A unified framework for enhancing inverse finite element method through strain pre-extrapolation and sensor placement optimization

•A novel framework is developed to enhance iFEM accuracy and robustness with limited sensors.•A new strain pre-extrapolation technique, GPR-MCKF, is proposed, accounting for spatio-temporal correlation in measurements.•The FIM of extrapolated strain is derived as an objective function, linking GPR-M...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Mechanical systems and signal processing Ročník 234; s. 112836
Hlavní autori: Li, Kelu, Xiao, Longfei, Wei, Handi, Kou, Yufeng, Shan, Meng
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier Ltd 01.07.2025
Predmet:
ISSN:0888-3270
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract •A novel framework is developed to enhance iFEM accuracy and robustness with limited sensors.•A new strain pre-extrapolation technique, GPR-MCKF, is proposed, accounting for spatio-temporal correlation in measurements.•The FIM of extrapolated strain is derived as an objective function, linking GPR-MCKF and SPO.•SPO results mainly depend on structural geometry and are insensitive to other factors, such as loading conditions.•Numerical and experimental tests confirm the framework’s effectiveness, robustness, and general applicability. The inverse finite element method (iFEM) is a powerful tool for shape sensing, but its effectiveness is often constrained by economic and spatial constraints that prevent sensor coverage. This paper presents a unified framework to enhance iFEM, comprising two key components. The first is a novel strain pre-extrapolation method, GPR-MCKF, which incorporates both spatial and temporal correlations from measurement data. To reduce the computational demand of Gaussian process regression (GPR) when handling large datasets, maximum correntropy Kalman filtering (MCKF) is used to handle temporal correlation, based on the space–time separability of the kernel and the state-space equation of Gaussian process. The second component is a sensor placement optimization (SPO) method with general applicability, introducing an innovative objective function based on the Fisher information matrix (FIM) of the extrapolated strain. This objective function links the two components. Moreover, with constant noise levels and a fixed kernel function, this objective function depends solely on the measurement locations, meaning the results of SPO are determined exclusively by the structural geometry. This objective function, combined with the number of sensors, forms a bi-objective optimization problem, which is solved using the multi-objective Lichtenberg algorithm (MOLA). Finally, numerical and experimental examples validate the framework’s effectiveness, robustness, and general applicability in shape sensing with limited sensors, demonstrating its potential for practical applications to complex and large-scale structures.
AbstractList •A novel framework is developed to enhance iFEM accuracy and robustness with limited sensors.•A new strain pre-extrapolation technique, GPR-MCKF, is proposed, accounting for spatio-temporal correlation in measurements.•The FIM of extrapolated strain is derived as an objective function, linking GPR-MCKF and SPO.•SPO results mainly depend on structural geometry and are insensitive to other factors, such as loading conditions.•Numerical and experimental tests confirm the framework’s effectiveness, robustness, and general applicability. The inverse finite element method (iFEM) is a powerful tool for shape sensing, but its effectiveness is often constrained by economic and spatial constraints that prevent sensor coverage. This paper presents a unified framework to enhance iFEM, comprising two key components. The first is a novel strain pre-extrapolation method, GPR-MCKF, which incorporates both spatial and temporal correlations from measurement data. To reduce the computational demand of Gaussian process regression (GPR) when handling large datasets, maximum correntropy Kalman filtering (MCKF) is used to handle temporal correlation, based on the space–time separability of the kernel and the state-space equation of Gaussian process. The second component is a sensor placement optimization (SPO) method with general applicability, introducing an innovative objective function based on the Fisher information matrix (FIM) of the extrapolated strain. This objective function links the two components. Moreover, with constant noise levels and a fixed kernel function, this objective function depends solely on the measurement locations, meaning the results of SPO are determined exclusively by the structural geometry. This objective function, combined with the number of sensors, forms a bi-objective optimization problem, which is solved using the multi-objective Lichtenberg algorithm (MOLA). Finally, numerical and experimental examples validate the framework’s effectiveness, robustness, and general applicability in shape sensing with limited sensors, demonstrating its potential for practical applications to complex and large-scale structures.
ArticleNumber 112836
Author Wei, Handi
Xiao, Longfei
Kou, Yufeng
Li, Kelu
Shan, Meng
Author_xml – sequence: 1
  givenname: Kelu
  surname: Li
  fullname: Li, Kelu
  organization: State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
– sequence: 2
  givenname: Longfei
  orcidid: 0000-0003-3296-6427
  surname: Xiao
  fullname: Xiao, Longfei
  organization: State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
– sequence: 3
  givenname: Handi
  surname: Wei
  fullname: Wei, Handi
  email: weihandi@sjtu.edu.cn
  organization: State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
– sequence: 4
  givenname: Yufeng
  orcidid: 0000-0003-3716-3674
  surname: Kou
  fullname: Kou, Yufeng
  organization: State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
– sequence: 5
  givenname: Meng
  surname: Shan
  fullname: Shan, Meng
  organization: State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
BookMark eNqFkD1PwzAQhj0UiRb4BSz-Awl2UudjYKgqvqRKLDBbjn1uXBI7st1CGfnlpC0TAwynu-GeV3fPDE2ss4DQNSUpJbS42aT7PoQhzUjGUkqzKi8maEqqqkryrCTnaBbChhBSz0kxRV8LvLVGG1BYe9HDu_NvWDuPwbbCSmPX2Ngd-ABYG2siYOigBxtxD7F1CsfWu-26xSF6YSwePCTwMc6D60Q0zmJhFQ5gw5g5dEKeYDdE05vP48YlOtOiC3D10y_Q6_3dy_IxWT0_PC0Xq0TmhMWkVnUpx6pqJiQtGlaXUDDVNJWoGj0vSDVXNc0IMFZAozQFKhQTZQZaNEBJfoHqU670LgQPmksTjxccTu84JfwgkG_4USA_COQngSOb_2IHb3rh9_9QtycKxrd2BjwP0oCVoIwHGbly5k_-G_sflRU
CitedBy_id crossref_primary_10_1016_j_paerosci_2025_101132
crossref_primary_10_3390_jmse13091785
Cites_doi 10.1016/j.ymssp.2022.110056
10.1016/j.ymssp.2022.109466
10.1016/j.ymssp.2022.109167
10.1002/(SICI)1097-0207(19990410)44:10<1527::AID-NME497>3.0.CO;2-1
10.1016/j.cma.2004.03.015
10.1016/j.tws.2022.109798
10.1016/j.measurement.2021.110031
10.1016/j.measurement.2023.113502
10.1016/j.oceaneng.2019.106262
10.1016/j.tws.2024.112127
10.3390/s22239252
10.1016/j.paerosci.2018.04.001
10.1007/s11012-015-0146-8
10.3390/s20247049
10.1016/j.ymssp.2020.107163
10.1016/j.jsv.2022.117207
10.1016/j.automatica.2016.10.004
10.1016/j.compstruct.2023.117364
10.1016/j.ijnonlinmec.2022.104229
10.1016/j.ymssp.2021.108289
10.1016/j.ymssp.2021.107875
10.1016/S0045-7825(97)00135-7
10.1016/j.nimb.2018.11.019
10.1016/j.advengsoft.2013.07.002
10.1016/j.automatica.2020.109032
10.1016/j.tws.2023.110884
10.1016/j.compstruct.2021.113587
10.1016/j.jsv.2007.04.037
10.1016/j.tws.2023.110865
10.1016/j.tws.2022.109485
10.1016/j.tws.2024.111837
10.1016/j.oceaneng.2024.118293
10.1016/j.cma.2021.114520
ContentType Journal Article
Copyright 2025 Elsevier Ltd
Copyright_xml – notice: 2025 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.ymssp.2025.112836
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_ymssp_2025_112836
S0888327025005370
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABJNI
ABMAC
ACDAQ
ACGFS
ACRLP
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFPUW
AFTJW
AFXIZ
AGCQF
AGHFR
AGRNS
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
APXCP
AXJTR
BJAXD
BKOJK
BLXMC
BNPGV
CS3
DM4
DU5
EBS
EFBJH
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
JJJVA
KOM
LG5
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SPD
SSH
SST
SSV
SSZ
T5K
XPP
ZMT
ZU3
~G-
29M
9DU
AAQXK
AAYXX
ABDPE
ABEFU
ABFNM
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ADFGL
ADJOM
ADMUD
ADNMO
AGQPQ
ASPBG
AVWKF
AZFZN
CAG
CITATION
COF
EFKBS
EFLBG
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
LG9
LY7
R2-
SBC
SET
WUQ
~HD
ID FETCH-LOGICAL-c305t-9d97cd97895ac16b597e65dbb8a8bf46084d9120e556ebdf1e1ad5a72efabe103
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001491232000003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0888-3270
IngestDate Sat Nov 29 06:56:13 EST 2025
Tue Nov 18 20:00:24 EST 2025
Sat Jun 28 18:16:33 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Gaussian process regression
iFEM
Maximum correntropy Kalman filter
Sensor placement optimization
Strain pre-extrapolation
Fisher information
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c305t-9d97cd97895ac16b597e65dbb8a8bf46084d9120e556ebdf1e1ad5a72efabe103
ORCID 0000-0003-3716-3674
0000-0003-3296-6427
ParticipantIDs crossref_citationtrail_10_1016_j_ymssp_2025_112836
crossref_primary_10_1016_j_ymssp_2025_112836
elsevier_sciencedirect_doi_10_1016_j_ymssp_2025_112836
PublicationCentury 2000
PublicationDate 2025-07-01
2025-07-00
PublicationDateYYYYMMDD 2025-07-01
PublicationDate_xml – month: 07
  year: 2025
  text: 2025-07-01
  day: 01
PublicationDecade 2020
PublicationTitle Mechanical systems and signal processing
PublicationYear 2025
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Oboe, Colombo, Sbarufatti, Giglio (b0135) 2021; 262
Pereira, Oliver, Francisco, Cunha, Gomes (b0195) 2022; 187
Esposito, Gherlone (b0030) 2021; 160
Wang, Zhu, Wang, Qin, Qin (b0005) 2024; 308
W.L. Ko, W.L. Richards, V.T. Fleischer, Applications of Ko displacement theory to the deformed shape predictions of the doubly-tapered Ikhana Wing, 2009.
Eftekhar Azam, Masanes Didyk, Linzell, Rageh (b0145) 2022; 537
Tessler, Spangler (b0025) 2005; 194
Gherlone, Cerracchio, Mattone (b0010) 2018; 99
Chen, Liu, Bao (b0060) 2023; 221
Li, Jia, Wu, Qiu, He (b0100) 2022; 165
Kefal, Oterkus, Tessler, Spangler (b0040) 2016; 19
Durand, Farias (b0125) 2014; 67
Kang, Kim, Han (b0020) 2007; 305
Hendriks, Wensrich, Wills, Luzin, Gregg (b0150) 2019; 444
Zhao, Du, Wang, Zhang, Hong (b0085) 2023; 322
Poloni, Oboe, Sbarufatti, Giglio (b0155) 2023; 189
Todescato, Carron, Carli, Pillonetto, Schenato (b0185) 2020; 118
Nedelcu (b0070) 2023; 188
Zhao, Kefal, Bao (b0090) 2022; 147
Kefal, Diyaroglu, Yildiz, Oterkus (b0095) 2022; 391
Pereira, Francisco, de Oliveira, Chaves, Cunha, Gomes (b0200) 2022; 180
Abdollahzadeh, Ali, Yildiz, Kefal (b0075) 2022; 178
Zhao, Bao, Xue, Xu (b0160) 2019
Tessler, Riggs, Dambach (b0115) 1999; 44
Roy, Tessler, Surace, Gherlone (b0120) 2022; 180
Rasmussen, Williams (b0175) 2005
Zhao, Bao, Zhang (b0080) 2023; 189
Cerracchio, Gherlone, Tessler (b0035) 2015; 50
Ghasemzadeh, Kefal (b0170) 2022
Abdollahzadeh, Tabrizi, Kefal, Yildiz (b0130) 2021; 185
Tessler, Riggs, Freese, Cook (b0110) 1998; 155
Roy, Tessler, Surace, Gherlone (b0165) 2020
Del Priore, Lampani (b0050) 2024; 199
Colombo, Oboe, Sbarufatti, Cadini, Russo, Giglio (b0105) 2021; 148
Carron, Todescato, Carli, Schenato, Pillonetto (b0180) 2016
Oboe, Sbarufatti, Giglio (b0140) 2022; 177
Chen, Liu, Zhao, Principe (b0190) 2017; 76
Maoqi, Shujun (b0055) 2024
Zhao, Guo, Bao (b0065) 2024; 202
Kefal (b0045) 2019; 188
Zhao (10.1016/j.ymssp.2025.112836_b0080) 2023; 189
Oboe (10.1016/j.ymssp.2025.112836_b0140) 2022; 177
Chen (10.1016/j.ymssp.2025.112836_b0060) 2023; 221
Chen (10.1016/j.ymssp.2025.112836_b0190) 2017; 76
Nedelcu (10.1016/j.ymssp.2025.112836_b0070) 2023; 188
Esposito (10.1016/j.ymssp.2025.112836_b0030) 2021; 160
Pereira (10.1016/j.ymssp.2025.112836_b0195) 2022; 187
Wang (10.1016/j.ymssp.2025.112836_b0005) 2024; 308
Zhao (10.1016/j.ymssp.2025.112836_b0065) 2024; 202
Li (10.1016/j.ymssp.2025.112836_b0100) 2022; 165
Eftekhar Azam (10.1016/j.ymssp.2025.112836_b0145) 2022; 537
Abdollahzadeh (10.1016/j.ymssp.2025.112836_b0075) 2022; 178
Del Priore (10.1016/j.ymssp.2025.112836_b0050) 2024; 199
Oboe (10.1016/j.ymssp.2025.112836_b0135) 2021; 262
Todescato (10.1016/j.ymssp.2025.112836_b0185) 2020; 118
Roy (10.1016/j.ymssp.2025.112836_b0120) 2022; 180
Pereira (10.1016/j.ymssp.2025.112836_b0200) 2022; 180
Kang (10.1016/j.ymssp.2025.112836_b0020) 2007; 305
Kefal (10.1016/j.ymssp.2025.112836_b0095) 2022; 391
Kefal (10.1016/j.ymssp.2025.112836_b0040) 2016; 19
Durand (10.1016/j.ymssp.2025.112836_b0125) 2014; 67
Maoqi (10.1016/j.ymssp.2025.112836_b0055) 2024
Rasmussen (10.1016/j.ymssp.2025.112836_b0175) 2005
Tessler (10.1016/j.ymssp.2025.112836_b0115) 1999; 44
Zhao (10.1016/j.ymssp.2025.112836_b0090) 2022; 147
Zhao (10.1016/j.ymssp.2025.112836_b0085) 2023; 322
Roy (10.1016/j.ymssp.2025.112836_b0165) 2020
Kefal (10.1016/j.ymssp.2025.112836_b0045) 2019; 188
Colombo (10.1016/j.ymssp.2025.112836_b0105) 2021; 148
Cerracchio (10.1016/j.ymssp.2025.112836_b0035) 2015; 50
Abdollahzadeh (10.1016/j.ymssp.2025.112836_b0130) 2021; 185
Hendriks (10.1016/j.ymssp.2025.112836_b0150) 2019; 444
Tessler (10.1016/j.ymssp.2025.112836_b0110) 1998; 155
Ghasemzadeh (10.1016/j.ymssp.2025.112836_b0170) 2022
Zhao (10.1016/j.ymssp.2025.112836_b0160) 2019
Gherlone (10.1016/j.ymssp.2025.112836_b0010) 2018; 99
Tessler (10.1016/j.ymssp.2025.112836_b0025) 2005; 194
10.1016/j.ymssp.2025.112836_b0015
Carron (10.1016/j.ymssp.2025.112836_b0180) 2016
Poloni (10.1016/j.ymssp.2025.112836_b0155) 2023; 189
References_xml – year: 2024
  ident: b0055
  article-title: Inverse finite element method with energy-based regularization for deformation reconstruction and structural health monitoring
  publication-title: Thin-Walled Struct.,
– reference: W.L. Ko, W.L. Richards, V.T. Fleischer, Applications of Ko displacement theory to the deformed shape predictions of the doubly-tapered Ikhana Wing, 2009.
– volume: 444
  start-page: 80
  year: 2019
  end-page: 90
  ident: b0150
  article-title: Robust inference of two-dimensional strain fields from diffraction-based measurements
  publication-title: Nucl. Instrum. Methods Phys. Res., Sect. B
– volume: 189
  year: 2023
  ident: b0155
  article-title: Towards a stochastic inverse finite element method: a gaussian process strain extrapolation
  publication-title: Mech. Syst. Sig. Process.,
– volume: 262
  year: 2021
  ident: b0135
  article-title: Comparison of strain pre-extrapolation techniques for shape and strain sensing by iFEM of a composite plate subjected to compression buckling
  publication-title: Compos. Struct.,
– volume: 99
  start-page: 14
  year: 2018
  end-page: 26
  ident: b0010
  article-title: Shape sensing methods: Review and experimental comparison on a wing-shaped plate
  publication-title: Prog. Aerosp. Sci.,
– volume: 76
  start-page: 70
  year: 2017
  end-page: 77
  ident: b0190
  article-title: Maximum correntropy Kalman filter
  publication-title: Automatica
– volume: 305
  start-page: 534
  year: 2007
  end-page: 542
  ident: b0020
  article-title: Estimation of dynamic structural displacements using fiber Bragg grating strain sensors
  publication-title: J. Sound Vib.,
– volume: 308
  year: 2024
  ident: b0005
  article-title: Structural health monitoring of oil and gas pipelines: Developments, applications and future directions
  publication-title: Ocean Eng.,
– volume: 177
  year: 2022
  ident: b0140
  article-title: Physics-based strain pre-extrapolation technique for inverse finite element method
  publication-title: Mech. Syst. Sig. Process.,
– volume: 148
  year: 2021
  ident: b0105
  article-title: Shape sensing and damage identification with iFEM on a composite structure subjected to impact damage and non-trivial boundary conditions
  publication-title: Mech. Syst. Sig. Process.,
– volume: 165
  year: 2022
  ident: b0100
  article-title: Structural damage identification using strain mode differences by the iFEM based on the convolutional neural network (CNN)
  publication-title: Mech. Syst. Sig. Process.,
– volume: 221
  year: 2023
  ident: b0060
  article-title: A comprehensive analysis for real-time shape and strain sensing of composite thin-walled structure
  publication-title: Measurement
– start-page: 4594
  year: 2016
  end-page: 4599
  ident: b0180
  article-title: Machine learning meets Kalman Filtering
  publication-title: 2016 IEEE 55th Conference on Decision and Control (CDC)
– year: 2022
  ident: b0170
  article-title: Sensor placement optimization for shape sensing of plates and shells using genetic algorithm and inverse finite element method
  publication-title: Sensors
– volume: 322
  year: 2023
  ident: b0085
  article-title: Geometrically nonlinear shape sensing of anisotropic composite beam structure using iFEM algorithm and third-order shear deformation theory
  publication-title: Compos. Struct.,
– volume: 391
  year: 2022
  ident: b0095
  article-title: Coupling of peridynamics and inverse finite element method for shape sensing and crack propagation monitoring of plate structures
  publication-title: Comput. Methods Appl. Mech. Eng.,
– volume: 180
  year: 2022
  ident: b0200
  article-title: Multi-objective sensor placement optimization of helicopter rotor blade based on feature selection
  publication-title: Mech. Syst. Sig. Process.,
– volume: 178
  year: 2022
  ident: b0075
  article-title: Experimental and numerical investigation on large deformation reconstruction of thin laminated composite structures using inverse finite element method
  publication-title: Thin-Walled Struct.,
– volume: 50
  start-page: 2487
  year: 2015
  end-page: 2496
  ident: b0035
  article-title: Real-time displacement monitoring of a composite stiffened panel subjected to mechanical and thermal loads
  publication-title: Meccanica
– volume: 194
  start-page: 327
  year: 2005
  end-page: 339
  ident: b0025
  article-title: A least-squares variational method for full-field reconstruction of elastic deformations in shear-deformable plates and shells
  publication-title: Comput. Methods Appl. Mech. Eng.,
– year: 2020
  ident: b0165
  article-title: Shape sensing of plate structures using the inverse finite element method: investigation of efficient strain–sensor patterns
  publication-title: Sensors
– volume: 155
  start-page: 15
  year: 1998
  end-page: 30
  ident: b0110
  article-title: An improved variational method for finite element stress recovery and a posteriori error estimation
  publication-title: Comput. Methods Appl. Mech. Eng.,
– volume: 189
  year: 2023
  ident: b0080
  article-title: Geometrically nonlinear deformation reconstruction of based on Euler–Bernoulli beam theory using a nonlinear iFEM algorithm
  publication-title: Thin-Walled Struct.,
– volume: 180
  year: 2022
  ident: b0120
  article-title: Efficient shape sensing of plate structures using the inverse Finite Element Method aided by strain pre-extrapolation
  publication-title: Thin-Walled Struct.,
– volume: 537
  year: 2022
  ident: b0145
  article-title: Experimental validation and numerical investigation of virtual strain sensing methods for steel railway bridges
  publication-title: J. Sound Vib.,
– year: 2005
  ident: b0175
  article-title: Gaussian Processes for Machine Learning
– volume: 160
  year: 2021
  ident: b0030
  article-title: Material and strain sensing uncertainties quantification for the shape sensing of a composite wing box
  publication-title: Mech. Syst. Sig. Process.,
– volume: 199
  year: 2024
  ident: b0050
  article-title: A methodology for applying isogeometric inverse finite element method to the shape sensing of stiffened thin-shell structures
  publication-title: Thin-Walled Struct.,
– volume: 187
  year: 2022
  ident: b0195
  article-title: Multi-objective lichtenberg algorithm: A hybrid physics-based meta-heuristic for solving engineering problems
  publication-title: Expert Syst. Appl.,
– volume: 188
  year: 2019
  ident: b0045
  article-title: An efficient curved inverse-shell element for shape sensing and structural health monitoring of cylindrical marine structures
  publication-title: Ocean Eng.,
– volume: 147
  year: 2022
  ident: b0090
  article-title: Nonlinear deformation monitoring of elastic beams based on isogeometric iFEM approach
  publication-title: Int. J. Non Linear Mech.,
– volume: 202
  year: 2024
  ident: b0065
  article-title: Shape sensing of the thin-walled beam members by coupling an inverse finite element method with a refined quasi-3D zigzag beam theory
  publication-title: Thin-Walled Struct.,
– year: 2019
  ident: b0160
  article-title: Multi-Objective particle swarm optimization of sensor distribution scheme with consideration of the accuracy and the robustness for deformation reconstruction
  publication-title: Sensors
– volume: 118
  year: 2020
  ident: b0185
  article-title: Efficient spatio-temporal Gaussian regression via Kalman filtering
  publication-title: Automatica
– volume: 44
  start-page: 1527
  year: 1999
  end-page: 1543
  ident: b0115
  article-title: A novel four-node quadrilateral smoothing element for stress enhancement and error estimation
  publication-title: Int. J. Numer. Methods Eng.,
– volume: 188
  year: 2023
  ident: b0070
  article-title: Optimisation of inverse finite element method for shape sensing of thin-walled cylinders by using generalised beam theory
  publication-title: Thin-Walled Struct.,
– volume: 19
  start-page: 1299
  year: 2016
  end-page: 1313
  ident: b0040
  article-title: A quadrilateral inverse-shell element with drilling degrees of freedom for shape sensing and structural health monitoring
  publication-title: Eng. Sci. Technol. Int. J.,
– volume: 185
  year: 2021
  ident: b0130
  article-title: A combined experimental/numerical study on deformation sensing of sandwich structures through inverse analysis of pre-extrapolated strain measurements
  publication-title: Measurement
– volume: 67
  start-page: 1
  year: 2014
  end-page: 9
  ident: b0125
  article-title: A local extrapolation method for finite elements
  publication-title: Adv. Eng. Software
– volume: 189
  year: 2023
  ident: 10.1016/j.ymssp.2025.112836_b0155
  article-title: Towards a stochastic inverse finite element method: a gaussian process strain extrapolation
  publication-title: Mech. Syst. Sig. Process.,
  doi: 10.1016/j.ymssp.2022.110056
– volume: 180
  year: 2022
  ident: 10.1016/j.ymssp.2025.112836_b0200
  article-title: Multi-objective sensor placement optimization of helicopter rotor blade based on feature selection
  publication-title: Mech. Syst. Sig. Process.,
  doi: 10.1016/j.ymssp.2022.109466
– volume: 177
  year: 2022
  ident: 10.1016/j.ymssp.2025.112836_b0140
  article-title: Physics-based strain pre-extrapolation technique for inverse finite element method
  publication-title: Mech. Syst. Sig. Process.,
  doi: 10.1016/j.ymssp.2022.109167
– ident: 10.1016/j.ymssp.2025.112836_b0015
– year: 2024
  ident: 10.1016/j.ymssp.2025.112836_b0055
  article-title: Inverse finite element method with energy-based regularization for deformation reconstruction and structural health monitoring
  publication-title: Thin-Walled Struct.,
– volume: 19
  start-page: 1299
  year: 2016
  ident: 10.1016/j.ymssp.2025.112836_b0040
  article-title: A quadrilateral inverse-shell element with drilling degrees of freedom for shape sensing and structural health monitoring
  publication-title: Eng. Sci. Technol. Int. J.,
– volume: 44
  start-page: 1527
  year: 1999
  ident: 10.1016/j.ymssp.2025.112836_b0115
  article-title: A novel four-node quadrilateral smoothing element for stress enhancement and error estimation
  publication-title: Int. J. Numer. Methods Eng.,
  doi: 10.1002/(SICI)1097-0207(19990410)44:10<1527::AID-NME497>3.0.CO;2-1
– volume: 194
  start-page: 327
  year: 2005
  ident: 10.1016/j.ymssp.2025.112836_b0025
  article-title: A least-squares variational method for full-field reconstruction of elastic deformations in shear-deformable plates and shells
  publication-title: Comput. Methods Appl. Mech. Eng.,
  doi: 10.1016/j.cma.2004.03.015
– volume: 180
  year: 2022
  ident: 10.1016/j.ymssp.2025.112836_b0120
  article-title: Efficient shape sensing of plate structures using the inverse Finite Element Method aided by strain pre-extrapolation
  publication-title: Thin-Walled Struct.,
  doi: 10.1016/j.tws.2022.109798
– volume: 185
  year: 2021
  ident: 10.1016/j.ymssp.2025.112836_b0130
  article-title: A combined experimental/numerical study on deformation sensing of sandwich structures through inverse analysis of pre-extrapolated strain measurements
  publication-title: Measurement
  doi: 10.1016/j.measurement.2021.110031
– volume: 221
  year: 2023
  ident: 10.1016/j.ymssp.2025.112836_b0060
  article-title: A comprehensive analysis for real-time shape and strain sensing of composite thin-walled structure
  publication-title: Measurement
  doi: 10.1016/j.measurement.2023.113502
– year: 2019
  ident: 10.1016/j.ymssp.2025.112836_b0160
  article-title: Multi-Objective particle swarm optimization of sensor distribution scheme with consideration of the accuracy and the robustness for deformation reconstruction
  publication-title: Sensors
– volume: 188
  year: 2019
  ident: 10.1016/j.ymssp.2025.112836_b0045
  article-title: An efficient curved inverse-shell element for shape sensing and structural health monitoring of cylindrical marine structures
  publication-title: Ocean Eng.,
  doi: 10.1016/j.oceaneng.2019.106262
– volume: 187
  year: 2022
  ident: 10.1016/j.ymssp.2025.112836_b0195
  article-title: Multi-objective lichtenberg algorithm: A hybrid physics-based meta-heuristic for solving engineering problems
  publication-title: Expert Syst. Appl.,
– volume: 202
  year: 2024
  ident: 10.1016/j.ymssp.2025.112836_b0065
  article-title: Shape sensing of the thin-walled beam members by coupling an inverse finite element method with a refined quasi-3D zigzag beam theory
  publication-title: Thin-Walled Struct.,
  doi: 10.1016/j.tws.2024.112127
– year: 2022
  ident: 10.1016/j.ymssp.2025.112836_b0170
  article-title: Sensor placement optimization for shape sensing of plates and shells using genetic algorithm and inverse finite element method
  publication-title: Sensors
  doi: 10.3390/s22239252
– volume: 99
  start-page: 14
  year: 2018
  ident: 10.1016/j.ymssp.2025.112836_b0010
  article-title: Shape sensing methods: Review and experimental comparison on a wing-shaped plate
  publication-title: Prog. Aerosp. Sci.,
  doi: 10.1016/j.paerosci.2018.04.001
– volume: 50
  start-page: 2487
  year: 2015
  ident: 10.1016/j.ymssp.2025.112836_b0035
  article-title: Real-time displacement monitoring of a composite stiffened panel subjected to mechanical and thermal loads
  publication-title: Meccanica
  doi: 10.1007/s11012-015-0146-8
– year: 2020
  ident: 10.1016/j.ymssp.2025.112836_b0165
  article-title: Shape sensing of plate structures using the inverse finite element method: investigation of efficient strain–sensor patterns
  publication-title: Sensors
  doi: 10.3390/s20247049
– volume: 148
  year: 2021
  ident: 10.1016/j.ymssp.2025.112836_b0105
  article-title: Shape sensing and damage identification with iFEM on a composite structure subjected to impact damage and non-trivial boundary conditions
  publication-title: Mech. Syst. Sig. Process.,
  doi: 10.1016/j.ymssp.2020.107163
– volume: 537
  year: 2022
  ident: 10.1016/j.ymssp.2025.112836_b0145
  article-title: Experimental validation and numerical investigation of virtual strain sensing methods for steel railway bridges
  publication-title: J. Sound Vib.,
  doi: 10.1016/j.jsv.2022.117207
– volume: 76
  start-page: 70
  year: 2017
  ident: 10.1016/j.ymssp.2025.112836_b0190
  article-title: Maximum correntropy Kalman filter
  publication-title: Automatica
  doi: 10.1016/j.automatica.2016.10.004
– volume: 322
  year: 2023
  ident: 10.1016/j.ymssp.2025.112836_b0085
  article-title: Geometrically nonlinear shape sensing of anisotropic composite beam structure using iFEM algorithm and third-order shear deformation theory
  publication-title: Compos. Struct.,
  doi: 10.1016/j.compstruct.2023.117364
– volume: 147
  year: 2022
  ident: 10.1016/j.ymssp.2025.112836_b0090
  article-title: Nonlinear deformation monitoring of elastic beams based on isogeometric iFEM approach
  publication-title: Int. J. Non Linear Mech.,
  doi: 10.1016/j.ijnonlinmec.2022.104229
– volume: 165
  year: 2022
  ident: 10.1016/j.ymssp.2025.112836_b0100
  article-title: Structural damage identification using strain mode differences by the iFEM based on the convolutional neural network (CNN)
  publication-title: Mech. Syst. Sig. Process.,
  doi: 10.1016/j.ymssp.2021.108289
– volume: 160
  year: 2021
  ident: 10.1016/j.ymssp.2025.112836_b0030
  article-title: Material and strain sensing uncertainties quantification for the shape sensing of a composite wing box
  publication-title: Mech. Syst. Sig. Process.,
  doi: 10.1016/j.ymssp.2021.107875
– volume: 155
  start-page: 15
  year: 1998
  ident: 10.1016/j.ymssp.2025.112836_b0110
  article-title: An improved variational method for finite element stress recovery and a posteriori error estimation
  publication-title: Comput. Methods Appl. Mech. Eng.,
  doi: 10.1016/S0045-7825(97)00135-7
– year: 2005
  ident: 10.1016/j.ymssp.2025.112836_b0175
– volume: 444
  start-page: 80
  year: 2019
  ident: 10.1016/j.ymssp.2025.112836_b0150
  article-title: Robust inference of two-dimensional strain fields from diffraction-based measurements
  publication-title: Nucl. Instrum. Methods Phys. Res., Sect. B
  doi: 10.1016/j.nimb.2018.11.019
– volume: 67
  start-page: 1
  year: 2014
  ident: 10.1016/j.ymssp.2025.112836_b0125
  article-title: A local extrapolation method for finite elements
  publication-title: Adv. Eng. Software
  doi: 10.1016/j.advengsoft.2013.07.002
– volume: 118
  year: 2020
  ident: 10.1016/j.ymssp.2025.112836_b0185
  article-title: Efficient spatio-temporal Gaussian regression via Kalman filtering
  publication-title: Automatica
  doi: 10.1016/j.automatica.2020.109032
– volume: 189
  year: 2023
  ident: 10.1016/j.ymssp.2025.112836_b0080
  article-title: Geometrically nonlinear deformation reconstruction of based on Euler–Bernoulli beam theory using a nonlinear iFEM algorithm
  publication-title: Thin-Walled Struct.,
  doi: 10.1016/j.tws.2023.110884
– volume: 262
  year: 2021
  ident: 10.1016/j.ymssp.2025.112836_b0135
  article-title: Comparison of strain pre-extrapolation techniques for shape and strain sensing by iFEM of a composite plate subjected to compression buckling
  publication-title: Compos. Struct.,
  doi: 10.1016/j.compstruct.2021.113587
– volume: 305
  start-page: 534
  year: 2007
  ident: 10.1016/j.ymssp.2025.112836_b0020
  article-title: Estimation of dynamic structural displacements using fiber Bragg grating strain sensors
  publication-title: J. Sound Vib.,
  doi: 10.1016/j.jsv.2007.04.037
– volume: 188
  year: 2023
  ident: 10.1016/j.ymssp.2025.112836_b0070
  article-title: Optimisation of inverse finite element method for shape sensing of thin-walled cylinders by using generalised beam theory
  publication-title: Thin-Walled Struct.,
  doi: 10.1016/j.tws.2023.110865
– volume: 178
  year: 2022
  ident: 10.1016/j.ymssp.2025.112836_b0075
  article-title: Experimental and numerical investigation on large deformation reconstruction of thin laminated composite structures using inverse finite element method
  publication-title: Thin-Walled Struct.,
  doi: 10.1016/j.tws.2022.109485
– start-page: 4594
  year: 2016
  ident: 10.1016/j.ymssp.2025.112836_b0180
  article-title: Machine learning meets Kalman Filtering
– volume: 199
  year: 2024
  ident: 10.1016/j.ymssp.2025.112836_b0050
  article-title: A methodology for applying isogeometric inverse finite element method to the shape sensing of stiffened thin-shell structures
  publication-title: Thin-Walled Struct.,
  doi: 10.1016/j.tws.2024.111837
– volume: 308
  year: 2024
  ident: 10.1016/j.ymssp.2025.112836_b0005
  article-title: Structural health monitoring of oil and gas pipelines: Developments, applications and future directions
  publication-title: Ocean Eng.,
  doi: 10.1016/j.oceaneng.2024.118293
– volume: 391
  year: 2022
  ident: 10.1016/j.ymssp.2025.112836_b0095
  article-title: Coupling of peridynamics and inverse finite element method for shape sensing and crack propagation monitoring of plate structures
  publication-title: Comput. Methods Appl. Mech. Eng.,
  doi: 10.1016/j.cma.2021.114520
SSID ssj0009406
Score 2.470415
Snippet •A novel framework is developed to enhance iFEM accuracy and robustness with limited sensors.•A new strain pre-extrapolation technique, GPR-MCKF, is proposed,...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 112836
SubjectTerms Fisher information
Gaussian process regression
iFEM
Maximum correntropy Kalman filter
Sensor placement optimization
Strain pre-extrapolation
Title A unified framework for enhancing inverse finite element method through strain pre-extrapolation and sensor placement optimization
URI https://dx.doi.org/10.1016/j.ymssp.2025.112836
Volume 234
WOSCitedRecordID wos001491232000003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0888-3270
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0009406
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELZKlwMcEE-xvOQDt5JVXk7sY4UWAVpWHBbUW2Q79pJVN63aZrVc-TH8TsYZJykUVeyBQ6PKSqZp56tn7HzzDSGvdSy0zHQWGJ2yIJVSBNIkKgi1CjMeMSvbNp1fT_LTUz6bic-j0c-uFuZqntc1v74Wy__qahgDZ7vS2Ru4uzcKA_AenA5HcDsc_8nx00lTV9ZllrYjXqGud_3NaWu0JSyOi2EmtnIJ58Qgg9w3k-4796zb7hFORCCACXwllwukzbWPG9aw-gWbLaML6QQw9Vz6ms7thPeTcaXFWHuJ4uh4fXXu0uAllil04dMRg5BdYOZNNzKrZLude7Koz62phkdJ2G_bleX0UWPRtCGlscZb9PsZMeu5r8O0x4MkxnYi3Rwd-x1PnGUhR-Qom7ITAHAv4uLo--V67eRIY3Y0nP273PYfYbAnJ3a8t4uiNVI4IwUauUUO4pwJPiYH0w_Hs4-DvHPadnHt773Tt2qZhDv38vccaCuvObtP7vkFCZ0ikB6QkakfkrtbMpWPyI8p9ZCiPaQoQIr2kKIeUhQhRT2kKEKKekhRhBTdgRQFJ1KEFO0hRbch9Zh8eXd89vZ94Ht3BBoiyCYQpcg1vLhgUkeZgnWryVipFJdc2TQLeVqKKA4NY5lRpY1MJEsm89hYqUwUJk_IuF7U5imhSplEh0JqKdI00ZFgsGRJMlgVClvqPD0kcfdrFtoL27uvMy_2ePKQvOkvWqKuy_7Ts85NhU9NMeUsAHj7Lnx2s895Tu4M_4kXZLxZNeYlua2vNtV69cqj7heKMrq-
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+unified+framework+for+enhancing+inverse+finite+element+method+through+strain+pre-extrapolation+and+sensor+placement+optimization&rft.jtitle=Mechanical+systems+and+signal+processing&rft.au=Li%2C+Kelu&rft.au=Xiao%2C+Longfei&rft.au=Wei%2C+Handi&rft.au=Kou%2C+Yufeng&rft.date=2025-07-01&rft.issn=0888-3270&rft.volume=234&rft.spage=112836&rft_id=info:doi/10.1016%2Fj.ymssp.2025.112836&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ymssp_2025_112836
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0888-3270&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0888-3270&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0888-3270&client=summon