A robust filter and smoother-based expectation–maximization algorithm for bilinear systems with heavy-tailed noise

This paper focuses on a specific type of nonlinear systems—bilinear systems and introduces a robust filter and smoother-based expectation–maximization (RFS-EM) algorithm that enables joint estimation of states and parameters in the presence of heavy-tailed noise. Specifically, to mitigate the impact...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mechanical systems and signal processing Jg. 236; S. 112912
Hauptverfasser: Wang, Wenjie, Liu, Siyu, Jiang, Yonghua, Sun, Jianfeng, Xu, Wanxiu, Chen, Xiaohao, Dong, Zhilin, Jiao, Weidong
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Ltd 01.08.2025
Schlagworte:
ISSN:0888-3270
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper focuses on a specific type of nonlinear systems—bilinear systems and introduces a robust filter and smoother-based expectation–maximization (RFS-EM) algorithm that enables joint estimation of states and parameters in the presence of heavy-tailed noise. Specifically, to mitigate the impact of heavy-tailed noise, this study explores a combination method of robust filter and smoother based on Student’s t distribution, integrating it into an expectation–maximization framework. In the expectation step, forward and backward predictions of system states are performed using the robust filter and smoother. Following this, in the maximization step, system parameters are estimated through numerical optimization. The proposed RFS-EM achieves joint estimation of the states and parameters for bilinear systems. Finally, a numerical simulation and a DC motor simulation validate the effectiveness of the proposed algorithm.
ISSN:0888-3270
DOI:10.1016/j.ymssp.2025.112912