Parallel Selective Algorithms for Nonconvex Big Data Optimization

We propose a decomposition framework for the parallel optimization of the sum of a differentiable (possibly nonconvex) function and a (block) separable nonsmooth, convex one. The latter term is usually employed to enforce structure in the solution, typically sparsity. Our framework is very flexible...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on signal processing Ročník 63; číslo 7; s. 1874 - 1889
Hlavní autori: Facchinei, Francisco, Scutari, Gesualdo, Sagratella, Simone
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: IEEE 01.04.2015
Predmet:
ISSN:1053-587X, 1941-0476
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract We propose a decomposition framework for the parallel optimization of the sum of a differentiable (possibly nonconvex) function and a (block) separable nonsmooth, convex one. The latter term is usually employed to enforce structure in the solution, typically sparsity. Our framework is very flexible and includes both fully parallel Jacobi schemes and Gauss-Seidel (i.e., sequential) ones, as well as virtually all possibilities "in between" with only a subset of variables updated at each iteration. Our theoretical convergence results improve on existing ones, and numerical results on LASSO, logistic regression, and some nonconvex quadratic problems show that the new method consistently outperforms existing algorithms.
AbstractList We propose a decomposition framework for the parallel optimization of the sum of a differentiable (possibly nonconvex) function and a (block) separable nonsmooth, convex one. The latter term is usually employed to enforce structure in the solution, typically sparsity. Our framework is very flexible and includes both fully parallel Jacobi schemes and Gauss-Seidel (i.e., sequential) ones, as well as virtually all possibilities "in between" with only a subset of variables updated at each iteration. Our theoretical convergence results improve on existing ones, and numerical results on LASSO, logistic regression, and some nonconvex quadratic problems show that the new method consistently outperforms existing algorithms.
Author Scutari, Gesualdo
Sagratella, Simone
Facchinei, Francisco
Author_xml – sequence: 1
  givenname: Francisco
  surname: Facchinei
  fullname: Facchinei, Francisco
  email: facchinei@dis.uniroma1.it
  organization: Dept. of Comput., Control, & Manage. Eng., Univ. of Rome La Sapienza, Rome, Italy
– sequence: 2
  givenname: Gesualdo
  surname: Scutari
  fullname: Scutari, Gesualdo
  email: gesualdo@buffalo.edu
  organization: Dept. of Electr. Eng., State Univ. of New York at Buffalo, Buffalo, NY, USA
– sequence: 3
  givenname: Simone
  surname: Sagratella
  fullname: Sagratella, Simone
  email: sagratella@dis.uniroma1.it
  organization: Dept. of Comput., Control, & Manage. Eng., Univ. of Rome La Sapienza, Rome, Italy
BookMark eNp9kD1PwzAQQC1UJNrCjsTiP5Dij9ixx1A-pYpWapHYIie5FCM3rhyrAn49Ka0YGJjulnf39EZo0PoWELqkZEIp0der5WLCCBUTxrVWQp2gIdUpTUiayUG_E8ETobLXMzTqundCaJpqOUT5wgTjHDi8BAdVtDvAuVv7YOPbpsOND_jZt5Vvd_CBb-wa35po8Hwb7cZ-mWh9e45OG-M6uDjOMXq5v1tNH5PZ_OFpms-SihMRE8M5E5rJUpUZYUpzw7SpmayYrGlaN1pnAhQpjYFaKFBl70205JwbyjIKfIzI4W4VfNcFaIptsBsTPgtKin2Cok9Q7BMUxwQ9Iv8glY0_0jEY6_4Drw6gBYDfP723zqjk30Pnao4
CODEN ITPRED
CitedBy_id crossref_primary_10_1109_TCST_2018_2827990
crossref_primary_10_1109_ACCESS_2019_2926616
crossref_primary_10_22430_22565337_1344
crossref_primary_10_1007_s10107_018_01357_w
crossref_primary_10_1007_s41870_024_01801_5
crossref_primary_10_1631_FITEE_1800566
crossref_primary_10_1109_LSP_2018_2859596
crossref_primary_10_1109_TSP_2016_2637317
crossref_primary_10_1080_1206212X_2017_1417768
crossref_primary_10_1109_OJSP_2025_3528875
crossref_primary_10_1109_TAC_2022_3183036
crossref_primary_10_1007_s10898_019_00792_z
crossref_primary_10_1007_s10957_023_02328_8
crossref_primary_10_1109_TSP_2018_2868040
crossref_primary_10_1016_j_sigpro_2025_110077
crossref_primary_10_1007_s13369_016_2405_y
crossref_primary_10_1016_j_sigpro_2019_107433
crossref_primary_10_1109_TSIPN_2016_2561703
crossref_primary_10_1016_j_future_2018_06_008
crossref_primary_10_3390_fractalfract6120709
crossref_primary_10_1007_s12559_016_9439_z
crossref_primary_10_1109_TAC_2020_3033490
crossref_primary_10_1007_s10107_022_01836_1
crossref_primary_10_1109_JSTSP_2018_2877584
crossref_primary_10_1109_TAC_2016_2607023
crossref_primary_10_1007_s10107_019_01408_w
crossref_primary_10_1007_s10589_018_00057_7
crossref_primary_10_1287_moor_2020_1079
crossref_primary_10_1360_SSI_2025_0112
crossref_primary_10_31548_dopovidi2019_03_010
crossref_primary_10_1109_TCI_2022_3148062
crossref_primary_10_1109_TSIPN_2015_2448520
crossref_primary_10_1111_wre_12255
crossref_primary_10_1109_TNNLS_2020_3027381
crossref_primary_10_1007_s10589_018_9984_3
crossref_primary_10_1016_j_sigpro_2022_108459
crossref_primary_10_1371_journal_pcbi_1005538
crossref_primary_10_1109_TSP_2018_2818081
crossref_primary_10_1007_s11042_018_6391_9
crossref_primary_10_1109_TSP_2020_3001906
crossref_primary_10_1016_j_cviu_2022_103539
crossref_primary_10_1109_TSP_2020_3031056
crossref_primary_10_1109_TCNS_2017_2774010
crossref_primary_10_1016_j_ins_2018_10_005
crossref_primary_10_1109_TSP_2020_3033354
crossref_primary_10_1109_TSP_2016_2544743
crossref_primary_10_1109_ACCESS_2019_2925429
crossref_primary_10_1007_s00186_022_00799_5
crossref_primary_10_1080_02331934_2021_1939336
crossref_primary_10_1109_TNNLS_2017_2785361
crossref_primary_10_1016_j_neunet_2016_04_007
crossref_primary_10_1007_s10107_016_1072_9
crossref_primary_10_1109_TII_2021_3062040
crossref_primary_10_1016_j_neunet_2017_04_004
crossref_primary_10_1155_2017_3610283
crossref_primary_10_1016_j_tre_2018_03_011
crossref_primary_10_1016_j_frl_2018_08_001
crossref_primary_10_1109_TSP_2016_2531627
crossref_primary_10_1109_TAC_2020_3008713
crossref_primary_10_1109_TSP_2017_2684748
crossref_primary_10_1109_TWC_2015_2489640
crossref_primary_10_1109_TSP_2015_2452219
crossref_primary_10_1137_19M1259973
crossref_primary_10_1109_TSIPN_2016_2524588
crossref_primary_10_1109_TSP_2016_2601299
crossref_primary_10_1109_TSP_2019_2959240
crossref_primary_10_1109_TGRS_2018_2870486
crossref_primary_10_1007_s10589_018_9987_0
crossref_primary_10_1109_MSP_2015_2481563
crossref_primary_10_1109_TSP_2020_2986363
crossref_primary_10_1007_s11227_019_03129_5
crossref_primary_10_1109_JIOT_2021_3064341
crossref_primary_10_1109_TSP_2015_2436357
crossref_primary_10_1093_nar_gkx1246
crossref_primary_10_1109_TSIPN_2023_3239698
crossref_primary_10_1109_TMI_2019_2934125
crossref_primary_10_1109_TAC_2020_3027647
crossref_primary_10_1109_TWC_2022_3160051
Cites_doi 10.1109/ICASSP.2014.6854999
10.1016/j.sigpro.2011.01.012
10.1137/S105262349427577X
10.1109/TSP.2013.2293126
10.1007/BF00935173
10.1111/j.1467-9868.2007.00627.x
10.1137/080716542
10.3934/ipi.2009.3.487
10.1007/s10107-012-0629-5
10.1111/j.2517-6161.1996.tb02080.x
10.1145/1553374.1553463
10.1111/j.1467-9868.2005.00532.x
10.1007/s10107-012-0530-2
10.1007/s12532-013-0051-x
10.1007/s10107-007-0170-0
10.1093/bioinformatics/btg308
10.1007/BF00934554
10.1007/978-3-642-20192-9
10.1016/j.jprocont.2012.12.012
10.1109/TSP.2009.2016892
10.1137/100802001
10.1109/TAC.1978.1101718
10.1137/120891009
10.1080/00207728108963798
10.1109/ACSSC.2013.6810364
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
DOI 10.1109/TSP.2015.2399858
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1941-0476
EndPage 1889
ExternalDocumentID 10_1109_TSP_2015_2399858
7029716
Genre orig-research
GrantInformation_xml – fundername: MIUR project PLATINO (Grant Agreement
– fundername: CAREER
– fundername: USA National Science Foundation under Grants
  grantid: CMS 1218717
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
6IK
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
ACNCT
AENEX
AGQYO
AGSQL
AHBIQ
AJQPL
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
EBS
EJD
F5P
HZ~
IFIPE
IPLJI
JAVBF
LAI
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
3EH
53G
5VS
AAYXX
ABFSI
ACKIV
AETIX
AI.
AIBXA
AKJIK
ALLEH
CITATION
E.L
H~9
ICLAB
IFJZH
VH1
ID FETCH-LOGICAL-c305t-a3325926b8b702893a29ad26c26d14df9975e80baaed58e8b476096333a1271e3
IEDL.DBID RIE
ISICitedReferencesCount 129
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000350880900020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1053-587X
IngestDate Sat Nov 29 04:10:34 EST 2025
Tue Nov 18 22:35:49 EST 2025
Tue Aug 26 16:40:39 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c305t-a3325926b8b702893a29ad26c26d14df9975e80baaed58e8b476096333a1271e3
OpenAccessLink http://hdl.handle.net/11573/771792
PageCount 16
ParticipantIDs crossref_primary_10_1109_TSP_2015_2399858
crossref_citationtrail_10_1109_TSP_2015_2399858
ieee_primary_7029716
PublicationCentury 2000
PublicationDate 2015-April1,
2015-4-00
PublicationDateYYYYMMDD 2015-04-01
PublicationDate_xml – month: 04
  year: 2015
  text: 2015-April1,
  day: 01
PublicationDecade 2010
PublicationTitle IEEE transactions on signal processing
PublicationTitleAbbrev TSP
PublicationYear 2015
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
ref34
ref12
ref37
ref36
ref14
ref31
ref30
ref11
ref32
ref10
b hlmann (ref15) 2011
ref1
ref39
ref38
bradley (ref23) 2011
(ref16) 2011
bertsekas (ref33) 1989
deng (ref40) 2014
bach (ref17) 2011
tibshirani (ref2) 1996
necoara (ref25) 2013
lu (ref26) 2013
facchinei (ref35) 2003
yuan (ref5) 2010; 11
ref22
bertsekas (ref41) 2011
ref21
dhillon (ref19) 2011
scherrer (ref20) 2012
ref28
ref29
ref8
li (ref18) 2009; 3
ref9
ref4
richt rik (ref27) 2012
ref3
necoara (ref24) 2011
byrd (ref6) 2013
fountoulakis (ref7) 2013
References_xml – ident: ref1
  doi: 10.1109/ICASSP.2014.6854999
– ident: ref4
  doi: 10.1016/j.sigpro.2011.01.012
– ident: ref34
  doi: 10.1137/S105262349427577X
– ident: ref21
  doi: 10.1109/TSP.2013.2293126
– ident: ref39
  doi: 10.1007/BF00935173
– ident: ref30
  doi: 10.1111/j.1467-9868.2007.00627.x
– ident: ref11
  doi: 10.1137/080716542
– volume: 3
  start-page: 487
  year: 2009
  ident: ref18
  article-title: Coordinate descent optimization for <formula formulatype="inline"><tex Notation="TeX">$\ell 1$</tex></formula> minimization with application to compressed sensing; a greedy algorithm
  publication-title: Inverse Probl Imag
  doi: 10.3934/ipi.2009.3.487
– start-page: 2160
  year: 2011
  ident: ref19
  publication-title: Advances in Neural Information Processing Systems 24
– year: 2013
  ident: ref26
  publication-title: ?Randomized block coordinate non-monotone gradient method for a class of nonlinear programming ?
– ident: ref9
  doi: 10.1007/s10107-012-0629-5
– year: 2013
  ident: ref6
  publication-title: ?An inexact successive quadratic approximation method for convex L-1 regularized optimization ?
– start-page: 267
  year: 1996
  ident: ref2
  article-title: Regression shrinkage and selection via the lasso
  publication-title: J Roy Statist Soc Series B (Methodol )
  doi: 10.1111/j.2517-6161.1996.tb02080.x
– ident: ref31
  doi: 10.1145/1553374.1553463
– ident: ref28
  doi: 10.1111/j.1467-9868.2005.00532.x
– ident: ref32
  doi: 10.1007/s10107-012-0530-2
– volume: 11
  start-page: 3183
  year: 2010
  ident: ref5
  article-title: A comparison of optimization methods and software for large-scale l1-regularized linear classification
  publication-title: J Mach Learn Res
– ident: ref3
  doi: 10.1007/s12532-013-0051-x
– ident: ref10
  doi: 10.1007/s10107-007-0170-0
– year: 2014
  ident: ref40
  publication-title: ?Parallel multi-block ADMM with convergence ?
– ident: ref29
  doi: 10.1093/bioinformatics/btg308
– ident: ref37
  doi: 10.1007/BF00934554
– year: 2013
  ident: ref7
  publication-title: ?A second-order method for strongly convex L1-regularization problems ?
– year: 2011
  ident: ref23
  article-title: Parallel coordinate descent for l1-regularized loss minimization
  publication-title: Proc 28th Int Conf Mach Learn
– start-page: 1
  year: 2013
  ident: ref25
  publication-title: ?Distributed random coordinate descent method for composite minimization ?
– year: 2011
  ident: ref15
  publication-title: Statistics for High-Dimensional Data
  doi: 10.1007/978-3-642-20192-9
– year: 2011
  ident: ref17
  publication-title: Foundations and Trends in Machine Learning
– year: 2011
  ident: ref16
  publication-title: Optimization for Machine Learning
– ident: ref8
  doi: 10.1016/j.jprocont.2012.12.012
– start-page: 1
  year: 2011
  ident: ref24
  publication-title: ?A random coordinate descent method on large optimization problems with linear constraints ?
– ident: ref12
  doi: 10.1109/TSP.2009.2016892
– ident: ref22
  doi: 10.1137/100802001
– ident: ref36
  doi: 10.1109/TAC.1978.1101718
– start-page: 28
  year: 2012
  ident: ref20
  article-title: Feature clustering for accelerating parallel coordinate descent
  publication-title: Proc 26th Annu Conf Neural Inf Process Syst (NIPS)
– ident: ref14
  doi: 10.1137/120891009
– year: 2003
  ident: ref35
  publication-title: Finite-Dimensional Variational Inequalities and Complementarity Problem
– year: 2012
  ident: ref27
  publication-title: ?Parallel coordinate descent methods for big data optimization ?
– ident: ref38
  doi: 10.1080/00207728108963798
– year: 1989
  ident: ref33
  publication-title: Parallel and Distributed Computation Numerical Methods
– ident: ref13
  doi: 10.1109/ACSSC.2013.6810364
– year: 2011
  ident: ref41
  publication-title: Neuro-Dynamic Programming
SSID ssj0014496
Score 2.5527644
Snippet We propose a decomposition framework for the parallel optimization of the sum of a differentiable (possibly nonconvex) function and a (block) separable...
SourceID crossref
ieee
SourceType Enrichment Source
Index Database
Publisher
StartPage 1874
SubjectTerms Approximation methods
Convergence
distributed methods
Jacobi method
Jacobian matrices
LASSO
Optimization
Parallel optimization
Signal processing algorithms
sparse solution
variables selection
Vectors
Title Parallel Selective Algorithms for Nonconvex Big Data Optimization
URI https://ieeexplore.ieee.org/document/7029716
Volume 63
WOSCitedRecordID wos000350880900020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0476
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014496
  issn: 1053-587X
  databaseCode: RIE
  dateStart: 19910101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LS8MwGA_b8KAHX1OcL3LwItitbdImOc7H8CBzsCm7lTT9NgfbKl0n_vkmaVd2EMFbKfkg_JrH7-v3-CF0wyVl4CnhALjUoeAqR1LQ-8rX3Fhoj8Kz7YvfX1i_z8djMaihu6oWBgBs8hm0zaON5SepWptfZR1mlJa8sI7qjIVFrVYVMaDUanFpukCcgLPxJiTpis5oODA5XEHb1HFyI-6-dQVtaarYK6V38L_JHKL9kjribvGtj1ANlsdob6uhYBN1BzIz4ihzPLT6Nvoow935NM1m-cdihTVBxf10aTPNv_H9bIofZS7xqz42FmU95gl66z2NHp6dUiTBUXqr5o4kRHswfhjzmJmoIZG-kIkfKj9MPJpMhGABcDeWEpKAA48pC7XbQgiRns88IKeosUyXcIZwYNhYoggHzbJiKeIJITFAoCSEwldBC3U2uEWq7CBuhCzmkfUkXBFppCODdFQi3UK3lcVn0T3jj7FNA3I1rsT3_PfXF2jXGBc5NJeokWdruEI76iufrbJruzR-AHP-tWM
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JT8JAFH5BNFEPbmjEdQ5eTKy0nS4zR1wIRkQS0HBrptMHkgA1UIw_35mhEA7GxNukmTbNN9v35i0fwBUTXoiO5Bai7Vke2tISHqp15SpuzJVF4Zjyxe-NsNlk3S5vFeBmmQuDiCb4DG910_jyk1TO9FVZJdRKS06wButaOSvP1lr6DDzPqHEpwkAtn4XdhVPS5pVOu6WjuPxbncnJtLz7yiG0oqpiDpXa7v9-Zw92cvJIqvPR3ocCjg9ge6WkYAmqLTHR8ihD0jYKN2ozI9VhP50Mso_RlCiKSprp2MSaf5O7QZ88iEyQV7VxjPKMzEN4qz127utWLpNgSbVYM0tQqmwYN4hZHGq_IRUuF4kbSDdIHC_pcR76yOxYCEx8hiz2wkAZLpRS4bihg_QIiuN0jMdAfM3HEkkZKp4VCx73KI0RfSkw4K70y1BZ4BbJvIa4lrIYRsaWsHmkkI400lGOdBmul298zutn_NG3pEFe9svxPfn98SVs1jsvjajx1Hw-hS39oXlEzRkUs8kMz2FDfmWD6eTCTJMfFoq4rA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Parallel+Selective+Algorithms+for+Nonconvex+Big+Data+Optimization&rft.jtitle=IEEE+transactions+on+signal+processing&rft.au=Facchinei%2C+Francisco&rft.au=Scutari%2C+Gesualdo&rft.au=Sagratella%2C+Simone&rft.date=2015-04-01&rft.issn=1053-587X&rft.eissn=1941-0476&rft.volume=63&rft.issue=7&rft.spage=1874&rft.epage=1889&rft_id=info:doi/10.1109%2FTSP.2015.2399858&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TSP_2015_2399858
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-587X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-587X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-587X&client=summon