Highly parallel simulation tool for the design of isotachophoresis experiments
Isotachophoresis (ITP) is a well-established electrokinetic method for separation and preconcentration of analytes. Several simulation tools for ITP have been published, but their use for experimental design is limited by the computational time for a single run and/or by the number of conditions tha...
Uložené v:
| Vydané v: | Analytica chimica acta Ročník 1337; s. 343553 |
|---|---|
| Hlavní autori: | , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Netherlands
Elsevier B.V
01.02.2025
|
| Predmet: | |
| ISSN: | 0003-2670, 1873-4324, 1873-4324 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Isotachophoresis (ITP) is a well-established electrokinetic method for separation and preconcentration of analytes. Several simulation tools for ITP have been published, but their use for experimental design is limited by the computational time for a single run and/or by the number of conditions that can be investigated per simulation run. A large fraction of the existing solvers also do not account for ionic strength effects, which can influence whether an analyte focuses in ITP. There is currently no publicly available tool for the easy and rapid design of ITP experiments.
We present a rapid, highly parallelized steady-state solver for the design of buffer electrolytes in ITP experiments. The tool is called Browser-based Electrolyte Analyses for ITP (BEAN). BEAN is designed to facilitate the evaluation and identification of functional buffer chemistries for ITP. Given a user-defined chemistry system, BEAN solves a set of coupled, non-linear integral conservation equations to determine whether a specific analyte is focused by the ITP system, and estimates quantities of interest in the design of related ITP processes. These quantities include zone concentrations, pH, and effective (observable) mobility values. BEAN also computes 972 variations of the specified ITP chemistry, including a broad range of buffer titrations and ion mobilities. All the calculations performed in BEAN include ionic strength and finite ionic radius effects, and the solver handles species with arbitrary valence. The tool further includes a searchable database of 521 commonly used electrolytes. BEAN is available at microfluidics.stanford.edu/bean.
This study introduces a novel tool that integrates known ITP steady-state equations with a highly parallel computational framework, an electrolyte database, and a web-based interface. BEAN requires no license nor compilation, and its parallel computations are performed automatically without specific implementation needed from the user. This enables users to screen wide ranges of experimental conditions in the design of ITP experiments.
[Display omitted]
•We introduce a new online simulation tool to design isotachophoresis experiments.•The tool includes an electrolyte database and accounts for ionic strength effects.•The tool provides an effective mobility vs. pH plot to review focusing conditions.•Users can benchmark 972 variations of chemistry to optimize their system.•Parallel simulations are implemented using AWS cloud computing. |
|---|---|
| AbstractList | Isotachophoresis (ITP) is a well-established electrokinetic method for separation and preconcentration of analytes. Several simulation tools for ITP have been published, but their use for experimental design is limited by the computational time for a single run and/or by the number of conditions that can be investigated per simulation run. A large fraction of the existing solvers also do not account for ionic strength effects, which can influence whether an analyte focuses in ITP. There is currently no publicly available tool for the easy and rapid design of ITP experiments.BACKGROUNDIsotachophoresis (ITP) is a well-established electrokinetic method for separation and preconcentration of analytes. Several simulation tools for ITP have been published, but their use for experimental design is limited by the computational time for a single run and/or by the number of conditions that can be investigated per simulation run. A large fraction of the existing solvers also do not account for ionic strength effects, which can influence whether an analyte focuses in ITP. There is currently no publicly available tool for the easy and rapid design of ITP experiments.We present a rapid, highly parallelized steady-state solver for the design of buffer electrolytes in ITP experiments. The tool is called Browser-based Electrolyte Analyses for ITP (BEAN). BEAN is designed to facilitate the evaluation and identification of functional buffer chemistries for ITP. Given a user-defined chemistry system, BEAN solves a set of coupled, non-linear integral conservation equations to determine whether a specific analyte is focused by the ITP system, and estimates quantities of interest in the design of related ITP processes. These quantities include zone concentrations, pH, and effective (observable) mobility values. BEAN also computes 972 variations of the specified ITP chemistry, including a broad range of buffer titrations and ion mobilities. All the calculations performed in BEAN include ionic strength and finite ionic radius effects, and the solver handles species with arbitrary valence. The tool further includes a searchable database of 521 commonly used electrolytes. BEAN is available at microfluidics.stanford.edu/bean.RESULTSWe present a rapid, highly parallelized steady-state solver for the design of buffer electrolytes in ITP experiments. The tool is called Browser-based Electrolyte Analyses for ITP (BEAN). BEAN is designed to facilitate the evaluation and identification of functional buffer chemistries for ITP. Given a user-defined chemistry system, BEAN solves a set of coupled, non-linear integral conservation equations to determine whether a specific analyte is focused by the ITP system, and estimates quantities of interest in the design of related ITP processes. These quantities include zone concentrations, pH, and effective (observable) mobility values. BEAN also computes 972 variations of the specified ITP chemistry, including a broad range of buffer titrations and ion mobilities. All the calculations performed in BEAN include ionic strength and finite ionic radius effects, and the solver handles species with arbitrary valence. The tool further includes a searchable database of 521 commonly used electrolytes. BEAN is available at microfluidics.stanford.edu/bean.This study introduces a novel tool that integrates known ITP steady-state equations with a highly parallel computational framework, an electrolyte database, and a web-based interface. BEAN requires no license nor compilation, and its parallel computations are performed automatically without specific implementation needed from the user. This enables users to screen wide ranges of experimental conditions in the design of ITP experiments.SIGNIFICANCEThis study introduces a novel tool that integrates known ITP steady-state equations with a highly parallel computational framework, an electrolyte database, and a web-based interface. BEAN requires no license nor compilation, and its parallel computations are performed automatically without specific implementation needed from the user. This enables users to screen wide ranges of experimental conditions in the design of ITP experiments. Isotachophoresis (ITP) is a well-established electrokinetic method for separation and preconcentration of analytes. Several simulation tools for ITP have been published, but their use for experimental design is limited by the computational time for a single run and/or by the number of conditions that can be investigated per simulation run. A large fraction of the existing solvers also do not account for ionic strength effects, which can influence whether an analyte focuses in ITP. There is currently no publicly available tool for the easy and rapid design of ITP experiments. We present a rapid, highly parallelized steady-state solver for the design of buffer electrolytes in ITP experiments. The tool is called Browser-based Electrolyte Analyses for ITP (BEAN). BEAN is designed to facilitate the evaluation and identification of functional buffer chemistries for ITP. Given a user-defined chemistry system, BEAN solves a set of coupled, non-linear integral conservation equations to determine whether a specific analyte is focused by the ITP system, and estimates quantities of interest in the design of related ITP processes. These quantities include zone concentrations, pH, and effective (observable) mobility values. BEAN also computes 972 variations of the specified ITP chemistry, including a broad range of buffer titrations and ion mobilities. All the calculations performed in BEAN include ionic strength and finite ionic radius effects, and the solver handles species with arbitrary valence. The tool further includes a searchable database of 521 commonly used electrolytes. BEAN is available at microfluidics.stanford.edu/bean. This study introduces a novel tool that integrates known ITP steady-state equations with a highly parallel computational framework, an electrolyte database, and a web-based interface. BEAN requires no license nor compilation, and its parallel computations are performed automatically without specific implementation needed from the user. This enables users to screen wide ranges of experimental conditions in the design of ITP experiments. [Display omitted] •We introduce a new online simulation tool to design isotachophoresis experiments.•The tool includes an electrolyte database and accounts for ionic strength effects.•The tool provides an effective mobility vs. pH plot to review focusing conditions.•Users can benchmark 972 variations of chemistry to optimize their system.•Parallel simulations are implemented using AWS cloud computing. Isotachophoresis (ITP) is a well-established electrokinetic method for separation and preconcentration of analytes. Several simulation tools for ITP have been published, but their use for experimental design is limited by the computational time for a single run and/or by the number of conditions that can be investigated per simulation run. A large fraction of the existing solvers also do not account for ionic strength effects, which can influence whether an analyte focuses in ITP. There is currently no publicly available tool for the easy and rapid design of ITP experiments. We present a rapid, highly parallelized steady-state solver for the design of buffer electrolytes in ITP experiments. The tool is called Browser-based Electrolyte Analyses for ITP (BEAN). BEAN is designed to facilitate the evaluation and identification of functional buffer chemistries for ITP. Given a user-defined chemistry system, BEAN solves a set of coupled, non-linear integral conservation equations to determine whether a specific analyte is focused by the ITP system, and estimates quantities of interest in the design of related ITP processes. These quantities include zone concentrations, pH, and effective (observable) mobility values. BEAN also computes 972 variations of the specified ITP chemistry, including a broad range of buffer titrations and ion mobilities. All the calculations performed in BEAN include ionic strength and finite ionic radius effects, and the solver handles species with arbitrary valence. The tool further includes a searchable database of 521 commonly used electrolytes. BEAN is available at microfluidics.stanford.edu/bean. This study introduces a novel tool that integrates known ITP steady-state equations with a highly parallel computational framework, an electrolyte database, and a web-based interface. BEAN requires no license nor compilation, and its parallel computations are performed automatically without specific implementation needed from the user. This enables users to screen wide ranges of experimental conditions in the design of ITP experiments. |
| ArticleNumber | 343553 |
| Author | Bahga, Supreet S. Jangra, Amit Santiago, Juan G. Schwarzbach, Adar Avaro, Alexandre S. |
| Author_xml | – sequence: 1 givenname: Alexandre S. orcidid: 0000-0003-1922-3629 surname: Avaro fullname: Avaro, Alexandre S. organization: Department of Mechanical Engineering, Stanford University, 488 Escondido Mall, Stanford, CA, 94305, USA – sequence: 2 givenname: Adar orcidid: 0009-0007-3709-5479 surname: Schwarzbach fullname: Schwarzbach, Adar organization: Department of Computer Science, Duke University, 308 Research Drive, Durham, NC, 27708, USA – sequence: 3 givenname: Amit surname: Jangra fullname: Jangra, Amit organization: Department of Mechanical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110 016, India – sequence: 4 givenname: Supreet S. surname: Bahga fullname: Bahga, Supreet S. organization: Department of Mechanical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110 016, India – sequence: 5 givenname: Juan G. orcidid: 0000-0001-8652-5411 surname: Santiago fullname: Santiago, Juan G. email: juan.santiago@stanford.edu organization: Department of Mechanical Engineering, Stanford University, 488 Escondido Mall, Stanford, CA, 94305, USA |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39800509$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kMFOwzAMhiM0BBvwAFxQjlw6nCZpM3FCEzAkBBc4R1nqsExZU5IOwdvTacCRk2Xr-y37m5BRG1sk5JzBlAGrrtZTY820hFJMueBS8gMyZqrmheClGJExAPCirGo4JpOc10NbMhBH5JjPFICE2Zg8LfzbKnzRziQTAgaa_WYbTO9jS_sYA3Ux0X6FtMHs31oaHfU59sauYreKaRhmip8dJr_Bts-n5NCZkPHsp56Q17vbl_mieHy-f5jfPBaWg-yLBpclKiYrIRxrOIKrnSylUrVQpqkbqZbDf6gsOIfA7bLitlY1zLi01rEZPyGX-71diu9bzL3e-GwxBNNi3GbNmRRKKV7t0IsfdLvcYKO74VSTvvSvgwFge8CmmHNC94cw0DvPeq0Hz3rnWe89D5nrfQaHJz88Jp2tx9Zi4xPaXjfR_5P-Bm48hNE |
| Cites_doi | 10.1016/S0021-9673(01)88396-5 10.1002/elps.202100048 10.1039/b906468k 10.1080/10408348108085511 10.1016/S0021-9673(00)88777-4 10.1016/S0021-9673(01)88397-7 10.1017/jfm.2011.139 10.1016/j.chroma.2013.12.027 10.1021/acs.analchem.1c03925 10.1016/S0021-9673(00)90099-2 10.1016/S0021-9673(01)90818-0 10.1002/elps.200900560 10.1016/S0021-9673(01)94374-2 10.1016/S0021-9673(00)80225-3 10.1039/b906465f 10.1002/elps.202300198 10.1021/j150341a001 10.1016/S0021-9673(01)94355-9 10.1021/acs.chemrev.1c00640 10.1002/elps.201300021 10.1073/pnas.1205004109 10.1002/elps.202100191 10.1021/ac970513x 10.1002/elps.200600396 10.1039/C7LC00852J 10.1016/S0021-9673(01)90681-8 10.1039/c004120c 10.1016/j.chroma.2008.12.022 10.1021/acs.analchem.7b00725 10.1073/pnas.2010254117 10.1109/MNANO.2020.2966028 10.1002/elps.202100279 10.1002/aic.690320206 |
| ContentType | Journal Article |
| Copyright | 2024 Copyright © 2024. Published by Elsevier B.V. |
| Copyright_xml | – notice: 2024 – notice: Copyright © 2024. Published by Elsevier B.V. |
| DBID | AAYXX CITATION NPM 7X8 |
| DOI | 10.1016/j.aca.2024.343553 |
| DatabaseName | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic PubMed |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Chemistry |
| EISSN | 1873-4324 |
| ExternalDocumentID | 39800509 10_1016_j_aca_2024_343553 S0003267024013540 |
| Genre | Journal Article |
| GroupedDBID | --- --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 6J9 7-5 71M 8P~ 9JM 9JN AABNK AACTN AAEDT AAEDW AAHBH AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AAXKI AAXUO ABFNM ABFRF ABFYP ABGSF ABJNI ABLST ABMAC ABUDA ACBEA ACCUC ACDAQ ACGFO ACGFS ACIWK ACNCT ACPRK ACRLP ADBBV ADECG ADEZE ADUVX AEBSH AEFWE AEHWI AEIPS AEKER AENEX AFJKZ AFKWA AFRAH AFTJW AFXIZ AFZHZ AGHFR AGUBO AGYEJ AHEUO AIEXJ AIKHN AITUG AJOXV AJSZI AKIFW AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLECG BLXMC CS3 EBS EFJIC EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W K-O KCYFY KOM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SCC SCH SDF SDG SDP SES SEW SPC SPCBC SSJ SSK SSU SSZ T5K TN5 TWZ UPT WH7 YK3 ZMT ~02 ~G- .GJ 3O- 53G 9DU AAQXK AATTM AAYJJ AAYWO AAYXX ABDPE ABEFU ABWVN ABXDB ACKIV ACLOT ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEUPX AFPUW AGQPQ AGRDE AHHHB AI. AIGII AIIUN AJQLL AKBMS AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EFLBG EJD FA8 FEDTE FGOYB HMU HVGLF HZ~ H~9 M36 M41 MVM NHB R2- SCB T9H UQL VH1 WUQ XOL XPP ZCG ZXP ZY4 ~HD NPM 7X8 |
| ID | FETCH-LOGICAL-c305t-deb2e815644f1d3e0f7f52588748ad7d58b016e8c0ffe03cb63c7870935ccf193 |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001393784100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0003-2670 1873-4324 |
| IngestDate | Sun Sep 28 02:35:06 EDT 2025 Wed Feb 19 02:00:28 EST 2025 Sat Nov 29 02:29:01 EST 2025 Sat Jan 18 16:10:51 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Parallel computation Isotachophoresis Simulation tool Ionic strength |
| Language | English |
| License | Copyright © 2024. Published by Elsevier B.V. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c305t-deb2e815644f1d3e0f7f52588748ad7d58b016e8c0ffe03cb63c7870935ccf193 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0009-0007-3709-5479 0000-0001-8652-5411 0000-0003-1922-3629 |
| PMID | 39800509 |
| PQID | 3154888369 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_3154888369 pubmed_primary_39800509 crossref_primary_10_1016_j_aca_2024_343553 elsevier_sciencedirect_doi_10_1016_j_aca_2024_343553 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-02-01 2025-02-00 2025-Feb-01 20250201 |
| PublicationDateYYYYMMDD | 2025-02-01 |
| PublicationDate_xml | – month: 02 year: 2025 text: 2025-02-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Netherlands |
| PublicationPlace_xml | – name: Netherlands |
| PublicationTitle | Analytica chimica acta |
| PublicationTitleAlternate | Anal Chim Acta |
| PublicationYear | 2025 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Hirokawa, Nishino, Aoki, Kiso, Sawamoto, Yagi, Akiyama (bib27) 1983; 271 Hirokawa, Kiso (bib22) 1982; 252 Khnouf, Han (bib5) 2020; 14 Ramachandran, Santiago (bib1) 2022; 122 Gebauer, Malá, Boček (bib9) 2007; 28 Smejkal, Bottenus, Breadmore, Guijt, Ivory, Foret, Macka (bib3) 2013; 34 Thormann, Mosher (bib11) 2022; 43 Avaro, Sun, Jiang, Bahga, Santiago (bib19) 2021; 93 Garcia-Schwarz, Bercovici, Marshall, Santiago (bib23) 2011; 679 Jangra, Shriyam, Santiago, Bahga (bib13) 2024; 45 Gebauer, Bocek (bib14) 1983; 261 Persat, Chambers, Santiago (bib26) 2009; 9 Hirokawa, Kabayashi, Kiso (bib29) 1985; 318 Yalkowsky, He, Jain (bib33) 2010 Hjalmarsson, Everaerts (bib32) 1981; 11 Thormann, Zhang, Caslavska, Gebauer, Mosher (bib16) 1998; 70 Bercovici, Lele, Santiago (bib17) 2009; 1216 Hirokawa, Gojo, Kiso (bib30) 1986; 369 Eid, Santiago (bib10) 2017; 18 Loison, Boutigny (bib35) 2017 Bahga, Bercovici, Santiago (bib21) 2010; 31 Hirokawa, Nishino, Kiso (bib28) 1982; 252 Křivánková, Foret, Gebauer, Boček (bib34) 1987; 390 Gaš, Bravenec (bib15) 2021; 42 Rogacs, Marshall, Santiago (bib2) 2014; 1335 Kaigala, Bercovici, Behnam, Elliott, Santiago, Backhouse (bib8) 2010; 10 Persat, Suss, Santiago (bib24) 2009; 9 Voet, Voet (bib36) 2011 Bahga, Gupta (bib18) 2022; 43 Paratore, Zeidman Kalman, Rosenfeld, Kaigala, Bercovici (bib4) 2017; 89 Saville, Palusinski (bib20) 1986; 32 Hirokawa, Gojo, Kiso (bib31) 1987; 390 Ramachandran, Huyke, Sharma, Sahoo, Huang, Banaei, Pinsky, Santiago (bib7) 2020; 117 Beckers, Everaerts (bib12) 1972; 68 Bercovici, Han, Liao, Santiago (bib6) 2012; 109 Onsager, Fuoss (bib25) 1932; 36 Rogacs (10.1016/j.aca.2024.343553_bib2) 2014; 1335 Jangra (10.1016/j.aca.2024.343553_bib13) 2024; 45 Ramachandran (10.1016/j.aca.2024.343553_bib1) 2022; 122 Hirokawa (10.1016/j.aca.2024.343553_bib27) 1983; 271 Hirokawa (10.1016/j.aca.2024.343553_bib28) 1982; 252 Thormann (10.1016/j.aca.2024.343553_bib11) 2022; 43 Loison (10.1016/j.aca.2024.343553_bib35) 2017 Hjalmarsson (10.1016/j.aca.2024.343553_bib32) 1981; 11 Eid (10.1016/j.aca.2024.343553_bib10) 2017; 18 Hirokawa (10.1016/j.aca.2024.343553_bib31) 1987; 390 Křivánková (10.1016/j.aca.2024.343553_bib34) 1987; 390 Onsager (10.1016/j.aca.2024.343553_bib25) 1932; 36 Khnouf (10.1016/j.aca.2024.343553_bib5) 2020; 14 Gaš (10.1016/j.aca.2024.343553_bib15) 2021; 42 Persat (10.1016/j.aca.2024.343553_bib24) 2009; 9 Hirokawa (10.1016/j.aca.2024.343553_bib30) 1986; 369 Avaro (10.1016/j.aca.2024.343553_bib19) 2021; 93 Voet (10.1016/j.aca.2024.343553_bib36) 2011 Ramachandran (10.1016/j.aca.2024.343553_bib7) 2020; 117 Smejkal (10.1016/j.aca.2024.343553_bib3) 2013; 34 Persat (10.1016/j.aca.2024.343553_bib26) 2009; 9 Bercovici (10.1016/j.aca.2024.343553_bib17) 2009; 1216 Bahga (10.1016/j.aca.2024.343553_bib18) 2022; 43 Thormann (10.1016/j.aca.2024.343553_bib16) 1998; 70 Saville (10.1016/j.aca.2024.343553_bib20) 1986; 32 Bahga (10.1016/j.aca.2024.343553_bib21) 2010; 31 Paratore (10.1016/j.aca.2024.343553_bib4) 2017; 89 Hirokawa (10.1016/j.aca.2024.343553_bib22) 1982; 252 Garcia-Schwarz (10.1016/j.aca.2024.343553_bib23) 2011; 679 Yalkowsky (10.1016/j.aca.2024.343553_bib33) 2010 Gebauer (10.1016/j.aca.2024.343553_bib9) 2007; 28 Bercovici (10.1016/j.aca.2024.343553_bib6) 2012; 109 Kaigala (10.1016/j.aca.2024.343553_bib8) 2010; 10 Beckers (10.1016/j.aca.2024.343553_bib12) 1972; 68 Hirokawa (10.1016/j.aca.2024.343553_bib29) 1985; 318 Gebauer (10.1016/j.aca.2024.343553_bib14) 1983; 261 |
| References_xml | – volume: 18 start-page: 11 year: 2017 end-page: 26 ident: bib10 article-title: Isotachophoresis applied to biomolecular reactions publication-title: Lab Chip – volume: 45 start-page: 599 year: 2024 end-page: 608 ident: bib13 article-title: A neural network model for rapid prediction of analyte focusing in isotachophoresis publication-title: Electrophoresis – volume: 70 start-page: 549 year: 1998 end-page: 562 ident: bib16 article-title: Modeling of the impact of ionic strength on the electroosmotic flow in capillary electrophoresis with uniform and discontinuous buffer systems publication-title: Anal. Chem. – year: 2011 ident: bib36 article-title: Biochemistry – volume: 89 start-page: 7373 year: 2017 end-page: 7381 ident: bib4 article-title: Isotachophoresis-based surface immunoassay publication-title: Anal. Chem. – volume: 43 start-page: 688 year: 2022 end-page: 695 ident: bib18 article-title: Electrophoresis simulations using Chebyshev pseudo-spectral method on a moving mesh publication-title: Electrophoresis – volume: 31 start-page: 910 year: 2010 end-page: 919 ident: bib21 article-title: Ionic strength effects on electrophoretic focusing and separations publication-title: Electrophoresis – volume: 34 start-page: 1493 year: 2013 end-page: 1509 ident: bib3 article-title: Microfluidic isotachophoresis: a review publication-title: Electrophoresis – volume: 14 start-page: 6 year: 2020 end-page: 17 ident: bib5 article-title: Isotachophoresis-enhanced immunoassays: challenges and opportunities publication-title: IEEE Nanotechnol. Mag. – volume: 109 start-page: 11127 year: 2012 end-page: 11132 ident: bib6 article-title: Rapid hybridization of nucleic acids using isotachophoresis publication-title: Proc. Natl. Acad. Sci. U.S.A. – volume: 9 start-page: 2454 year: 2009 end-page: 2469 ident: bib24 article-title: Basic principles of electrolyte chemistry for microfluidic electrokinetics. Part II: coupling between ion mobility, electrolysis, and acid-base equilibria publication-title: Lab Chip – volume: 1216 start-page: 1008 year: 2009 end-page: 1018 ident: bib17 article-title: Open source simulation tool for electrophoretic stacking, focusing, and separation publication-title: J. Chromatogr. A – year: 2010 ident: bib33 article-title: Handbook of Aqueous Solubility Data – volume: 117 start-page: 29518 year: 2020 end-page: 29525 ident: bib7 article-title: Electric field-driven microfluidics for rapid CRISPR-based diagnostics and its application to detection of SARS-CoV-2 publication-title: Proc. Natl. Acad. Sci. U.S.A. – volume: 9 start-page: 2437 year: 2009 end-page: 2453 ident: bib26 article-title: Basic principles of electrolyte chemistry for microfluidic electrokinetics. Part I: acid-base equilibria and pH buffers publication-title: Lab Chip – volume: 1335 start-page: 105 year: 2014 end-page: 120 ident: bib2 article-title: Purification of nucleic acids using isotachophoresis publication-title: J. Chromatogr. A – volume: 390 start-page: 3 year: 1987 end-page: 16 ident: bib34 article-title: Selection of electrolyte systems in isotachophoresis publication-title: J. Chromatogr. – volume: 11 start-page: 261 year: 1981 end-page: 352 ident: bib32 article-title: Capillary isotachophoresis, C R C publication-title: Crit. Rev. Anal. Chem. – volume: 252 start-page: 33 year: 1982 end-page: 48 ident: bib22 article-title: Isotachophoretic determination of mobility and pKa, by means of computer simulation publication-title: J. Chromatogr. – volume: 122 start-page: 12904 year: 2022 end-page: 12976 ident: bib1 article-title: Isotachophoresis: theory and microfluidic applications publication-title: Chem. Rev. – volume: 43 start-page: 10 year: 2022 end-page: 36 ident: bib11 article-title: Dynamic computer simulations of electrophoresis: 2010–2020 publication-title: Electrophoresis – volume: 42 start-page: 1291 year: 2021 end-page: 1299 ident: bib15 article-title: Simul 6: a fast dynamic simulator of electromigration publication-title: Electrophoresis – volume: 390 start-page: 201 year: 1987 end-page: 223 ident: bib31 article-title: Isotachophoretic determination of mobility and pKa by means of computer simulation: V. Evaluation of m0 and pKa of twenty-eight dipeptides and assessment of separability publication-title: J. Chromatogr. A – volume: 318 start-page: 195 year: 1985 end-page: 210 ident: bib29 article-title: Isotachophoretic determination of mobility and pKa by means of computer simulation: III. Evaluation of mobility and pKa of fifteen nucleotides and seven phosphorus oxoacids and their isotachophoretic separation publication-title: J. Chromatogr. A – volume: 10 start-page: 2242 year: 2010 end-page: 2250 ident: bib8 article-title: Miniaturized system for isotachophoresis assays publication-title: Lab Chip – volume: 32 start-page: 207 year: 1986 end-page: 214 ident: bib20 article-title: Theory of electrophoretic separations. Part I: formulation of a mathematical model publication-title: AIChE J. – volume: 36 start-page: 2689 year: 1932 end-page: 2778 ident: bib25 article-title: Irreversible processes in electrolytes. Diffusion, conductance, and viscous flow in arbitrary mixtures of strong electrolytes publication-title: J. Phys. Chem. – volume: 369 start-page: 59 year: 1986 end-page: 81 ident: bib30 article-title: Isotachophoretic determination of mobility and pKa by means of computer simulation: IV. Evaluation of m0 and pKa, of twenty-six amino acids and assessment of the separability publication-title: J. Chromatogr. A – volume: 261 start-page: 49 year: 1983 end-page: 65 ident: bib14 article-title: Zone order in isotachophoresis the concept of the zone existence diagram and its use in cationic systems publication-title: J. Chromatogr. – volume: 93 start-page: 15768 year: 2021 end-page: 15774 ident: bib19 article-title: Web-based open-source tool for isotachophoresis publication-title: Anal. Chem. – volume: 68 start-page: 207 year: 1972 end-page: 230 ident: bib12 article-title: Isotachophoresis: the qualitative separation of cation mixtures publication-title: J. Chromatogr. A – volume: 679 start-page: 455 year: 2011 end-page: 475 ident: bib23 article-title: Sample dispersion in isotachophoresis publication-title: J. Fluid Mech. – volume: 28 start-page: 26 year: 2007 end-page: 32 ident: bib9 article-title: Recent progress in capillary ITP publication-title: Electrophoresis – year: 2017 ident: bib35 article-title: flozz.github – volume: 271 start-page: D1 year: 1983 end-page: D106 ident: bib27 article-title: Table of isotachophoretic indices: I. Simulated qualitative and quantitative indices of 287 anionic substances in the range pH 3–10 publication-title: J. Chromatogr. A – volume: 252 start-page: 49 year: 1982 end-page: 65 ident: bib28 article-title: Isotachophoretic determination of mobility and pKa by means of computer simulation: II. Evaluation of m0 and pKa of 65 anions publication-title: J. Chromatogr. A – volume: 252 start-page: 33 year: 1982 ident: 10.1016/j.aca.2024.343553_bib22 article-title: Isotachophoretic determination of mobility and pKa, by means of computer simulation publication-title: J. Chromatogr. doi: 10.1016/S0021-9673(01)88396-5 – volume: 42 start-page: 1291 year: 2021 ident: 10.1016/j.aca.2024.343553_bib15 article-title: Simul 6: a fast dynamic simulator of electromigration publication-title: Electrophoresis doi: 10.1002/elps.202100048 – volume: 9 start-page: 2454 year: 2009 ident: 10.1016/j.aca.2024.343553_bib24 article-title: Basic principles of electrolyte chemistry for microfluidic electrokinetics. Part II: coupling between ion mobility, electrolysis, and acid-base equilibria publication-title: Lab Chip doi: 10.1039/b906468k – volume: 11 start-page: 261 year: 1981 ident: 10.1016/j.aca.2024.343553_bib32 article-title: Capillary isotachophoresis, C R C publication-title: Crit. Rev. Anal. Chem. doi: 10.1080/10408348108085511 – volume: 68 start-page: 207 year: 1972 ident: 10.1016/j.aca.2024.343553_bib12 article-title: Isotachophoresis: the qualitative separation of cation mixtures publication-title: J. Chromatogr. A doi: 10.1016/S0021-9673(00)88777-4 – volume: 252 start-page: 49 year: 1982 ident: 10.1016/j.aca.2024.343553_bib28 article-title: Isotachophoretic determination of mobility and pKa by means of computer simulation: II. Evaluation of m0 and pKa of 65 anions publication-title: J. Chromatogr. A doi: 10.1016/S0021-9673(01)88397-7 – volume: 679 start-page: 455 year: 2011 ident: 10.1016/j.aca.2024.343553_bib23 article-title: Sample dispersion in isotachophoresis publication-title: J. Fluid Mech. doi: 10.1017/jfm.2011.139 – volume: 1335 start-page: 105 year: 2014 ident: 10.1016/j.aca.2024.343553_bib2 article-title: Purification of nucleic acids using isotachophoresis publication-title: J. Chromatogr. A doi: 10.1016/j.chroma.2013.12.027 – volume: 93 start-page: 15768 year: 2021 ident: 10.1016/j.aca.2024.343553_bib19 article-title: Web-based open-source tool for isotachophoresis publication-title: Anal. Chem. doi: 10.1021/acs.analchem.1c03925 – volume: 369 start-page: 59 year: 1986 ident: 10.1016/j.aca.2024.343553_bib30 article-title: Isotachophoretic determination of mobility and pKa by means of computer simulation: IV. Evaluation of m0 and pKa, of twenty-six amino acids and assessment of the separability publication-title: J. Chromatogr. A doi: 10.1016/S0021-9673(00)90099-2 – volume: 261 start-page: 49 year: 1983 ident: 10.1016/j.aca.2024.343553_bib14 article-title: Zone order in isotachophoresis the concept of the zone existence diagram and its use in cationic systems publication-title: J. Chromatogr. doi: 10.1016/S0021-9673(01)90818-0 – volume: 31 start-page: 910 year: 2010 ident: 10.1016/j.aca.2024.343553_bib21 article-title: Ionic strength effects on electrophoretic focusing and separations publication-title: Electrophoresis doi: 10.1002/elps.200900560 – volume: 390 start-page: 201 year: 1987 ident: 10.1016/j.aca.2024.343553_bib31 article-title: Isotachophoretic determination of mobility and pKa by means of computer simulation: V. Evaluation of m0 and pKa of twenty-eight dipeptides and assessment of separability publication-title: J. Chromatogr. A doi: 10.1016/S0021-9673(01)94374-2 – volume: 271 start-page: D1 year: 1983 ident: 10.1016/j.aca.2024.343553_bib27 article-title: Table of isotachophoretic indices: I. Simulated qualitative and quantitative indices of 287 anionic substances in the range pH 3–10 publication-title: J. Chromatogr. A doi: 10.1016/S0021-9673(00)80225-3 – volume: 9 start-page: 2437 year: 2009 ident: 10.1016/j.aca.2024.343553_bib26 article-title: Basic principles of electrolyte chemistry for microfluidic electrokinetics. Part I: acid-base equilibria and pH buffers publication-title: Lab Chip doi: 10.1039/b906465f – volume: 45 start-page: 599 year: 2024 ident: 10.1016/j.aca.2024.343553_bib13 article-title: A neural network model for rapid prediction of analyte focusing in isotachophoresis publication-title: Electrophoresis doi: 10.1002/elps.202300198 – volume: 36 start-page: 2689 year: 1932 ident: 10.1016/j.aca.2024.343553_bib25 article-title: Irreversible processes in electrolytes. Diffusion, conductance, and viscous flow in arbitrary mixtures of strong electrolytes publication-title: J. Phys. Chem. doi: 10.1021/j150341a001 – volume: 390 start-page: 3 year: 1987 ident: 10.1016/j.aca.2024.343553_bib34 article-title: Selection of electrolyte systems in isotachophoresis publication-title: J. Chromatogr. doi: 10.1016/S0021-9673(01)94355-9 – volume: 122 start-page: 12904 year: 2022 ident: 10.1016/j.aca.2024.343553_bib1 article-title: Isotachophoresis: theory and microfluidic applications publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.1c00640 – volume: 34 start-page: 1493 year: 2013 ident: 10.1016/j.aca.2024.343553_bib3 article-title: Microfluidic isotachophoresis: a review publication-title: Electrophoresis doi: 10.1002/elps.201300021 – volume: 109 start-page: 11127 year: 2012 ident: 10.1016/j.aca.2024.343553_bib6 article-title: Rapid hybridization of nucleic acids using isotachophoresis publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1205004109 – volume: 43 start-page: 10 year: 2022 ident: 10.1016/j.aca.2024.343553_bib11 article-title: Dynamic computer simulations of electrophoresis: 2010–2020 publication-title: Electrophoresis doi: 10.1002/elps.202100191 – volume: 70 start-page: 549 year: 1998 ident: 10.1016/j.aca.2024.343553_bib16 article-title: Modeling of the impact of ionic strength on the electroosmotic flow in capillary electrophoresis with uniform and discontinuous buffer systems publication-title: Anal. Chem. doi: 10.1021/ac970513x – volume: 28 start-page: 26 year: 2007 ident: 10.1016/j.aca.2024.343553_bib9 article-title: Recent progress in capillary ITP publication-title: Electrophoresis doi: 10.1002/elps.200600396 – year: 2011 ident: 10.1016/j.aca.2024.343553_bib36 – volume: 18 start-page: 11 year: 2017 ident: 10.1016/j.aca.2024.343553_bib10 article-title: Isotachophoresis applied to biomolecular reactions publication-title: Lab Chip doi: 10.1039/C7LC00852J – volume: 318 start-page: 195 year: 1985 ident: 10.1016/j.aca.2024.343553_bib29 article-title: Isotachophoretic determination of mobility and pKa by means of computer simulation: III. Evaluation of mobility and pKa of fifteen nucleotides and seven phosphorus oxoacids and their isotachophoretic separation publication-title: J. Chromatogr. A doi: 10.1016/S0021-9673(01)90681-8 – volume: 10 start-page: 2242 year: 2010 ident: 10.1016/j.aca.2024.343553_bib8 article-title: Miniaturized system for isotachophoresis assays publication-title: Lab Chip doi: 10.1039/c004120c – volume: 1216 start-page: 1008 year: 2009 ident: 10.1016/j.aca.2024.343553_bib17 article-title: Open source simulation tool for electrophoretic stacking, focusing, and separation publication-title: J. Chromatogr. A doi: 10.1016/j.chroma.2008.12.022 – year: 2017 ident: 10.1016/j.aca.2024.343553_bib35 – volume: 89 start-page: 7373 year: 2017 ident: 10.1016/j.aca.2024.343553_bib4 article-title: Isotachophoresis-based surface immunoassay publication-title: Anal. Chem. doi: 10.1021/acs.analchem.7b00725 – volume: 117 start-page: 29518 year: 2020 ident: 10.1016/j.aca.2024.343553_bib7 article-title: Electric field-driven microfluidics for rapid CRISPR-based diagnostics and its application to detection of SARS-CoV-2 publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.2010254117 – volume: 14 start-page: 6 year: 2020 ident: 10.1016/j.aca.2024.343553_bib5 article-title: Isotachophoresis-enhanced immunoassays: challenges and opportunities publication-title: IEEE Nanotechnol. Mag. doi: 10.1109/MNANO.2020.2966028 – volume: 43 start-page: 688 year: 2022 ident: 10.1016/j.aca.2024.343553_bib18 article-title: Electrophoresis simulations using Chebyshev pseudo-spectral method on a moving mesh publication-title: Electrophoresis doi: 10.1002/elps.202100279 – volume: 32 start-page: 207 year: 1986 ident: 10.1016/j.aca.2024.343553_bib20 article-title: Theory of electrophoretic separations. Part I: formulation of a mathematical model publication-title: AIChE J. doi: 10.1002/aic.690320206 – year: 2010 ident: 10.1016/j.aca.2024.343553_bib33 |
| SSID | ssj0002104 |
| Score | 2.470082 |
| Snippet | Isotachophoresis (ITP) is a well-established electrokinetic method for separation and preconcentration of analytes. Several simulation tools for ITP have been... |
| SourceID | proquest pubmed crossref elsevier |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 343553 |
| SubjectTerms | Ionic strength Isotachophoresis Parallel computation Simulation tool |
| Title | Highly parallel simulation tool for the design of isotachophoresis experiments |
| URI | https://dx.doi.org/10.1016/j.aca.2024.343553 https://www.ncbi.nlm.nih.gov/pubmed/39800509 https://www.proquest.com/docview/3154888369 |
| Volume | 1337 |
| WOSCitedRecordID | wos001393784100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-4324 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002104 issn: 0003-2670 databaseCode: AIEXJ dateStart: 19950110 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LaxsxEBZNUmgvpe-6j6BCTw0bnJV2Vzq6IaXNwRSSgm9Cq0ftkOyaXTsN_fUdPXbtuLg0h14Ws9hC1nyMZkaj70PoQ5EaCk4vT6ziJoH8SyesLHRCSp5zlTNFqPRiE8V4zCYT_i3WdFsvJ1BUFbu54fP_amp4B8Z2V2fvYO5-UHgBn8Ho8ASzw_OfDO86N1zJQjZOJuXyoJ1dRYkuiDPry76vUPveDU8Z0dYLJ5oyn9aQfM_aNdr_dj149QQmrvbtroA7mgHHxNG79dG1vHVnpjEHZ4erc57pT9n8KmVQnhpp2TcFn8rqRxOqu1ezvgnnk5yGku_Zcu7PzeNYsUCRZl1P85rTJUmaB32Q3umSwPUS_SaBqC2QBv_h0kN14QLg5WiiUnq4-u5t-uyNba1vNuz62C4EDCHcECIMsYP20iLj4Av3Rl9PJqf9Dg5pMO2UFt3Eu9Nw3xe4MY9t8cy2fMXHLeeP0aOYcOBRAMoTdM9UT9GD407n7xkaB8DgDjB4BRjsAIMBMBgAgwNgcG3xJmDwGmCeo--fT86PvyRRZSNR4OsXiTZlajxnELVHmpihLWyWZrD5UCZ1oTNWwh83TA2tNUOiypwo5-U5yZSyEP-_QLtVXZlXCKtMW8oJYblxTHmG0VSnw1yrvKSWmWyAPnZrJeaBTEVstc4A0W41RYwGQ5QnABl_-9n7buUFLKQ7_pKVqZetIC47Z4zkfIBeBpP0syCceSak13eZ4Rv0cIX3t2h30SzNO3RfXS9mbbOPdooJ24_Q-g3duJSB |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Highly+parallel+simulation+tool+for+the+design+of+isotachophoresis+experiments&rft.jtitle=Analytica+chimica+acta&rft.au=Avaro%2C+Alexandre+S.&rft.au=Schwarzbach%2C+Adar&rft.au=Jangra%2C+Amit&rft.au=Bahga%2C+Supreet+S.&rft.date=2025-02-01&rft.issn=0003-2670&rft.volume=1337&rft.spage=343553&rft_id=info:doi/10.1016%2Fj.aca.2024.343553&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_aca_2024_343553 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-2670&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-2670&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-2670&client=summon |