Highly parallel simulation tool for the design of isotachophoresis experiments

Isotachophoresis (ITP) is a well-established electrokinetic method for separation and preconcentration of analytes. Several simulation tools for ITP have been published, but their use for experimental design is limited by the computational time for a single run and/or by the number of conditions tha...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Analytica chimica acta Ročník 1337; s. 343553
Hlavní autori: Avaro, Alexandre S., Schwarzbach, Adar, Jangra, Amit, Bahga, Supreet S., Santiago, Juan G.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Netherlands Elsevier B.V 01.02.2025
Predmet:
ISSN:0003-2670, 1873-4324, 1873-4324
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Isotachophoresis (ITP) is a well-established electrokinetic method for separation and preconcentration of analytes. Several simulation tools for ITP have been published, but their use for experimental design is limited by the computational time for a single run and/or by the number of conditions that can be investigated per simulation run. A large fraction of the existing solvers also do not account for ionic strength effects, which can influence whether an analyte focuses in ITP. There is currently no publicly available tool for the easy and rapid design of ITP experiments. We present a rapid, highly parallelized steady-state solver for the design of buffer electrolytes in ITP experiments. The tool is called Browser-based Electrolyte Analyses for ITP (BEAN). BEAN is designed to facilitate the evaluation and identification of functional buffer chemistries for ITP. Given a user-defined chemistry system, BEAN solves a set of coupled, non-linear integral conservation equations to determine whether a specific analyte is focused by the ITP system, and estimates quantities of interest in the design of related ITP processes. These quantities include zone concentrations, pH, and effective (observable) mobility values. BEAN also computes 972 variations of the specified ITP chemistry, including a broad range of buffer titrations and ion mobilities. All the calculations performed in BEAN include ionic strength and finite ionic radius effects, and the solver handles species with arbitrary valence. The tool further includes a searchable database of 521 commonly used electrolytes. BEAN is available at microfluidics.stanford.edu/bean. This study introduces a novel tool that integrates known ITP steady-state equations with a highly parallel computational framework, an electrolyte database, and a web-based interface. BEAN requires no license nor compilation, and its parallel computations are performed automatically without specific implementation needed from the user. This enables users to screen wide ranges of experimental conditions in the design of ITP experiments. [Display omitted] •We introduce a new online simulation tool to design isotachophoresis experiments.•The tool includes an electrolyte database and accounts for ionic strength effects.•The tool provides an effective mobility vs. pH plot to review focusing conditions.•Users can benchmark 972 variations of chemistry to optimize their system.•Parallel simulations are implemented using AWS cloud computing.
AbstractList Isotachophoresis (ITP) is a well-established electrokinetic method for separation and preconcentration of analytes. Several simulation tools for ITP have been published, but their use for experimental design is limited by the computational time for a single run and/or by the number of conditions that can be investigated per simulation run. A large fraction of the existing solvers also do not account for ionic strength effects, which can influence whether an analyte focuses in ITP. There is currently no publicly available tool for the easy and rapid design of ITP experiments.BACKGROUNDIsotachophoresis (ITP) is a well-established electrokinetic method for separation and preconcentration of analytes. Several simulation tools for ITP have been published, but their use for experimental design is limited by the computational time for a single run and/or by the number of conditions that can be investigated per simulation run. A large fraction of the existing solvers also do not account for ionic strength effects, which can influence whether an analyte focuses in ITP. There is currently no publicly available tool for the easy and rapid design of ITP experiments.We present a rapid, highly parallelized steady-state solver for the design of buffer electrolytes in ITP experiments. The tool is called Browser-based Electrolyte Analyses for ITP (BEAN). BEAN is designed to facilitate the evaluation and identification of functional buffer chemistries for ITP. Given a user-defined chemistry system, BEAN solves a set of coupled, non-linear integral conservation equations to determine whether a specific analyte is focused by the ITP system, and estimates quantities of interest in the design of related ITP processes. These quantities include zone concentrations, pH, and effective (observable) mobility values. BEAN also computes 972 variations of the specified ITP chemistry, including a broad range of buffer titrations and ion mobilities. All the calculations performed in BEAN include ionic strength and finite ionic radius effects, and the solver handles species with arbitrary valence. The tool further includes a searchable database of 521 commonly used electrolytes. BEAN is available at microfluidics.stanford.edu/bean.RESULTSWe present a rapid, highly parallelized steady-state solver for the design of buffer electrolytes in ITP experiments. The tool is called Browser-based Electrolyte Analyses for ITP (BEAN). BEAN is designed to facilitate the evaluation and identification of functional buffer chemistries for ITP. Given a user-defined chemistry system, BEAN solves a set of coupled, non-linear integral conservation equations to determine whether a specific analyte is focused by the ITP system, and estimates quantities of interest in the design of related ITP processes. These quantities include zone concentrations, pH, and effective (observable) mobility values. BEAN also computes 972 variations of the specified ITP chemistry, including a broad range of buffer titrations and ion mobilities. All the calculations performed in BEAN include ionic strength and finite ionic radius effects, and the solver handles species with arbitrary valence. The tool further includes a searchable database of 521 commonly used electrolytes. BEAN is available at microfluidics.stanford.edu/bean.This study introduces a novel tool that integrates known ITP steady-state equations with a highly parallel computational framework, an electrolyte database, and a web-based interface. BEAN requires no license nor compilation, and its parallel computations are performed automatically without specific implementation needed from the user. This enables users to screen wide ranges of experimental conditions in the design of ITP experiments.SIGNIFICANCEThis study introduces a novel tool that integrates known ITP steady-state equations with a highly parallel computational framework, an electrolyte database, and a web-based interface. BEAN requires no license nor compilation, and its parallel computations are performed automatically without specific implementation needed from the user. This enables users to screen wide ranges of experimental conditions in the design of ITP experiments.
Isotachophoresis (ITP) is a well-established electrokinetic method for separation and preconcentration of analytes. Several simulation tools for ITP have been published, but their use for experimental design is limited by the computational time for a single run and/or by the number of conditions that can be investigated per simulation run. A large fraction of the existing solvers also do not account for ionic strength effects, which can influence whether an analyte focuses in ITP. There is currently no publicly available tool for the easy and rapid design of ITP experiments. We present a rapid, highly parallelized steady-state solver for the design of buffer electrolytes in ITP experiments. The tool is called Browser-based Electrolyte Analyses for ITP (BEAN). BEAN is designed to facilitate the evaluation and identification of functional buffer chemistries for ITP. Given a user-defined chemistry system, BEAN solves a set of coupled, non-linear integral conservation equations to determine whether a specific analyte is focused by the ITP system, and estimates quantities of interest in the design of related ITP processes. These quantities include zone concentrations, pH, and effective (observable) mobility values. BEAN also computes 972 variations of the specified ITP chemistry, including a broad range of buffer titrations and ion mobilities. All the calculations performed in BEAN include ionic strength and finite ionic radius effects, and the solver handles species with arbitrary valence. The tool further includes a searchable database of 521 commonly used electrolytes. BEAN is available at microfluidics.stanford.edu/bean. This study introduces a novel tool that integrates known ITP steady-state equations with a highly parallel computational framework, an electrolyte database, and a web-based interface. BEAN requires no license nor compilation, and its parallel computations are performed automatically without specific implementation needed from the user. This enables users to screen wide ranges of experimental conditions in the design of ITP experiments. [Display omitted] •We introduce a new online simulation tool to design isotachophoresis experiments.•The tool includes an electrolyte database and accounts for ionic strength effects.•The tool provides an effective mobility vs. pH plot to review focusing conditions.•Users can benchmark 972 variations of chemistry to optimize their system.•Parallel simulations are implemented using AWS cloud computing.
Isotachophoresis (ITP) is a well-established electrokinetic method for separation and preconcentration of analytes. Several simulation tools for ITP have been published, but their use for experimental design is limited by the computational time for a single run and/or by the number of conditions that can be investigated per simulation run. A large fraction of the existing solvers also do not account for ionic strength effects, which can influence whether an analyte focuses in ITP. There is currently no publicly available tool for the easy and rapid design of ITP experiments. We present a rapid, highly parallelized steady-state solver for the design of buffer electrolytes in ITP experiments. The tool is called Browser-based Electrolyte Analyses for ITP (BEAN). BEAN is designed to facilitate the evaluation and identification of functional buffer chemistries for ITP. Given a user-defined chemistry system, BEAN solves a set of coupled, non-linear integral conservation equations to determine whether a specific analyte is focused by the ITP system, and estimates quantities of interest in the design of related ITP processes. These quantities include zone concentrations, pH, and effective (observable) mobility values. BEAN also computes 972 variations of the specified ITP chemistry, including a broad range of buffer titrations and ion mobilities. All the calculations performed in BEAN include ionic strength and finite ionic radius effects, and the solver handles species with arbitrary valence. The tool further includes a searchable database of 521 commonly used electrolytes. BEAN is available at microfluidics.stanford.edu/bean. This study introduces a novel tool that integrates known ITP steady-state equations with a highly parallel computational framework, an electrolyte database, and a web-based interface. BEAN requires no license nor compilation, and its parallel computations are performed automatically without specific implementation needed from the user. This enables users to screen wide ranges of experimental conditions in the design of ITP experiments.
ArticleNumber 343553
Author Bahga, Supreet S.
Jangra, Amit
Santiago, Juan G.
Schwarzbach, Adar
Avaro, Alexandre S.
Author_xml – sequence: 1
  givenname: Alexandre S.
  orcidid: 0000-0003-1922-3629
  surname: Avaro
  fullname: Avaro, Alexandre S.
  organization: Department of Mechanical Engineering, Stanford University, 488 Escondido Mall, Stanford, CA, 94305, USA
– sequence: 2
  givenname: Adar
  orcidid: 0009-0007-3709-5479
  surname: Schwarzbach
  fullname: Schwarzbach, Adar
  organization: Department of Computer Science, Duke University, 308 Research Drive, Durham, NC, 27708, USA
– sequence: 3
  givenname: Amit
  surname: Jangra
  fullname: Jangra, Amit
  organization: Department of Mechanical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110 016, India
– sequence: 4
  givenname: Supreet S.
  surname: Bahga
  fullname: Bahga, Supreet S.
  organization: Department of Mechanical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110 016, India
– sequence: 5
  givenname: Juan G.
  orcidid: 0000-0001-8652-5411
  surname: Santiago
  fullname: Santiago, Juan G.
  email: juan.santiago@stanford.edu
  organization: Department of Mechanical Engineering, Stanford University, 488 Escondido Mall, Stanford, CA, 94305, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39800509$$D View this record in MEDLINE/PubMed
BookMark eNp9kMFOwzAMhiM0BBvwAFxQjlw6nCZpM3FCEzAkBBc4R1nqsExZU5IOwdvTacCRk2Xr-y37m5BRG1sk5JzBlAGrrtZTY820hFJMueBS8gMyZqrmheClGJExAPCirGo4JpOc10NbMhBH5JjPFICE2Zg8LfzbKnzRziQTAgaa_WYbTO9jS_sYA3Ux0X6FtMHs31oaHfU59sauYreKaRhmip8dJr_Bts-n5NCZkPHsp56Q17vbl_mieHy-f5jfPBaWg-yLBpclKiYrIRxrOIKrnSylUrVQpqkbqZbDf6gsOIfA7bLitlY1zLi01rEZPyGX-71diu9bzL3e-GwxBNNi3GbNmRRKKV7t0IsfdLvcYKO74VSTvvSvgwFge8CmmHNC94cw0DvPeq0Hz3rnWe89D5nrfQaHJz88Jp2tx9Zi4xPaXjfR_5P-Bm48hNE
Cites_doi 10.1016/S0021-9673(01)88396-5
10.1002/elps.202100048
10.1039/b906468k
10.1080/10408348108085511
10.1016/S0021-9673(00)88777-4
10.1016/S0021-9673(01)88397-7
10.1017/jfm.2011.139
10.1016/j.chroma.2013.12.027
10.1021/acs.analchem.1c03925
10.1016/S0021-9673(00)90099-2
10.1016/S0021-9673(01)90818-0
10.1002/elps.200900560
10.1016/S0021-9673(01)94374-2
10.1016/S0021-9673(00)80225-3
10.1039/b906465f
10.1002/elps.202300198
10.1021/j150341a001
10.1016/S0021-9673(01)94355-9
10.1021/acs.chemrev.1c00640
10.1002/elps.201300021
10.1073/pnas.1205004109
10.1002/elps.202100191
10.1021/ac970513x
10.1002/elps.200600396
10.1039/C7LC00852J
10.1016/S0021-9673(01)90681-8
10.1039/c004120c
10.1016/j.chroma.2008.12.022
10.1021/acs.analchem.7b00725
10.1073/pnas.2010254117
10.1109/MNANO.2020.2966028
10.1002/elps.202100279
10.1002/aic.690320206
ContentType Journal Article
Copyright 2024
Copyright © 2024. Published by Elsevier B.V.
Copyright_xml – notice: 2024
– notice: Copyright © 2024. Published by Elsevier B.V.
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1016/j.aca.2024.343553
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1873-4324
ExternalDocumentID 39800509
10_1016_j_aca_2024_343553
S0003267024013540
Genre Journal Article
GroupedDBID ---
--K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHBH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARLI
AAXKI
AAXUO
ABFNM
ABFRF
ABFYP
ABGSF
ABJNI
ABLST
ABMAC
ABUDA
ACBEA
ACCUC
ACDAQ
ACGFO
ACGFS
ACIWK
ACNCT
ACPRK
ACRLP
ADBBV
ADECG
ADEZE
ADUVX
AEBSH
AEFWE
AEHWI
AEIPS
AEKER
AENEX
AFJKZ
AFKWA
AFRAH
AFTJW
AFXIZ
AFZHZ
AGHFR
AGUBO
AGYEJ
AHEUO
AIEXJ
AIKHN
AITUG
AJOXV
AJSZI
AKIFW
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLECG
BLXMC
CS3
EBS
EFJIC
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
K-O
KCYFY
KOM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SCC
SCH
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSJ
SSK
SSU
SSZ
T5K
TN5
TWZ
UPT
WH7
YK3
ZMT
~02
~G-
.GJ
3O-
53G
9DU
AAQXK
AATTM
AAYJJ
AAYWO
AAYXX
ABDPE
ABEFU
ABWVN
ABXDB
ACKIV
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEUPX
AFPUW
AGQPQ
AGRDE
AHHHB
AI.
AIGII
AIIUN
AJQLL
AKBMS
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EFLBG
EJD
FA8
FEDTE
FGOYB
HMU
HVGLF
HZ~
H~9
M36
M41
MVM
NHB
R2-
SCB
T9H
UQL
VH1
WUQ
XOL
XPP
ZCG
ZXP
ZY4
~HD
NPM
7X8
ID FETCH-LOGICAL-c305t-deb2e815644f1d3e0f7f52588748ad7d58b016e8c0ffe03cb63c7870935ccf193
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001393784100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0003-2670
1873-4324
IngestDate Sun Sep 28 02:35:06 EDT 2025
Wed Feb 19 02:00:28 EST 2025
Sat Nov 29 02:29:01 EST 2025
Sat Jan 18 16:10:51 EST 2025
IsPeerReviewed true
IsScholarly true
Keywords Parallel computation
Isotachophoresis
Simulation tool
Ionic strength
Language English
License Copyright © 2024. Published by Elsevier B.V.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c305t-deb2e815644f1d3e0f7f52588748ad7d58b016e8c0ffe03cb63c7870935ccf193
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0009-0007-3709-5479
0000-0001-8652-5411
0000-0003-1922-3629
PMID 39800509
PQID 3154888369
PQPubID 23479
ParticipantIDs proquest_miscellaneous_3154888369
pubmed_primary_39800509
crossref_primary_10_1016_j_aca_2024_343553
elsevier_sciencedirect_doi_10_1016_j_aca_2024_343553
PublicationCentury 2000
PublicationDate 2025-02-01
2025-02-00
2025-Feb-01
20250201
PublicationDateYYYYMMDD 2025-02-01
PublicationDate_xml – month: 02
  year: 2025
  text: 2025-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Analytica chimica acta
PublicationTitleAlternate Anal Chim Acta
PublicationYear 2025
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Hirokawa, Nishino, Aoki, Kiso, Sawamoto, Yagi, Akiyama (bib27) 1983; 271
Hirokawa, Kiso (bib22) 1982; 252
Khnouf, Han (bib5) 2020; 14
Ramachandran, Santiago (bib1) 2022; 122
Gebauer, Malá, Boček (bib9) 2007; 28
Smejkal, Bottenus, Breadmore, Guijt, Ivory, Foret, Macka (bib3) 2013; 34
Thormann, Mosher (bib11) 2022; 43
Avaro, Sun, Jiang, Bahga, Santiago (bib19) 2021; 93
Garcia-Schwarz, Bercovici, Marshall, Santiago (bib23) 2011; 679
Jangra, Shriyam, Santiago, Bahga (bib13) 2024; 45
Gebauer, Bocek (bib14) 1983; 261
Persat, Chambers, Santiago (bib26) 2009; 9
Hirokawa, Kabayashi, Kiso (bib29) 1985; 318
Yalkowsky, He, Jain (bib33) 2010
Hjalmarsson, Everaerts (bib32) 1981; 11
Thormann, Zhang, Caslavska, Gebauer, Mosher (bib16) 1998; 70
Bercovici, Lele, Santiago (bib17) 2009; 1216
Hirokawa, Gojo, Kiso (bib30) 1986; 369
Eid, Santiago (bib10) 2017; 18
Loison, Boutigny (bib35) 2017
Bahga, Bercovici, Santiago (bib21) 2010; 31
Hirokawa, Nishino, Kiso (bib28) 1982; 252
Křivánková, Foret, Gebauer, Boček (bib34) 1987; 390
Gaš, Bravenec (bib15) 2021; 42
Rogacs, Marshall, Santiago (bib2) 2014; 1335
Kaigala, Bercovici, Behnam, Elliott, Santiago, Backhouse (bib8) 2010; 10
Persat, Suss, Santiago (bib24) 2009; 9
Voet, Voet (bib36) 2011
Bahga, Gupta (bib18) 2022; 43
Paratore, Zeidman Kalman, Rosenfeld, Kaigala, Bercovici (bib4) 2017; 89
Saville, Palusinski (bib20) 1986; 32
Hirokawa, Gojo, Kiso (bib31) 1987; 390
Ramachandran, Huyke, Sharma, Sahoo, Huang, Banaei, Pinsky, Santiago (bib7) 2020; 117
Beckers, Everaerts (bib12) 1972; 68
Bercovici, Han, Liao, Santiago (bib6) 2012; 109
Onsager, Fuoss (bib25) 1932; 36
Rogacs (10.1016/j.aca.2024.343553_bib2) 2014; 1335
Jangra (10.1016/j.aca.2024.343553_bib13) 2024; 45
Ramachandran (10.1016/j.aca.2024.343553_bib1) 2022; 122
Hirokawa (10.1016/j.aca.2024.343553_bib27) 1983; 271
Hirokawa (10.1016/j.aca.2024.343553_bib28) 1982; 252
Thormann (10.1016/j.aca.2024.343553_bib11) 2022; 43
Loison (10.1016/j.aca.2024.343553_bib35) 2017
Hjalmarsson (10.1016/j.aca.2024.343553_bib32) 1981; 11
Eid (10.1016/j.aca.2024.343553_bib10) 2017; 18
Hirokawa (10.1016/j.aca.2024.343553_bib31) 1987; 390
Křivánková (10.1016/j.aca.2024.343553_bib34) 1987; 390
Onsager (10.1016/j.aca.2024.343553_bib25) 1932; 36
Khnouf (10.1016/j.aca.2024.343553_bib5) 2020; 14
Gaš (10.1016/j.aca.2024.343553_bib15) 2021; 42
Persat (10.1016/j.aca.2024.343553_bib24) 2009; 9
Hirokawa (10.1016/j.aca.2024.343553_bib30) 1986; 369
Avaro (10.1016/j.aca.2024.343553_bib19) 2021; 93
Voet (10.1016/j.aca.2024.343553_bib36) 2011
Ramachandran (10.1016/j.aca.2024.343553_bib7) 2020; 117
Smejkal (10.1016/j.aca.2024.343553_bib3) 2013; 34
Persat (10.1016/j.aca.2024.343553_bib26) 2009; 9
Bercovici (10.1016/j.aca.2024.343553_bib17) 2009; 1216
Bahga (10.1016/j.aca.2024.343553_bib18) 2022; 43
Thormann (10.1016/j.aca.2024.343553_bib16) 1998; 70
Saville (10.1016/j.aca.2024.343553_bib20) 1986; 32
Bahga (10.1016/j.aca.2024.343553_bib21) 2010; 31
Paratore (10.1016/j.aca.2024.343553_bib4) 2017; 89
Hirokawa (10.1016/j.aca.2024.343553_bib22) 1982; 252
Garcia-Schwarz (10.1016/j.aca.2024.343553_bib23) 2011; 679
Yalkowsky (10.1016/j.aca.2024.343553_bib33) 2010
Gebauer (10.1016/j.aca.2024.343553_bib9) 2007; 28
Bercovici (10.1016/j.aca.2024.343553_bib6) 2012; 109
Kaigala (10.1016/j.aca.2024.343553_bib8) 2010; 10
Beckers (10.1016/j.aca.2024.343553_bib12) 1972; 68
Hirokawa (10.1016/j.aca.2024.343553_bib29) 1985; 318
Gebauer (10.1016/j.aca.2024.343553_bib14) 1983; 261
References_xml – volume: 18
  start-page: 11
  year: 2017
  end-page: 26
  ident: bib10
  article-title: Isotachophoresis applied to biomolecular reactions
  publication-title: Lab Chip
– volume: 45
  start-page: 599
  year: 2024
  end-page: 608
  ident: bib13
  article-title: A neural network model for rapid prediction of analyte focusing in isotachophoresis
  publication-title: Electrophoresis
– volume: 70
  start-page: 549
  year: 1998
  end-page: 562
  ident: bib16
  article-title: Modeling of the impact of ionic strength on the electroosmotic flow in capillary electrophoresis with uniform and discontinuous buffer systems
  publication-title: Anal. Chem.
– year: 2011
  ident: bib36
  article-title: Biochemistry
– volume: 89
  start-page: 7373
  year: 2017
  end-page: 7381
  ident: bib4
  article-title: Isotachophoresis-based surface immunoassay
  publication-title: Anal. Chem.
– volume: 43
  start-page: 688
  year: 2022
  end-page: 695
  ident: bib18
  article-title: Electrophoresis simulations using Chebyshev pseudo-spectral method on a moving mesh
  publication-title: Electrophoresis
– volume: 31
  start-page: 910
  year: 2010
  end-page: 919
  ident: bib21
  article-title: Ionic strength effects on electrophoretic focusing and separations
  publication-title: Electrophoresis
– volume: 34
  start-page: 1493
  year: 2013
  end-page: 1509
  ident: bib3
  article-title: Microfluidic isotachophoresis: a review
  publication-title: Electrophoresis
– volume: 14
  start-page: 6
  year: 2020
  end-page: 17
  ident: bib5
  article-title: Isotachophoresis-enhanced immunoassays: challenges and opportunities
  publication-title: IEEE Nanotechnol. Mag.
– volume: 109
  start-page: 11127
  year: 2012
  end-page: 11132
  ident: bib6
  article-title: Rapid hybridization of nucleic acids using isotachophoresis
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
– volume: 9
  start-page: 2454
  year: 2009
  end-page: 2469
  ident: bib24
  article-title: Basic principles of electrolyte chemistry for microfluidic electrokinetics. Part II: coupling between ion mobility, electrolysis, and acid-base equilibria
  publication-title: Lab Chip
– volume: 1216
  start-page: 1008
  year: 2009
  end-page: 1018
  ident: bib17
  article-title: Open source simulation tool for electrophoretic stacking, focusing, and separation
  publication-title: J. Chromatogr. A
– year: 2010
  ident: bib33
  article-title: Handbook of Aqueous Solubility Data
– volume: 117
  start-page: 29518
  year: 2020
  end-page: 29525
  ident: bib7
  article-title: Electric field-driven microfluidics for rapid CRISPR-based diagnostics and its application to detection of SARS-CoV-2
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
– volume: 9
  start-page: 2437
  year: 2009
  end-page: 2453
  ident: bib26
  article-title: Basic principles of electrolyte chemistry for microfluidic electrokinetics. Part I: acid-base equilibria and pH buffers
  publication-title: Lab Chip
– volume: 1335
  start-page: 105
  year: 2014
  end-page: 120
  ident: bib2
  article-title: Purification of nucleic acids using isotachophoresis
  publication-title: J. Chromatogr. A
– volume: 390
  start-page: 3
  year: 1987
  end-page: 16
  ident: bib34
  article-title: Selection of electrolyte systems in isotachophoresis
  publication-title: J. Chromatogr.
– volume: 11
  start-page: 261
  year: 1981
  end-page: 352
  ident: bib32
  article-title: Capillary isotachophoresis, C R C
  publication-title: Crit. Rev. Anal. Chem.
– volume: 252
  start-page: 33
  year: 1982
  end-page: 48
  ident: bib22
  article-title: Isotachophoretic determination of mobility and pKa, by means of computer simulation
  publication-title: J. Chromatogr.
– volume: 122
  start-page: 12904
  year: 2022
  end-page: 12976
  ident: bib1
  article-title: Isotachophoresis: theory and microfluidic applications
  publication-title: Chem. Rev.
– volume: 43
  start-page: 10
  year: 2022
  end-page: 36
  ident: bib11
  article-title: Dynamic computer simulations of electrophoresis: 2010–2020
  publication-title: Electrophoresis
– volume: 42
  start-page: 1291
  year: 2021
  end-page: 1299
  ident: bib15
  article-title: Simul 6: a fast dynamic simulator of electromigration
  publication-title: Electrophoresis
– volume: 390
  start-page: 201
  year: 1987
  end-page: 223
  ident: bib31
  article-title: Isotachophoretic determination of mobility and pKa by means of computer simulation: V. Evaluation of m0 and pKa of twenty-eight dipeptides and assessment of separability
  publication-title: J. Chromatogr. A
– volume: 318
  start-page: 195
  year: 1985
  end-page: 210
  ident: bib29
  article-title: Isotachophoretic determination of mobility and pKa by means of computer simulation: III. Evaluation of mobility and pKa of fifteen nucleotides and seven phosphorus oxoacids and their isotachophoretic separation
  publication-title: J. Chromatogr. A
– volume: 10
  start-page: 2242
  year: 2010
  end-page: 2250
  ident: bib8
  article-title: Miniaturized system for isotachophoresis assays
  publication-title: Lab Chip
– volume: 32
  start-page: 207
  year: 1986
  end-page: 214
  ident: bib20
  article-title: Theory of electrophoretic separations. Part I: formulation of a mathematical model
  publication-title: AIChE J.
– volume: 36
  start-page: 2689
  year: 1932
  end-page: 2778
  ident: bib25
  article-title: Irreversible processes in electrolytes. Diffusion, conductance, and viscous flow in arbitrary mixtures of strong electrolytes
  publication-title: J. Phys. Chem.
– volume: 369
  start-page: 59
  year: 1986
  end-page: 81
  ident: bib30
  article-title: Isotachophoretic determination of mobility and pKa by means of computer simulation: IV. Evaluation of m0 and pKa, of twenty-six amino acids and assessment of the separability
  publication-title: J. Chromatogr. A
– volume: 261
  start-page: 49
  year: 1983
  end-page: 65
  ident: bib14
  article-title: Zone order in isotachophoresis the concept of the zone existence diagram and its use in cationic systems
  publication-title: J. Chromatogr.
– volume: 93
  start-page: 15768
  year: 2021
  end-page: 15774
  ident: bib19
  article-title: Web-based open-source tool for isotachophoresis
  publication-title: Anal. Chem.
– volume: 68
  start-page: 207
  year: 1972
  end-page: 230
  ident: bib12
  article-title: Isotachophoresis: the qualitative separation of cation mixtures
  publication-title: J. Chromatogr. A
– volume: 679
  start-page: 455
  year: 2011
  end-page: 475
  ident: bib23
  article-title: Sample dispersion in isotachophoresis
  publication-title: J. Fluid Mech.
– volume: 28
  start-page: 26
  year: 2007
  end-page: 32
  ident: bib9
  article-title: Recent progress in capillary ITP
  publication-title: Electrophoresis
– year: 2017
  ident: bib35
  article-title: flozz.github
– volume: 271
  start-page: D1
  year: 1983
  end-page: D106
  ident: bib27
  article-title: Table of isotachophoretic indices: I. Simulated qualitative and quantitative indices of 287 anionic substances in the range pH 3–10
  publication-title: J. Chromatogr. A
– volume: 252
  start-page: 49
  year: 1982
  end-page: 65
  ident: bib28
  article-title: Isotachophoretic determination of mobility and pKa by means of computer simulation: II. Evaluation of m0 and pKa of 65 anions
  publication-title: J. Chromatogr. A
– volume: 252
  start-page: 33
  year: 1982
  ident: 10.1016/j.aca.2024.343553_bib22
  article-title: Isotachophoretic determination of mobility and pKa, by means of computer simulation
  publication-title: J. Chromatogr.
  doi: 10.1016/S0021-9673(01)88396-5
– volume: 42
  start-page: 1291
  year: 2021
  ident: 10.1016/j.aca.2024.343553_bib15
  article-title: Simul 6: a fast dynamic simulator of electromigration
  publication-title: Electrophoresis
  doi: 10.1002/elps.202100048
– volume: 9
  start-page: 2454
  year: 2009
  ident: 10.1016/j.aca.2024.343553_bib24
  article-title: Basic principles of electrolyte chemistry for microfluidic electrokinetics. Part II: coupling between ion mobility, electrolysis, and acid-base equilibria
  publication-title: Lab Chip
  doi: 10.1039/b906468k
– volume: 11
  start-page: 261
  year: 1981
  ident: 10.1016/j.aca.2024.343553_bib32
  article-title: Capillary isotachophoresis, C R C
  publication-title: Crit. Rev. Anal. Chem.
  doi: 10.1080/10408348108085511
– volume: 68
  start-page: 207
  year: 1972
  ident: 10.1016/j.aca.2024.343553_bib12
  article-title: Isotachophoresis: the qualitative separation of cation mixtures
  publication-title: J. Chromatogr. A
  doi: 10.1016/S0021-9673(00)88777-4
– volume: 252
  start-page: 49
  year: 1982
  ident: 10.1016/j.aca.2024.343553_bib28
  article-title: Isotachophoretic determination of mobility and pKa by means of computer simulation: II. Evaluation of m0 and pKa of 65 anions
  publication-title: J. Chromatogr. A
  doi: 10.1016/S0021-9673(01)88397-7
– volume: 679
  start-page: 455
  year: 2011
  ident: 10.1016/j.aca.2024.343553_bib23
  article-title: Sample dispersion in isotachophoresis
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2011.139
– volume: 1335
  start-page: 105
  year: 2014
  ident: 10.1016/j.aca.2024.343553_bib2
  article-title: Purification of nucleic acids using isotachophoresis
  publication-title: J. Chromatogr. A
  doi: 10.1016/j.chroma.2013.12.027
– volume: 93
  start-page: 15768
  year: 2021
  ident: 10.1016/j.aca.2024.343553_bib19
  article-title: Web-based open-source tool for isotachophoresis
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.1c03925
– volume: 369
  start-page: 59
  year: 1986
  ident: 10.1016/j.aca.2024.343553_bib30
  article-title: Isotachophoretic determination of mobility and pKa by means of computer simulation: IV. Evaluation of m0 and pKa, of twenty-six amino acids and assessment of the separability
  publication-title: J. Chromatogr. A
  doi: 10.1016/S0021-9673(00)90099-2
– volume: 261
  start-page: 49
  year: 1983
  ident: 10.1016/j.aca.2024.343553_bib14
  article-title: Zone order in isotachophoresis the concept of the zone existence diagram and its use in cationic systems
  publication-title: J. Chromatogr.
  doi: 10.1016/S0021-9673(01)90818-0
– volume: 31
  start-page: 910
  year: 2010
  ident: 10.1016/j.aca.2024.343553_bib21
  article-title: Ionic strength effects on electrophoretic focusing and separations
  publication-title: Electrophoresis
  doi: 10.1002/elps.200900560
– volume: 390
  start-page: 201
  year: 1987
  ident: 10.1016/j.aca.2024.343553_bib31
  article-title: Isotachophoretic determination of mobility and pKa by means of computer simulation: V. Evaluation of m0 and pKa of twenty-eight dipeptides and assessment of separability
  publication-title: J. Chromatogr. A
  doi: 10.1016/S0021-9673(01)94374-2
– volume: 271
  start-page: D1
  year: 1983
  ident: 10.1016/j.aca.2024.343553_bib27
  article-title: Table of isotachophoretic indices: I. Simulated qualitative and quantitative indices of 287 anionic substances in the range pH 3–10
  publication-title: J. Chromatogr. A
  doi: 10.1016/S0021-9673(00)80225-3
– volume: 9
  start-page: 2437
  year: 2009
  ident: 10.1016/j.aca.2024.343553_bib26
  article-title: Basic principles of electrolyte chemistry for microfluidic electrokinetics. Part I: acid-base equilibria and pH buffers
  publication-title: Lab Chip
  doi: 10.1039/b906465f
– volume: 45
  start-page: 599
  year: 2024
  ident: 10.1016/j.aca.2024.343553_bib13
  article-title: A neural network model for rapid prediction of analyte focusing in isotachophoresis
  publication-title: Electrophoresis
  doi: 10.1002/elps.202300198
– volume: 36
  start-page: 2689
  year: 1932
  ident: 10.1016/j.aca.2024.343553_bib25
  article-title: Irreversible processes in electrolytes. Diffusion, conductance, and viscous flow in arbitrary mixtures of strong electrolytes
  publication-title: J. Phys. Chem.
  doi: 10.1021/j150341a001
– volume: 390
  start-page: 3
  year: 1987
  ident: 10.1016/j.aca.2024.343553_bib34
  article-title: Selection of electrolyte systems in isotachophoresis
  publication-title: J. Chromatogr.
  doi: 10.1016/S0021-9673(01)94355-9
– volume: 122
  start-page: 12904
  year: 2022
  ident: 10.1016/j.aca.2024.343553_bib1
  article-title: Isotachophoresis: theory and microfluidic applications
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.1c00640
– volume: 34
  start-page: 1493
  year: 2013
  ident: 10.1016/j.aca.2024.343553_bib3
  article-title: Microfluidic isotachophoresis: a review
  publication-title: Electrophoresis
  doi: 10.1002/elps.201300021
– volume: 109
  start-page: 11127
  year: 2012
  ident: 10.1016/j.aca.2024.343553_bib6
  article-title: Rapid hybridization of nucleic acids using isotachophoresis
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1205004109
– volume: 43
  start-page: 10
  year: 2022
  ident: 10.1016/j.aca.2024.343553_bib11
  article-title: Dynamic computer simulations of electrophoresis: 2010–2020
  publication-title: Electrophoresis
  doi: 10.1002/elps.202100191
– volume: 70
  start-page: 549
  year: 1998
  ident: 10.1016/j.aca.2024.343553_bib16
  article-title: Modeling of the impact of ionic strength on the electroosmotic flow in capillary electrophoresis with uniform and discontinuous buffer systems
  publication-title: Anal. Chem.
  doi: 10.1021/ac970513x
– volume: 28
  start-page: 26
  year: 2007
  ident: 10.1016/j.aca.2024.343553_bib9
  article-title: Recent progress in capillary ITP
  publication-title: Electrophoresis
  doi: 10.1002/elps.200600396
– year: 2011
  ident: 10.1016/j.aca.2024.343553_bib36
– volume: 18
  start-page: 11
  year: 2017
  ident: 10.1016/j.aca.2024.343553_bib10
  article-title: Isotachophoresis applied to biomolecular reactions
  publication-title: Lab Chip
  doi: 10.1039/C7LC00852J
– volume: 318
  start-page: 195
  year: 1985
  ident: 10.1016/j.aca.2024.343553_bib29
  article-title: Isotachophoretic determination of mobility and pKa by means of computer simulation: III. Evaluation of mobility and pKa of fifteen nucleotides and seven phosphorus oxoacids and their isotachophoretic separation
  publication-title: J. Chromatogr. A
  doi: 10.1016/S0021-9673(01)90681-8
– volume: 10
  start-page: 2242
  year: 2010
  ident: 10.1016/j.aca.2024.343553_bib8
  article-title: Miniaturized system for isotachophoresis assays
  publication-title: Lab Chip
  doi: 10.1039/c004120c
– volume: 1216
  start-page: 1008
  year: 2009
  ident: 10.1016/j.aca.2024.343553_bib17
  article-title: Open source simulation tool for electrophoretic stacking, focusing, and separation
  publication-title: J. Chromatogr. A
  doi: 10.1016/j.chroma.2008.12.022
– year: 2017
  ident: 10.1016/j.aca.2024.343553_bib35
– volume: 89
  start-page: 7373
  year: 2017
  ident: 10.1016/j.aca.2024.343553_bib4
  article-title: Isotachophoresis-based surface immunoassay
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.7b00725
– volume: 117
  start-page: 29518
  year: 2020
  ident: 10.1016/j.aca.2024.343553_bib7
  article-title: Electric field-driven microfluidics for rapid CRISPR-based diagnostics and its application to detection of SARS-CoV-2
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.2010254117
– volume: 14
  start-page: 6
  year: 2020
  ident: 10.1016/j.aca.2024.343553_bib5
  article-title: Isotachophoresis-enhanced immunoassays: challenges and opportunities
  publication-title: IEEE Nanotechnol. Mag.
  doi: 10.1109/MNANO.2020.2966028
– volume: 43
  start-page: 688
  year: 2022
  ident: 10.1016/j.aca.2024.343553_bib18
  article-title: Electrophoresis simulations using Chebyshev pseudo-spectral method on a moving mesh
  publication-title: Electrophoresis
  doi: 10.1002/elps.202100279
– volume: 32
  start-page: 207
  year: 1986
  ident: 10.1016/j.aca.2024.343553_bib20
  article-title: Theory of electrophoretic separations. Part I: formulation of a mathematical model
  publication-title: AIChE J.
  doi: 10.1002/aic.690320206
– year: 2010
  ident: 10.1016/j.aca.2024.343553_bib33
SSID ssj0002104
Score 2.470082
Snippet Isotachophoresis (ITP) is a well-established electrokinetic method for separation and preconcentration of analytes. Several simulation tools for ITP have been...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Publisher
StartPage 343553
SubjectTerms Ionic strength
Isotachophoresis
Parallel computation
Simulation tool
Title Highly parallel simulation tool for the design of isotachophoresis experiments
URI https://dx.doi.org/10.1016/j.aca.2024.343553
https://www.ncbi.nlm.nih.gov/pubmed/39800509
https://www.proquest.com/docview/3154888369
Volume 1337
WOSCitedRecordID wos001393784100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-4324
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002104
  issn: 0003-2670
  databaseCode: AIEXJ
  dateStart: 19950110
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LaxsxEBZNUmgvpe-6j6BCTw0bnJV2Vzq6IaXNwRSSgm9Cq0ftkOyaXTsN_fUdPXbtuLg0h14Ws9hC1nyMZkaj70PoQ5EaCk4vT6ziJoH8SyesLHRCSp5zlTNFqPRiE8V4zCYT_i3WdFsvJ1BUFbu54fP_amp4B8Z2V2fvYO5-UHgBn8Ho8ASzw_OfDO86N1zJQjZOJuXyoJ1dRYkuiDPry76vUPveDU8Z0dYLJ5oyn9aQfM_aNdr_dj149QQmrvbtroA7mgHHxNG79dG1vHVnpjEHZ4erc57pT9n8KmVQnhpp2TcFn8rqRxOqu1ezvgnnk5yGku_Zcu7PzeNYsUCRZl1P85rTJUmaB32Q3umSwPUS_SaBqC2QBv_h0kN14QLg5WiiUnq4-u5t-uyNba1vNuz62C4EDCHcECIMsYP20iLj4Av3Rl9PJqf9Dg5pMO2UFt3Eu9Nw3xe4MY9t8cy2fMXHLeeP0aOYcOBRAMoTdM9UT9GD407n7xkaB8DgDjB4BRjsAIMBMBgAgwNgcG3xJmDwGmCeo--fT86PvyRRZSNR4OsXiTZlajxnELVHmpihLWyWZrD5UCZ1oTNWwh83TA2tNUOiypwo5-U5yZSyEP-_QLtVXZlXCKtMW8oJYblxTHmG0VSnw1yrvKSWmWyAPnZrJeaBTEVstc4A0W41RYwGQ5QnABl_-9n7buUFLKQ7_pKVqZetIC47Z4zkfIBeBpP0syCceSak13eZ4Rv0cIX3t2h30SzNO3RfXS9mbbOPdooJ24_Q-g3duJSB
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Highly+parallel+simulation+tool+for+the+design+of+isotachophoresis+experiments&rft.jtitle=Analytica+chimica+acta&rft.au=Avaro%2C+Alexandre+S.&rft.au=Schwarzbach%2C+Adar&rft.au=Jangra%2C+Amit&rft.au=Bahga%2C+Supreet+S.&rft.date=2025-02-01&rft.issn=0003-2670&rft.volume=1337&rft.spage=343553&rft_id=info:doi/10.1016%2Fj.aca.2024.343553&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_aca_2024_343553
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-2670&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-2670&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-2670&client=summon