008 2020; 16 2006; 19 2020; 12 2015; 525 2020; 146 2020; 11 2018; 45 2019; 363 2021; 13 2018; 9 2017; 30 2021; 76 2015; 28 2021; 597 2021 2021; 379 2020 2017; 98 2018; 115 2016; 113 2007; 8 2019 2020; 47 2008; 136 2014 2008; 113 2009; 461 2018; 11 2019; 573 2022; 19 e_1_2_7_6_1 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_8_1 e_1_2_7_7_1 e_1_2_7_19_1 Arial P. A. (e_1_2_7_4_1) 2021 e_1_2_7_17_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_46_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_27_1 e_1_2_7_28_1 e_1_2_7_29_1 Simonyan K. (e_1_2_7_37_1) 2014 Agrawal S. (e_1_2_7_2_1) 2019 Kaae Sønderby C. (e_1_2_7_18_1) 2020 Shi X. (e_1_2_7_36_1) 2015; 28 e_1_2_7_30_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_20_1 e_1_2_7_38_1 e_1_2_7_39_1 Chen M. (e_1_2_7_10_1) 2008 |
| References_xml | – volume: 573 start-page: 568 issue: 7775 year: 2019 end-page: 572 article-title: Deep learning for multi‐year ENSO forecasts publication-title: Nature – volume: 136 start-page: 78 issue: 1 year: 2008 end-page: 97 article-title: Scale‐selective verification of rainfall accumulations from high‐resolution forecasts of convective events publication-title: Monthly Weather Review – volume: 11 start-page: 2680 issue: 8 year: 2019 end-page: 2693 article-title: Can machines learn to predict weather? Using deep learning to predict gridded 500‐hPa geopotential height from historical weather data publication-title: Journal of Advances in Modeling Earth Systems – volume: 137 start-page: 553 issue: 656 year: 2011 end-page: 597 article-title: The ERA‐interim reanalysis: Configuration and performance of the data assimilation system publication-title: Quarterly Journal of the Royal Meteorological Society – volume: 113 start-page: 5781 issue: 21 year: 2016 end-page: 5790 article-title: Improving our fundamental understanding of the role of aerosol−cloud interactions in the climate system publication-title: Proceedings of the National Academy of Sciences – volume: 13 issue: 5 year: 2021 article-title: Improving convection trigger functions in deep convective parameterization schemes using machine learning publication-title: Journal of Advances in Modeling Earth Systems – volume: 2012 year: 2012 article-title: A neural network nonlinear multimodel ensemble to improve precipitation forecasts over continental US publication-title: Advances in Meteorology – volume: 597 start-page: 672 issue: 7878 year: 2021 end-page: 677 article-title: Skilful precipitation nowcasting using deep generative models of radar publication-title: Nature – volume: 11 start-page: 3999 issue: 10 year: 2018 end-page: 4009 article-title: Challenges and design choices for global weather and climate models based on machine learning publication-title: Geoscientific Model Development – volume: 6 start-page: 1877 issue: 10 year: 2019 end-page: 1886 article-title: Classification of ice crystal habits observed from airborne cloud particle imager by deep transfer learning publication-title: Earth and Space Science – volume: 146 start-page: 3885 issue: 11 year: 2018 end-page: 3900 article-title: Neural networks for postprocessing ensemble weather forecasts publication-title: Monthly Weather Review – volume: 45 start-page: 8665 issue: 16 year: 2018 end-page: 8672 article-title: Cloudnet: Ground‐based cloud classification with deep convolutional neural network publication-title: Geophysical Research Letters – year: 2021 – volume: 45 start-page: 12616 issue: 22 year: 2018 end-page: 12622 article-title: Toward data‐driven weather and climate forecasting: Approximating a simple general circulation model with deep learning publication-title: Geophysical Research Letters – volume: 566 start-page: 195 issue: 7743 year: 2019 end-page: 204 article-title: Deep learning and process understanding for data‐driven Earth system science publication-title: Nature – volume: 461 start-page: 607 issue: 7264 year: 2009 end-page: 613 article-title: Untangling aerosol effects on clouds and precipitation in a buffered system publication-title: Nature – volume: 28 start-page: 802 year: 2015 end-page: 810 article-title: Convolutional LSTM network: A machine learning approach for precipitation nowcasting publication-title: Advances in Neural Information Processing Systems – volume: 8 start-page: 607 issue: 3 year: 2007 end-page: 626 article-title: A gauge‐based analysis of daily precipitation over East Asia publication-title: Journal of Hydrometeorology – volume: 9 issue: 5 year: 2018 article-title: Data assimilation in the geosciences: An overview of methods, issues, and perspectives publication-title: WIREs Climate Change – volume: 9 issue: 1 year: 2019 article-title: Application of the deep learning for the prediction of rainfall in Southern Taiwan publication-title: Scientific Reports – volume: 12 start-page: 2797 issue: 7 year: 2019 end-page: 2809 article-title: Weather and climate forecasting with neural networks: Using general circulation models (GCMs) with different complexity as a study ground publication-title: Geoscientific Model Development – volume: 149 start-page: 419 issue: 2 year: 2021 end-page: 441 article-title: Impact of increasing horizontal and vertical resolution during the HWRF Hybrid EnVar data assimilation on the analysis and prediction of Hurricane Patricia (2015) publication-title: Monthly Weather Review – volume: 379 issue: 2194 year: 2021 article-title: Opportunities and challenges for machine learning in weather and climate modelling: Hard, medium and soft AI publication-title: Philosophical Transactions of the Royal Society A: Mathematical, Physical & Engineering Sciences – year: 2014 – volume: 47 issue: 17 year: 2020 article-title: Applying satellite observations of tropical cyclone internal structures to rapid intensification forecast with machine learning publication-title: Geophysical Research Letters – volume: 115 start-page: 9684 issue: 39 year: 2018 end-page: 9689 article-title: Deep learning to represent subgrid processes in climate models publication-title: Proceedings of the National Academy of Sciences – volume: 379 issue: 2194 year: 2021 article-title: Can deep learning beat numerical weather prediction? publication-title: Philosophical Transactions of the Royal Society A: Mathematical, Physical & Engineering Sciences – volume: 12 issue: 9 year: 2020 article-title: A moist physics parameterization based on deep learning publication-title: Journal of Advances in Modeling Earth Systems – volume: 30 start-page: 1643 issue: 5 year: 2017 end-page: 1664 article-title: Land surface precipitation in MERRA‐2 publication-title: Journal of Climate – volume: 30 start-page: 5419 issue: 14 year: 2017 end-page: 5454 article-title: The Modern‐Era retrospective analysis for research and applications, version 2 (MERRA‐2) publication-title: Journal of Climate – volume: 9 start-page: 969 issue: 3 year: 2018 end-page: 983 article-title: Using network theory and machine learning to predict El Niño publication-title: Earth System Dynamics – volume: 98 start-page: 565 issue: 3 year: 2017 end-page: 588 article-title: Stochastic parameterization: Toward a new view of weather and climate models publication-title: Bulletin of the American Meteorological Society – volume: 11 issue: 1 year: 2020 article-title: The development of a quantitative precipitation forecast correction technique based on machine learning for hydrological applications publication-title: Atmosphere – volume: 76 start-page: 95 issue: 3 year: 2021 end-page: 97 article-title: The use of satellite data in numerical weather prediction publication-title: Weather – volume: 146 start-page: 49 issue: 726 year: 2020 end-page: 68 article-title: Assimilation of satellite data in numerical weather prediction. Part I: The early years publication-title: Quarterly Journal of the Royal Meteorological Society – year: 2008 – year: 2020 – volume: 19 start-page: 122 issue: 2 year: 2006 end-page: 134 article-title: Complex hybrid models combining deterministic and machine learning components for numerical climate modeling and weather prediction publication-title: Earth Sciences and Environmental Applications of Computational Intelligence – volume: 113 issue: D4 year: 2008 article-title: Assessing objective techniques for gauge‐based analyses of global daily precipitation publication-title: Journal of Geophysical Research – volume: 12 start-page: 4261 issue: 10 year: 2019 end-page: 4274 article-title: Fast domain‐aware neural network emulation of a planetary boundary layer parameterization in a numerical weather forecast model publication-title: Geoscientific Model Development – volume: 53 issue: 2 year: 2015 article-title: Representation of microphysical processes in cloud‐resolving models: Spectral (bin) microphysics versus bulk parameterization publication-title: Reviews of Geophysics – volume: 525 start-page: 47 issue: 7567 year: 2015 end-page: 55 article-title: The quiet revolution of numerical weather prediction publication-title: Nature – volume: 363 start-page: 342 issue: 6425 year: 2019 end-page: 344 article-title: Advances in weather prediction publication-title: Science – volume: 16 start-page: 263 issue: 3 year: 2020 end-page: 275 article-title: Prediction of summer precipitation in China based on LSTM network publication-title: Climate Change Research – volume: 19 start-page: 1 year: 2022 end-page: 5 article-title: A novel ground‐based cloud image segmentation method by using deep transfer learning publication-title: IEEE Geoscience and Remote Sensing Letters – year: 2019 – ident: e_1_2_7_32_1 doi: 10.5194/gmd-12-2797-2019 – ident: e_1_2_7_7_1 doi: 10.1002/wcc.535 – ident: e_1_2_7_8_1 doi: 10.1098/rsta.2020.0083 – ident: e_1_2_7_11_1 doi: 10.1002/qj.828 – ident: e_1_2_7_47_1 doi: 10.1109/lgrs.2021.3072618 – ident: e_1_2_7_33_1 doi: 10.1098/rsta.2020.0097 – ident: e_1_2_7_45_1 doi: 10.1029/2018gl077787 – ident: e_1_2_7_19_1 doi: 10.1002/2014rg000468 – ident: e_1_2_7_40_1 doi: 10.5194/gmd-12-4261-2019 – ident: e_1_2_7_44_1 doi: 10.1038/s41598-019-49242-6 – ident: e_1_2_7_29_1 doi: 10.1175/2007mwr2123.1 – ident: e_1_2_7_42_1 doi: 10.1029/2019ea000636 – ident: e_1_2_7_24_1 doi: 10.1175/mwr-d-18-0187.1 – ident: e_1_2_7_30_1 doi: 10.1002/wea.3913 – ident: e_1_2_7_43_1 doi: 10.1175/jhm583.1 – ident: e_1_2_7_15_1 doi: 10.1175/jcli-d-16-0758.1 – ident: e_1_2_7_17_1 doi: 10.1029/2020ms002076 – ident: e_1_2_7_46_1 doi: 10.1029/2020ms002365 – ident: e_1_2_7_27_1 doi: 10.1175/jcli-d-16-0570.1 – ident: e_1_2_7_39_1 doi: 10.1029/2020gl089102 – ident: e_1_2_7_13_1 doi: 10.1002/qj.3654 – ident: e_1_2_7_20_1 doi: 10.3390/atmos11010111 – ident: e_1_2_7_21_1 doi: 10.1016/j.neunet.2006.01.002 – ident: e_1_2_7_23_1 doi: 10.5194/esd-9-969-2018 – ident: e_1_2_7_5_1 doi: 10.1038/nature14956 – ident: e_1_2_7_9_1 doi: 10.1029/2007jd009132 – volume-title: MetNet: A neural weather model for precipitation forecasting year: 2020 ident: e_1_2_7_18_1 – ident: e_1_2_7_28_1 doi: 10.1038/s41586-019-0912-1 – ident: e_1_2_7_31_1 doi: 10.1029/2018gl080704 – ident: e_1_2_7_16_1 doi: 10.1038/s41586-019-1559-7 – ident: e_1_2_7_38_1 doi: 10.1038/nature08281 – ident: e_1_2_7_26_1 doi: 10.1038/s41586-021-03854-z – ident: e_1_2_7_3_1 doi: 10.1126/science.aav7274 – ident: e_1_2_7_12_1 doi: 10.5194/gmd-11-3999-2018 – volume-title: Machine learning for precipitation nowcasting from radar images year: 2019 ident: e_1_2_7_2_1 – volume-title: Climate change 2021: The physical science basis. Contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change year: 2021 ident: e_1_2_7_4_1 – ident: e_1_2_7_6_1 doi: 10.1175/bams-d-15-00268.1 – volume-title: CPC Unified Gauge‐based Analysis of Global Daily Precipiation. Presented at the Western Pacific Geophysics Meeting year: 2008 ident: e_1_2_7_10_1 – ident: e_1_2_7_14_1 doi: 10.1175/mwr-d-20-0144.1 – ident: e_1_2_7_22_1 doi: 10.1155/2012/649450 – ident: e_1_2_7_25_1 doi: 10.1073/pnas.1810286115 – volume: 28 start-page: 802 year: 2015 ident: e_1_2_7_36_1 article-title: Convolutional LSTM network: A machine learning approach for precipitation nowcasting publication-title: Advances in Neural Information Processing Systems – ident: e_1_2_7_35_1 doi: 10.12006/j.issn.1673-1719.2019.067 – ident: e_1_2_7_41_1 doi: 10.1029/2019ms001705 – ident: e_1_2_7_34_1 doi: 10.1073/pnas.1514043113 – volume-title: Very deep convolutional networks for large‐scale image recognition year: 2014 ident: e_1_2_7_37_1 |
| SSID | ssj0003031 |
| Score | 2.5746846 |
| Snippet | Accurate short‐term weather prediction, essential for many aspects of life, relies mainly on forecasts from numerical weather models. Here, we report results... |
| SourceID | proquest crossref wiley |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| SubjectTerms | Accuracy Artificial neural networks Computation Daily Daily precipitation Deep learning Distribution Emergency warning programs Extreme weather Inference Meteorology Model accuracy Modelling neural network Neural networks Precipitation precipitation prediction Predictions Rain Rainstorms short‐term weather prediction Spatial distribution Storage VGG Weather Weather forecasting |
| Title | Short‐Term Precipitation Prediction for Contiguous United States Using Deep Learning |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2022GL097904 https://www.proquest.com/docview/2655578720 |
| Volume | 49 |
| WOSCitedRecordID | wos000781872500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Journals customDbUrl: eissn: 1944-8007 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003031 issn: 0094-8276 databaseCode: DRFUL dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Free Content customDbUrl: eissn: 1944-8007 dateEnd: 20231207 omitProxy: false ssIdentifier: ssj0003031 issn: 0094-8276 databaseCode: WIN dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NjtMwELZQF6S9sPyt2KVUPsAJRSSOE9tHtKUFKapWS1t6i2xn0q20aqtNuxI3HoFn5El27LilHEBC3JLIjhP_zHwzHn9DyBuw2kn9JBIphwhVgImUrHmUA68Q31c29g63aSFGIzmbqcvgcHNnYVp-iL3Dza0ML6_dAtemCWQDjiMTrXY2LGIllKcDxfZcAoOvn0d7QYzSuU2Yp3gkmchD3DtWf39Y-XeN9AtmHoJVr20GJ__7nU_I44Az6Yd2YjwlD2D5jDwa-jy-3_DKR37a5jmZfrlGBP7z-48xymh66cgu1oG3291VC3_wgSK2pY7JajHfrrYNbaEqbaEq9XEHtA-wpoGvdf6CTAYfxxefopBsIbJoNSSR4bkEDXUtMyNrI2qVarSektTkQijFtBYiq2ydykpwncSSg0Zrh2UMEERYlZ6SznK1hJeEuhxYDIzRlqfccqkBQYvhEBvQdZ7CGXm36_DShj9yCTFuSr8jzlR52Gdn5O2-9Lpl4PhDue5u7MqwDpuS5VnmZBKLsVE_Sn99Rzm8KnK0OJPzfyr9ihy7526Ticku6Wxut_CaPLR3m0Vz2yNH_avBpOj5yXkP0aLg4g |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LTtwwFLUqoIINj1JUXsULWFVRE8eJ7SUCZkCEEYIpZRfZzg2MVA0jhkFi10_oN_IlXDueYbooUsUuka7z8OP63Gv7HEJ2wWrn9ZNIpBwinAJMpGTNoxx4hfi-srFPuF0VotOR19fqPOicurMwDT_EJOHmRob3126Au4R0YBtwJJkYtrN2ESuhHB_oLEes4bQbfp50Jq4Y_XMjmad4JJnIw853LP99uvTfc9Ir0JyGq36-aS29-0uXyWKAmnS_6Rsr5AP0P5GPbS_l-4RXfvOnHa6Sq8tbBOHPv_900U3Tc8d3MQjU3e6u6vmzDxThLXVkVr2b0d1oSBu0Shu0Sv3WA3oIMKCBsvXmM_nROuoeHEdBbyGyGDgkkeG5BA11LTMjayNqlWoMoJLU5EIoxbQWIqtsncpKcJ3EkoPGgIdlDBBHWJWukZn-XR--EOpksBgYoy1PueVSA-IWwyE2oOs8hXXybVzjpQ1_5DQxfpV-UZypcrrO1snexHrQkHD8w25r3HhlGIrDkuVZ5twSi_GlvpnefEbZvihyDDqTjf-y3iHzx92zoixOOqebZMHZuDUnJrfIzMP9CLbJnH186A3vv_oe-gLgEuNg |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELVQWcSFHbHjA5xQROI4sX1ElBZEVFVs4hbZzqRUQqWiFIkbn8A38iXYjinlABLilkgTJ_EyfmOP30NoD7S0Xj8KWEwhMFOACgQvaZACLQy-L3ToFtxuMtZq8dtb0fY6p_YsTMUPMVpwsyPD-Ws7wKFflJ5twJJkmrCdNLNQMGH5QCep1ZGpocn6ReM6Gzlj46Er0TxBA05Y6nPfTQmH489_n5W-oOY4YHUzTmP-39-6gOY82MRHVe9YRBPQW0LTTSfm-2KuXPqnHiyjm8s7A8PfX9-ujKPGbct40ffk3fau6LrTD9gAXGzprLqd4cNwgCu8iiu8il3yAa4D9LEnbe2soOvGydXxaeAVFwJtQocoUDTlIKEseaJ4qVgpYmlCqChWKWNCECkZSwpdxrxgVEYhpyBNyEMSAgZJaBGvolrvoQdrCFshLAJKSU1jqimXYJCLohAqkGUawzo6-KzxXPs_sqoY97nbFiciH6-zdbQ_su5XNBw_2G19Nl7uB-MgJ2mSWMdEQvNS10y_lpE3L7LUhJ3Rxp-sd9FMu97Is7PW-SaatSZ204nwLVR7ehzCNprSz0_dweOO76IfPYXkCQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Short%E2%80%90Term+Precipitation+Prediction+for+Contiguous+United+States+Using+Deep+Learning&rft.jtitle=Geophysical+research+letters&rft.au=Chen%2C+Guoxing&rft.au=Wang%2C+Wei%E2%80%90Chyung&rft.date=2022-04-28&rft.issn=0094-8276&rft.eissn=1944-8007&rft.volume=49&rft.issue=8&rft.epage=n%2Fa&rft_id=info:doi/10.1029%2F2022GL097904&rft.externalDBID=10.1029%252F2022GL097904&rft.externalDocID=GRL64011 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-8276&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-8276&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-8276&client=summon |