An evolution strategies-based reinforcement learning algorithm for multi-objective dynamic parallel machine scheduling problems

•Proposed evolution strategies-based reinforcement learning algorithm.•A multi-agent system to generate scheduling policy for parallel machines.•Action with selecting a job directly to be sequenced is used to avoid sparse reward.•Parallel machine scheduling problem with multi-objective MILP model.•M...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Swarm and evolutionary computation Ročník 95; s. 101944
Hlavní autori: Chen, Yarong, Zhang, Junjie, Mumtaz, Jabir, Huang, Shenquan, Zhou, Shengwei
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier B.V 01.06.2025
Predmet:
ISSN:2210-6502
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract •Proposed evolution strategies-based reinforcement learning algorithm.•A multi-agent system to generate scheduling policy for parallel machines.•Action with selecting a job directly to be sequenced is used to avoid sparse reward.•Parallel machine scheduling problem with multi-objective MILP model.•Minimized completion time, tardiness and energy consumption simultaneously. The multi-objective dynamic parallel machine scheduling (PMS) problem is a complex combinatorial optimization challenge encountered in manufacturing systems. Various uncertainties exist in the real-world dynamic PMS problem, such as job release time, processing time, and flexible preventive maintenance for machines. The goal is simultaneously optimizing multiple objectives under dynamic and uncertain environments, such as makespan, total tardiness, and energy consumption. This paper proposes an evolution strategies-based reinforcement learning (ESRL) algorithm to address the current multi-objective dynamic PMS problem. The proposed algorithm leverages the exploration capabilities of evolution strategies to evolve effective policies for reinforcement learning in dynamic scheduling. Moreover, the efficiency of the ESRL algorithm is enhanced by implanting three features: a) train the policy to iteratively produce the sequence directly and mitigate the sparse reward issue resulting from the symmetry inherent in the given problem; b) a multi-agent system with independent interaction and centralized training to generate the PMS policy simultaneously; c) a non-dominated sorting mechanism to determine fitness function. Extensive computational experimental results show that the ESRL algorithm outperforms the comparison state-of-the-art evolutionary algorithms and priority dispatching rules in terms of solution quality, convergence, and efficiency, with the advantage of the C-matrix exceeding 60 %, and the advantages in GD and NR surpassing 50 %. Furthermore, ablation experiments demonstrate the significant contributions of additional features in ESRL in enhancing the algorithm's performance. Meanwhile, the results of generalization experiments indicate that the ESRL quickly generates Pareto optimal solutions allowing the trained model to make optimal scheduling decisions.
AbstractList •Proposed evolution strategies-based reinforcement learning algorithm.•A multi-agent system to generate scheduling policy for parallel machines.•Action with selecting a job directly to be sequenced is used to avoid sparse reward.•Parallel machine scheduling problem with multi-objective MILP model.•Minimized completion time, tardiness and energy consumption simultaneously. The multi-objective dynamic parallel machine scheduling (PMS) problem is a complex combinatorial optimization challenge encountered in manufacturing systems. Various uncertainties exist in the real-world dynamic PMS problem, such as job release time, processing time, and flexible preventive maintenance for machines. The goal is simultaneously optimizing multiple objectives under dynamic and uncertain environments, such as makespan, total tardiness, and energy consumption. This paper proposes an evolution strategies-based reinforcement learning (ESRL) algorithm to address the current multi-objective dynamic PMS problem. The proposed algorithm leverages the exploration capabilities of evolution strategies to evolve effective policies for reinforcement learning in dynamic scheduling. Moreover, the efficiency of the ESRL algorithm is enhanced by implanting three features: a) train the policy to iteratively produce the sequence directly and mitigate the sparse reward issue resulting from the symmetry inherent in the given problem; b) a multi-agent system with independent interaction and centralized training to generate the PMS policy simultaneously; c) a non-dominated sorting mechanism to determine fitness function. Extensive computational experimental results show that the ESRL algorithm outperforms the comparison state-of-the-art evolutionary algorithms and priority dispatching rules in terms of solution quality, convergence, and efficiency, with the advantage of the C-matrix exceeding 60 %, and the advantages in GD and NR surpassing 50 %. Furthermore, ablation experiments demonstrate the significant contributions of additional features in ESRL in enhancing the algorithm's performance. Meanwhile, the results of generalization experiments indicate that the ESRL quickly generates Pareto optimal solutions allowing the trained model to make optimal scheduling decisions.
ArticleNumber 101944
Author Zhang, Junjie
Mumtaz, Jabir
Huang, Shenquan
Zhou, Shengwei
Chen, Yarong
Author_xml – sequence: 1
  givenname: Yarong
  orcidid: 0000-0002-9057-9938
  surname: Chen
  fullname: Chen, Yarong
  email: 00131011@wzu.edu.cn
  organization: College of Mechanical and Electrical Engineering, Wenzhou University, Wenzhou, 325035, China
– sequence: 2
  givenname: Junjie
  orcidid: 0009-0008-9951-5149
  surname: Zhang
  fullname: Zhang, Junjie
  email: 22451439040@stu.wzu.edu.cn
  organization: College of Mechanical and Electrical Engineering, Wenzhou University, Wenzhou, 325035, China
– sequence: 3
  givenname: Jabir
  orcidid: 0000-0002-6386-272X
  surname: Mumtaz
  fullname: Mumtaz, Jabir
  email: jabirmumtaz@wzu.edu.cn, jabirmumtaz@live.com
  organization: College of Mechanical and Electrical Engineering, Wenzhou University, Wenzhou, 325035, China
– sequence: 4
  givenname: Shenquan
  orcidid: 0000-0001-5977-5191
  surname: Huang
  fullname: Huang, Shenquan
  email: hshenquan@wzu.edu.cn
  organization: College of Mechanical and Electrical Engineering, Wenzhou University, Wenzhou, 325035, China
– sequence: 5
  givenname: Shengwei
  orcidid: 0000-0003-1388-0070
  surname: Zhou
  fullname: Zhou, Shengwei
  email: 20461439014@stu.wzu.edu.cn
  organization: College of Mechanical and Electrical Engineering, Wenzhou University, Wenzhou, 325035, China
BookMark eNqFkLtOAzEQRV0EiQD5Ahr_wAbb-3RBEUW8pEg0UFte72zildeObCcoFb-Ol1BRwDQjzZ0z0pwrNLPOAkK3lCwpodXdsAwfcHRLRlg5TXhRzNCcMUqyqiTsEi1CGEiqKi2UfI4-VxYnwByidhaH6GWErYaQtTJAhz1o2zuvYAQbsQHprbZbLM3WeR13I04hHg8m6sy1A6ioj4C7k5WjVngvvTQGDB6l2mkLOKgddAczXdh71xoYww266KUJsPjp1-j98eFt_ZxtXp9e1qtNpnJSxqwikrK67ktg0HPJiczLplWqpaRQuSpy3pSS8p5QxoE2NeF9w7sacihkSpr8GuXnu8q7EDz0Yu_1KP1JUCImdWIQ3-rEpE6c1SWK_6KUjnJSlURp8w97f2YhvXXU4EVQGqyCTvskSnRO_8l_AUIYk1Q
CitedBy_id crossref_primary_10_1016_j_jii_2025_100927
crossref_primary_10_1016_j_swevo_2025_102141
Cites_doi 10.1016/j.eswa.2023.120600
10.1016/j.cor.2023.106304
10.1080/00207543.2020.1775911
10.1016/j.apm.2013.01.050
10.1016/j.apenergy.2023.121332
10.1007/s10845-023-02094-4
10.1016/j.asoc.2020.106208
10.1080/00207543.2020.1812752
10.1016/j.cie.2023.109255
10.1016/j.ejor.2021.08.007
10.1177/18479790241301164
10.1016/j.ejor.2020.07.020
10.1080/00207543.2022.2058432
10.1016/j.comnet.2021.107969
10.1016/j.asoc.2023.110596
10.1016/j.cor.2023.106294
10.1016/j.cor.2013.09.016
10.1016/j.cor.2024.106933
10.1038/nature14539
10.1016/j.cor.2023.106511
10.1016/j.cie.2020.106749
10.1016/j.jclepro.2021.128867
10.1016/j.eswa.2021.114666
10.3390/sym13081521
10.1016/j.swevo.2024.101660
10.1016/j.cor.2021.105291
10.1016/j.asoc.2011.02.022
10.1016/j.eswa.2024.125616
10.1080/00207543.2021.1887533
10.1016/j.cie.2021.107489
10.23919/CSMS.2021.0027
10.1016/j.swevo.2020.100694
10.1016/j.swevo.2024.101808
10.1007/s00170-015-7657-2
10.1016/j.swevo.2018.03.011
10.1016/j.jmsy.2020.02.004
10.1109/ACCESS.2021.3097254
10.1007/s00170-011-3317-3
10.3390/sym11060729
10.1016/j.eswa.2019.04.056
10.1016/j.jmsy.2024.11.004
10.1109/TSMC.2023.3289322
10.1007/s00170-006-0662-8
10.1016/j.cor.2024.106776
10.1016/j.cor.2023.106484
10.1016/j.cor.2024.106709
10.1016/j.eswa.2023.120495
10.3389/fieng.2024.1337174
10.1016/j.eij.2023.05.008
10.1007/s13762-024-05595-8
10.1016/j.swevo.2023.101321
10.1007/s10845-021-01847-3
10.1109/4235.996017
10.1109/ACCESS.2021.3071729
10.1016/j.eswa.2022.117380
10.1002/amp2.10119
10.1016/j.cie.2018.03.039
10.1016/j.jmsy.2015.07.002
10.1016/j.cor.2011.07.019
10.1007/s10845-018-1454-3
ContentType Journal Article
Copyright 2025 Elsevier B.V.
Copyright_xml – notice: 2025 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.swevo.2025.101944
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
ExternalDocumentID 10_1016_j_swevo_2025_101944
S2210650225001026
GroupedDBID --K
--M
.~1
0R~
1~.
1~5
4.4
457
4G.
5VS
7-5
8P~
AAAKF
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AATLK
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABAOU
ABBOA
ABGRD
ABJNI
ABMAC
ABUCO
ABWVN
ABXDB
ACDAQ
ACGFS
ACNNM
ACRLP
ACRPL
ACZNC
ADBBV
ADEZE
ADMUD
ADNMO
ADQTV
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AEQOU
AFJKZ
AFTJW
AFXIZ
AGCQF
AGHFR
AGRNS
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIIUN
AIKHN
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
APLSM
APXCP
ARUGR
AXJTR
BJAXD
BKOJK
BLXMC
BNPGV
EBS
EFJIC
EJD
FDB
FEDTE
FIRID
FNPLU
FYGXN
GBLVA
GBOLZ
HAMUX
HVGLF
HZ~
J1W
JJJVA
KOM
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
P-8
P-9
PC.
Q38
RIG
ROL
SDF
SES
SPC
SPCBC
SSA
SSB
SSD
SSH
SST
SSV
SSW
SSZ
T5K
~G-
AAYXX
ACLOT
ACVFH
ADCNI
AEUPX
AFPUW
AIGII
AKBMS
AKYEP
CITATION
EFKBS
EFLBG
~HD
ID FETCH-LOGICAL-c305t-60a1277f5e2ef9a90a358bccb104c3c43985a19f0129e18709f89d7e3e4a85a83
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001476858400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2210-6502
IngestDate Thu Nov 13 04:35:39 EST 2025
Tue Nov 18 22:32:41 EST 2025
Sat Jun 07 17:02:38 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Energy consumption
Multi-objective optimization
Evolution strategies
Multi-agent, reinforcement learning
Parallel machine scheduling problem
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c305t-60a1277f5e2ef9a90a358bccb104c3c43985a19f0129e18709f89d7e3e4a85a83
ORCID 0009-0008-9951-5149
0000-0003-1388-0070
0000-0002-6386-272X
0000-0001-5977-5191
0000-0002-9057-9938
ParticipantIDs crossref_primary_10_1016_j_swevo_2025_101944
crossref_citationtrail_10_1016_j_swevo_2025_101944
elsevier_sciencedirect_doi_10_1016_j_swevo_2025_101944
PublicationCentury 2000
PublicationDate June 2025
2025-06-00
PublicationDateYYYYMMDD 2025-06-01
PublicationDate_xml – month: 06
  year: 2025
  text: June 2025
PublicationDecade 2020
PublicationTitle Swarm and evolutionary computation
PublicationYear 2025
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Zhang (bib0063) 2012; 39
Ke (bib0041) 2023; 45
Xu (bib0028) 2021; 13
Salimans, T., et al.
Pfund, Fowler, Gupta (bib0003) 2004; 21
Wang, Feng, Wang (bib0069) 2023; 80
Chen (bib0047) 2023
Lei, Yuan, Cai (bib0030) 2021; 59
Li (bib0006) 2024
Lang (bib0055) 2021; 172
Shiue, Lee, Su (bib0020) 2018; 125
Hu (bib0059) 2020; 55
Caselli, G., et al.
Parichehreh (bib0053) 2024; 21
arXiv preprint arXiv:2308.13420, 2023.
Li, Gong, Lu (bib0074) 2022; 203
Chen (bib0027) 2023; 229
Chyu, Chang (bib0029) 2011; 57
Anghinolfi, Paolucci, Ronco (bib0034) 2021; 289
Chen (bib0032) 2022; 13
Silva (bib0019) 2019; 131
Luo (bib0061) 2020; 91
Deb (bib0073) 2002; 6
Caselli (bib0014) 2024; 163
Liu (bib0023) 2021; 59
Luo, Zhang, Fan (bib0066) 2021; 159
LeCun, Bengio, Hinton (bib0071) 2015; 521
Bandyopadhyay, Bhattacharya (bib0018) 2013; 37
Song, Y., et al.
Song (bib0033) 2021; 9
Gui (bib0022) 2023; 180
Wang, Pan, Wang (bib0070) 2021; 1
Shakya, Pillai, Chakrabarty (bib0043) 2023; 231
Wang (bib0065) 2021; 190
Li (bib0036) 2016; 84
Aghaei, Amjady, Shayanfar (bib0076) 2011; 11
Brammer, Lutz, Neumann (bib0060) 2022; 299
Fathollahi-Fard (bib0075) 2023; 158
Zhang (bib0008) 2024; 2
Zhang (bib0050) 2025; 92
Yue (bib0044) 2024; 90
Liu, Piplani, Toro (bib0062) 2022; 60
Li (bib0052) 2024; 35
Kayhan, Yildiz (bib0004) 2023; 34
Bitar, Dauzère-Pérès, Yugma (bib0017) 2021; 132
Wang (bib0045) 2024; 77
Drugan (bib0010) 2019; 44
Liu, Piplani, Toro (bib0068) 2023
arXiv preprint arXiv:1703.03864, 2017.
Wang (bib0021) 2020; 31
Wang, Li, Gong (bib0031) 2023; 24
Ying, Pourhejazy, Huang (bib0001) 2024
Liu (bib0026) 2023
Bahroun (bib0002) 2024; 16
Zhang, Zheng, Weng (bib0048) 2007; 34
Lee, Kim (bib0067) 2022; 60
Xiao (bib0037) 2021; 320
Kazemi (bib0040) 2021; 38
Su (bib0056) 2023; 145
Li (bib0009) 2020; 56
Chen (bib0005) 2024
Tao (bib0024) 2014; 43
Chen (bib0038) 2025; 176
Chen (bib0013) 2023; 14
Lu, Shi, Pei (bib0015) 2024; 170
Chen (bib0025) 2021; 38
Yuan, Jiang, Wang (bib0049) 2016; 8
Majid (bib0058) 2023
Khalid (bib0042) 2019; 11
Parichehreh (bib0016) 2024
Springer.
Julaiti (bib0051) 2022; 4
Muñoz-Díaz, Escudero-Santana, Lorenzo-Espejo (bib0012) 2024; 163
Chen (bib0007) 2025; 262
Wang, Liu (bib0035) 2015; 37
Zhang, Clune, Stanley (bib0057) 2017
Paeng, Park, Park (bib0072) 2021; 9
Hu (bib0064) 2020; 149
Che (bib0046) 2023; 345
Lu (10.1016/j.swevo.2025.101944_bib0015) 2024; 170
Wang (10.1016/j.swevo.2025.101944_bib0045) 2024; 77
Chen (10.1016/j.swevo.2025.101944_bib0032) 2022; 13
Ke (10.1016/j.swevo.2025.101944_bib0041) 2023; 45
10.1016/j.swevo.2025.101944_bib0054
Fathollahi-Fard (10.1016/j.swevo.2025.101944_bib0075) 2023; 158
10.1016/j.swevo.2025.101944_bib0011
Liu (10.1016/j.swevo.2025.101944_bib0068) 2023
Bitar (10.1016/j.swevo.2025.101944_bib0017) 2021; 132
Bandyopadhyay (10.1016/j.swevo.2025.101944_bib0018) 2013; 37
Wang (10.1016/j.swevo.2025.101944_bib0069) 2023; 80
Bahroun (10.1016/j.swevo.2025.101944_bib0002) 2024; 16
Shakya (10.1016/j.swevo.2025.101944_bib0043) 2023; 231
Wang (10.1016/j.swevo.2025.101944_bib0021) 2020; 31
Wang (10.1016/j.swevo.2025.101944_bib0065) 2021; 190
Chen (10.1016/j.swevo.2025.101944_bib0013) 2023; 14
Silva (10.1016/j.swevo.2025.101944_bib0019) 2019; 131
Chen (10.1016/j.swevo.2025.101944_bib0027) 2023; 229
Che (10.1016/j.swevo.2025.101944_bib0046) 2023; 345
Kayhan (10.1016/j.swevo.2025.101944_bib0004) 2023; 34
Li (10.1016/j.swevo.2025.101944_bib0006) 2024
Liu (10.1016/j.swevo.2025.101944_bib0023) 2021; 59
Lei (10.1016/j.swevo.2025.101944_bib0030) 2021; 59
Zhang (10.1016/j.swevo.2025.101944_bib0057) 2017
Li (10.1016/j.swevo.2025.101944_bib0009) 2020; 56
Xu (10.1016/j.swevo.2025.101944_bib0028) 2021; 13
Paeng (10.1016/j.swevo.2025.101944_bib0072) 2021; 9
Hu (10.1016/j.swevo.2025.101944_bib0064) 2020; 149
Ying (10.1016/j.swevo.2025.101944_bib0001) 2024
Yue (10.1016/j.swevo.2025.101944_bib0044) 2024; 90
Song (10.1016/j.swevo.2025.101944_bib0033) 2021; 9
Parichehreh (10.1016/j.swevo.2025.101944_bib0016) 2024
Li (10.1016/j.swevo.2025.101944_bib0074) 2022; 203
Yuan (10.1016/j.swevo.2025.101944_bib0049) 2016; 8
Brammer (10.1016/j.swevo.2025.101944_bib0060) 2022; 299
LeCun (10.1016/j.swevo.2025.101944_bib0071) 2015; 521
Zhang (10.1016/j.swevo.2025.101944_bib0008) 2024; 2
Hu (10.1016/j.swevo.2025.101944_bib0059) 2020; 55
Chen (10.1016/j.swevo.2025.101944_bib0007) 2025; 262
Chen (10.1016/j.swevo.2025.101944_bib0005) 2024
Gui (10.1016/j.swevo.2025.101944_bib0022) 2023; 180
Chyu (10.1016/j.swevo.2025.101944_bib0029) 2011; 57
Luo (10.1016/j.swevo.2025.101944_bib0061) 2020; 91
Tao (10.1016/j.swevo.2025.101944_bib0024) 2014; 43
Chen (10.1016/j.swevo.2025.101944_bib0038) 2025; 176
Kazemi (10.1016/j.swevo.2025.101944_bib0040) 2021; 38
Khalid (10.1016/j.swevo.2025.101944_bib0042) 2019; 11
Wang (10.1016/j.swevo.2025.101944_bib0070) 2021; 1
Shiue (10.1016/j.swevo.2025.101944_bib0020) 2018; 125
Drugan (10.1016/j.swevo.2025.101944_bib0010) 2019; 44
Zhang (10.1016/j.swevo.2025.101944_bib0063) 2012; 39
Chen (10.1016/j.swevo.2025.101944_bib0025) 2021; 38
Li (10.1016/j.swevo.2025.101944_bib0036) 2016; 84
Chen (10.1016/j.swevo.2025.101944_bib0047) 2023
Liu (10.1016/j.swevo.2025.101944_bib0026) 2023
Deb (10.1016/j.swevo.2025.101944_bib0073) 2002; 6
Wang (10.1016/j.swevo.2025.101944_bib0035) 2015; 37
Xiao (10.1016/j.swevo.2025.101944_bib0037) 2021; 320
Zhang (10.1016/j.swevo.2025.101944_bib0050) 2025; 92
Li (10.1016/j.swevo.2025.101944_bib0052) 2024; 35
Muñoz-Díaz (10.1016/j.swevo.2025.101944_bib0012) 2024; 163
Zhang (10.1016/j.swevo.2025.101944_bib0048) 2007; 34
Luo (10.1016/j.swevo.2025.101944_bib0066) 2021; 159
Su (10.1016/j.swevo.2025.101944_bib0056) 2023; 145
Pfund (10.1016/j.swevo.2025.101944_bib0003) 2004; 21
10.1016/j.swevo.2025.101944_bib0039
Julaiti (10.1016/j.swevo.2025.101944_bib0051) 2022; 4
Liu (10.1016/j.swevo.2025.101944_bib0062) 2022; 60
Wang (10.1016/j.swevo.2025.101944_bib0031) 2023; 24
Parichehreh (10.1016/j.swevo.2025.101944_bib0053) 2024; 21
Caselli (10.1016/j.swevo.2025.101944_bib0014) 2024; 163
Aghaei (10.1016/j.swevo.2025.101944_bib0076) 2011; 11
Anghinolfi (10.1016/j.swevo.2025.101944_bib0034) 2021; 289
Lee (10.1016/j.swevo.2025.101944_bib0067) 2022; 60
Lang (10.1016/j.swevo.2025.101944_bib0055) 2021; 172
Majid (10.1016/j.swevo.2025.101944_bib0058) 2023
References_xml – volume: 2
  year: 2024
  ident: bib0008
  article-title: Enhancing multi-objective evolutionary algorithms with machine learning for scheduling problems: recent advances and survey
  publication-title: Front. Ind. Eng.
– volume: 37
  start-page: 182
  year: 2015
  end-page: 192
  ident: bib0035
  article-title: Multi-objective optimization of parallel machine scheduling integrated with multi-resources preventive maintenance planning
  publication-title: J. Manuf. Syst.
– volume: 60
  start-page: 2346
  year: 2022
  end-page: 2368
  ident: bib0067
  article-title: Reinforcement learning for robotic flow shop scheduling with processing time variations
  publication-title: Int. J. Prod. Res.
– volume: 149
  year: 2020
  ident: bib0064
  article-title: Deep reinforcement learning based AGVs real-time scheduling with mixed rule for flexible shop floor in industry 4.0
  publication-title: Comput. Ind. Eng.
– volume: 8
  start-page: 94
  year: 2016
  end-page: 103
  ident: bib0049
  article-title: Dynamic parallel machine scheduling with random breakdowns using the learning agent
  publication-title: Int. J. Serv. Oper. Informatics
– volume: 163
  year: 2024
  ident: bib0012
  article-title: Solving an unrelated parallel machines scheduling problem with machine-and job-dependent setups and precedence constraints considering support machines
  publication-title: Comput. Oper. Res.
– volume: 31
  start-page: 417
  year: 2020
  end-page: 432
  ident: bib0021
  article-title: Adaptive job shop scheduling strategy based on weighted Q-learning algorithm
  publication-title: J. Intell. Manuf.
– volume: 9
  start-page: 56822
  year: 2021
  end-page: 56835
  ident: bib0033
  article-title: A hybrid multi-objective teaching-learning based optimization for scheduling problem of hybrid flow shop with unrelated parallel machine
  publication-title: IEEe Access.
– volume: 84
  start-page: 213
  year: 2016
  end-page: 226
  ident: bib0036
  article-title: Unrelated parallel machine scheduling problem with energy and tardiness cost
  publication-title: Int. J. Adv. Manuf. Technol.
– volume: 43
  start-page: 215
  year: 2014
  end-page: 224
  ident: bib0024
  article-title: A better online algorithm for the parallel machine scheduling to minimize the total weighted completion time
  publication-title: Comput. Oper. Res.
– volume: 34
  start-page: 968
  year: 2007
  end-page: 980
  ident: bib0048
  article-title: Dynamic parallel machine scheduling with mean weighted tardiness objective by Q-Learning
  publication-title: Int. J. Adv. Manuf. Technol.
– year: 2024
  ident: bib0001
  article-title: Revisiting the development trajectory of parallel machine scheduling
  publication-title: Comput. Oper. Res.
– volume: 38
  start-page: 271
  year: 2021
  end-page: 284
  ident: bib0025
  article-title: Makespan minimization for scheduling on two identical parallel machiens with flexible maintenance and nonresumable jobs
  publication-title: J. Ind. Prod. Eng.
– volume: 9
  start-page: 101390
  year: 2021
  end-page: 101401
  ident: bib0072
  article-title: Deep reinforcement learning for minimizing tardiness in parallel machine scheduling with sequence dependent family setups
  publication-title: IEEe Access.
– volume: 289
  start-page: 416
  year: 2021
  end-page: 434
  ident: bib0034
  article-title: A bi-objective heuristic approach for green identical parallel machine scheduling
  publication-title: Eur. J. Oper. Res.
– volume: 180
  year: 2023
  ident: bib0022
  article-title: Dynamic scheduling for flexible job shop using a deep reinforcement learning approach
  publication-title: Comput. Ind. Eng.
– volume: 45
  start-page: 19
  year: 2023
  ident: bib0041
  article-title: Unrelated parallel batch machine scheduling using a modified ABC algorithm
  publication-title: Eng. Proc.
– reference: arXiv preprint arXiv:2308.13420, 2023.
– volume: 21
  start-page: 9651
  year: 2024
  end-page: 9676
  ident: bib0053
  article-title: An energy-efficient unrelated parallel machine scheduling problem with learning effect of operators and deterioration of jobs
  publication-title: Int. J. Environ. Sci. Technol.
– year: 2023
  ident: bib0026
  article-title: Dynamic parallel machine scheduling with deep Q-network
  publication-title: IEEE Trans. Syst. Man Cybern.
– year: 2024
  ident: bib0005
  article-title: Solving batch processing machine scheduling problems using a self-adaptive approach based on dynamic programming
  publication-title: Comput. Oper. Res.
– reference: Caselli, G., et al.
– volume: 35
  start-page: 1107
  year: 2024
  end-page: 1140
  ident: bib0052
  article-title: A two-stage RNN-based deep reinforcement learning approach for solving the parallel machine scheduling problem with due dates and family setups
  publication-title: J. Intell. Manuf.
– volume: 125
  start-page: 604
  year: 2018
  end-page: 614
  ident: bib0020
  article-title: Real-time scheduling for a smart factory using a reinforcement learning approach
  publication-title: Comput. Ind. Eng.
– reference: Salimans, T., et al.,
– volume: 16
  year: 2024
  ident: bib0002
  article-title: Integrated proactive-reactive tool for dynamic scheduling of parallel machine operations
  publication-title: Int. J. Eng. Bus. Manag.
– volume: 203
  year: 2022
  ident: bib0074
  article-title: A reinforcement learning based RMOEA/D for bi-objective fuzzy flexible job shop scheduling
  publication-title: Expert. Syst. Appl.
– volume: 14
  start-page: 539
  year: 2023
  end-page: 554
  ident: bib0013
  article-title: Joint optimization of production and maintenance scheduling for unrelated parallel machine using hybrid discrete spider monkey optimization algorithm
  publication-title: Int. J. Ind. Eng. Comput.
– volume: 55
  start-page: 1
  year: 2020
  end-page: 14
  ident: bib0059
  article-title: Petri-net-based dynamic scheduling of flexible manufacturing system via deep reinforcement learning with graph convolutional network
  publication-title: J. Manuf. Syst.
– reference: . Springer.
– volume: 11
  start-page: 729
  year: 2019
  ident: bib0042
  article-title: Hybrid particle swarm algorithm for products’ scheduling problem in cellular manufacturing system
  publication-title: Symmetry (Basel)
– start-page: 1
  year: 2024
  end-page: 26
  ident: bib0016
  article-title: An energy-efficient unrelated parallel machine scheduling problem with learning effect of operators and deterioration of jobs
  publication-title: Int. J. Environ. Sci. Technol.
– volume: 262
  year: 2025
  ident: bib0007
  article-title: An efficient Q-learning integrated multi-objective hyper-heuristic approach for hybrid flow shop scheduling problems with lot streaming
  publication-title: Expert. Syst. Appl.
– volume: 38
  start-page: 157
  year: 2021
  end-page: 170
  ident: bib0040
  article-title: The integrated production-distribution scheduling in parallel machine environment by using improved genetic algorithms
  publication-title: J. Ind. Prod. Eng.
– volume: 34
  start-page: 905
  year: 2023
  end-page: 929
  ident: bib0004
  article-title: Reinforcement learning applications to machine scheduling problems: a comprehensive literature review
  publication-title: J. Intell. Manuf.
– volume: 24
  year: 2023
  ident: bib0031
  article-title: Minimizing tardiness and makespan for distributed heterogeneous unrelated parallel machine scheduling by knowledge and Pareto-based memetic algorithm
  publication-title: Egyptian Informatics J.
– volume: 163
  year: 2024
  ident: bib0014
  article-title: Exact algorithms for a parallel machine scheduling problem with workforce and contiguity constraints
  publication-title: Comput. Oper. Res.
– volume: 176
  year: 2025
  ident: bib0038
  article-title: Batch processing machine scheduling problems using a self-adaptive approach based on dynamic programming
  publication-title: Comput. Oper. Res.
– volume: 158
  year: 2023
  ident: bib0075
  article-title: Efficient multi-objective metaheuristic algorithm for sustainable harvest planning problem
  publication-title: Comput. Oper. Res.
– volume: 132
  year: 2021
  ident: bib0017
  article-title: Unrelated parallel machine scheduling with new criteria: complexity and models
  publication-title: Comput. Oper. Res.
– volume: 320
  year: 2021
  ident: bib0037
  article-title: A branch and bound algorithm for a parallel machine scheduling problem in green manufacturing industry considering time cost and power consumption
  publication-title: J. Clean. Prod.
– volume: 170
  year: 2024
  ident: bib0015
  article-title: A distributionally robust approach for the parallel machine scheduling problem with optional machines and job tardiness
  publication-title: Comput. Oper. Res.
– volume: 299
  start-page: 75
  year: 2022
  end-page: 86
  ident: bib0060
  article-title: Permutation flow shop scheduling with multiple lines and demand plans using reinforcement learning
  publication-title: Eur. J. Oper. Res.
– volume: 77
  start-page: 946
  year: 2024
  end-page: 961
  ident: bib0045
  article-title: Generative deep reinforcement learning method for dynamic parallel machines scheduling with adaptive maintenance activities
  publication-title: J. Manuf. Syst.
– volume: 39
  start-page: 1315
  year: 2012
  end-page: 1324
  ident: bib0063
  article-title: Minimizing mean weighted tardiness in unrelated parallel machine scheduling with reinforcement learning
  publication-title: Comput. Oper. Res.
– volume: 11
  start-page: 3846
  year: 2011
  end-page: 3858
  ident: bib0076
  article-title: Multi-objective electricity market clearing considering dynamic security by lexicographic optimization and augmented epsilon constraint method
  publication-title: Appl. Soft. Comput.
– year: 2023
  ident: bib0068
  article-title: A deep multi-agent reinforcement learning approach to solve dynamic job shop scheduling problem
  publication-title: Comput. Oper. Res.
– volume: 1
  start-page: 257
  year: 2021
  end-page: 270
  ident: bib0070
  article-title: A review of reinforcement learning based intelligent optimization for manufacturing scheduling
  publication-title: Complex Syst. Model. Simul.
– volume: 56
  year: 2020
  ident: bib0009
  article-title: Evolution strategies for continuous optimization: a survey of the state-of-the-art
  publication-title: Swarm. Evol. Comput.
– year: 2023
  ident: bib0047
  article-title: An improved spider monkey optimization algorithm for multi-objective planning and scheduling problems of PCB assembly line
  publication-title: Expert. Syst. Appl.
– volume: 145
  year: 2023
  ident: bib0056
  article-title: Evolution strategies-based optimized graph reinforcement learning for solving dynamic job shop scheduling problem
  publication-title: Appl. Soft. Comput.
– volume: 37
  start-page: 6718
  year: 2013
  end-page: 6729
  ident: bib0018
  article-title: Solving multi-objective parallel machine scheduling problem by a modified NSGA-II
  publication-title: Appl. Math. Model.
– year: 2023
  ident: bib0058
  article-title: versus
  publication-title: IEEe Trans. Neural Netw. Learn. Syst.
– volume: 80
  year: 2023
  ident: bib0069
  article-title: Bi-objective scenario-guided swarm intelligent algorithms based on reinforcement learning for robust unrelated parallel machines scheduling with setup times
  publication-title: Swarm. Evol. Comput.
– year: 2017
  ident: bib0057
  article-title: On the relationship between the OpenAI evolution strategy and stochastic gradient descent
  publication-title: arXiv preprint
– volume: 229
  year: 2023
  ident: bib0027
  article-title: An improved spider monkey optimization algorithm for multi-objective planning and scheduling problems of PCB assembly line
  publication-title: Expert. Syst. Appl.
– volume: 13
  start-page: 1521
  year: 2021
  ident: bib0028
  article-title: Modeling and optimization for multi-objective nonidentical parallel machining line scheduling with a jumping process operation constraint
  publication-title: Symmetry. (Basel)
– volume: 92
  year: 2025
  ident: bib0050
  article-title: A revised deep reinforcement learning algorithm for parallel machine scheduling problem under multi-scenario due date constraints
  publication-title: Swarm. Evol. Comput.
– volume: 231
  year: 2023
  ident: bib0043
  article-title: Reinforcement learning algorithms: a brief survey
  publication-title: Expert. Syst. Appl.
– reference: Song, Y., et al.,
– volume: 91
  year: 2020
  ident: bib0061
  article-title: Dynamic scheduling for flexible job shop with new job insertions by deep reinforcement learning
  publication-title: Appl. Soft. Comput.
– start-page: 1
  year: 2024
  end-page: 34
  ident: bib0006
  article-title: A transformer-based deep reinforcement learning approach for dynamic parallel machine scheduling problem with family setups
  publication-title: J. Intell. Manuf.
– volume: 59
  start-page: 5259
  year: 2021
  end-page: 5271
  ident: bib0030
  article-title: An improved artificial bee colony for multi-objective distributed unrelated parallel machine scheduling
  publication-title: Int. J. Prod. Res.
– reference: arXiv preprint arXiv:1703.03864, 2017.
– volume: 131
  start-page: 148
  year: 2019
  end-page: 171
  ident: bib0019
  article-title: A reinforcement learning-based multi-agent framework applied for solving routing and scheduling problems
  publication-title: Expert. Syst. Appl.
– volume: 60
  start-page: 4049
  year: 2022
  end-page: 4069
  ident: bib0062
  article-title: Deep reinforcement learning for dynamic scheduling of a flexible job shop
  publication-title: Int. J. Prod. Res.
– volume: 44
  start-page: 228
  year: 2019
  end-page: 246
  ident: bib0010
  article-title: versus
  publication-title: Swarm. Evol. Comput.
– volume: 4
  year: 2022
  ident: bib0051
  article-title: Stochastic parallel machine scheduling using reinforcement learning
  publication-title: J. Adv. Manuf. Process.
– volume: 521
  start-page: 436
  year: 2015
  end-page: 444
  ident: bib0071
  article-title: Deep learning
  publication-title: Nature
– volume: 57
  start-page: 763
  year: 2011
  end-page: 776
  ident: bib0029
  article-title: Optimizing fuzzy makespan and tardiness for unrelated parallel machine scheduling with archived metaheuristics
  publication-title: Int. J. Adv. Manuf. Technol.
– volume: 6
  start-page: 182
  year: 2002
  end-page: 197
  ident: bib0073
  article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II
  publication-title: IEEE Trans. Evol. Comput.
– volume: 172
  year: 2021
  ident: bib0055
  article-title: NeuroEvolution of augmenting topologies for solving a two-stage hybrid flow shop scheduling problem: a comparison of different solution strategies
  publication-title: Expert. Syst. Appl.
– volume: 159
  year: 2021
  ident: bib0066
  article-title: Dynamic multi-objective scheduling for flexible job shop by deep reinforcement learning
  publication-title: Comput. Ind. Eng.
– volume: 190
  year: 2021
  ident: bib0065
  article-title: Dynamic job-shop scheduling in smart manufacturing using deep reinforcement learning
  publication-title: Comput. Netw.
– volume: 59
  start-page: 6327
  year: 2021
  end-page: 6346
  ident: bib0023
  article-title: Parallel machine scheduling with stochastic release times and processing times
  publication-title: Int. J. Prod. Res.
– volume: 345
  year: 2023
  ident: bib0046
  article-title: A deep reinforcement learning based multi-objective optimization for the scheduling of oxygen production system in integrated iron and steel plants
  publication-title: Appl. Energy
– volume: 21
  start-page: 230
  year: 2004
  end-page: 241
  ident: bib0003
  article-title: A survey of algorithms for single and multi-objective unrelated parallel-machine deterministic scheduling problems
  publication-title: J. Chin. Inst. Ind. Engineers
– volume: 90
  year: 2024
  ident: bib0044
  article-title: Two-stage double deep Q-network algorithm considering external non-dominant set for multi-objective dynamic flexible job shop scheduling problems
  publication-title: Swarm. Evol. Comput.
– volume: 13
  start-page: 457
  year: 2022
  end-page: 472
  ident: bib0032
  article-title: Bi-objective optimization of identical parallel machine scheduling with flexible maintenance and job release times
  publication-title: Int. J. Ind. Eng. Comput.
– year: 2023
  ident: 10.1016/j.swevo.2025.101944_bib0047
  article-title: An improved spider monkey optimization algorithm for multi-objective planning and scheduling problems of PCB assembly line
  publication-title: Expert. Syst. Appl.
  doi: 10.1016/j.eswa.2023.120600
– volume: 158
  year: 2023
  ident: 10.1016/j.swevo.2025.101944_bib0075
  article-title: Efficient multi-objective metaheuristic algorithm for sustainable harvest planning problem
  publication-title: Comput. Oper. Res.
  doi: 10.1016/j.cor.2023.106304
– volume: 59
  start-page: 5259
  issue: 17
  year: 2021
  ident: 10.1016/j.swevo.2025.101944_bib0030
  article-title: An improved artificial bee colony for multi-objective distributed unrelated parallel machine scheduling
  publication-title: Int. J. Prod. Res.
  doi: 10.1080/00207543.2020.1775911
– volume: 37
  start-page: 6718
  issue: 10–11
  year: 2013
  ident: 10.1016/j.swevo.2025.101944_bib0018
  article-title: Solving multi-objective parallel machine scheduling problem by a modified NSGA-II
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2013.01.050
– volume: 345
  year: 2023
  ident: 10.1016/j.swevo.2025.101944_bib0046
  article-title: A deep reinforcement learning based multi-objective optimization for the scheduling of oxygen production system in integrated iron and steel plants
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2023.121332
– volume: 35
  start-page: 1107
  issue: 3
  year: 2024
  ident: 10.1016/j.swevo.2025.101944_bib0052
  article-title: A two-stage RNN-based deep reinforcement learning approach for solving the parallel machine scheduling problem with due dates and family setups
  publication-title: J. Intell. Manuf.
  doi: 10.1007/s10845-023-02094-4
– volume: 91
  year: 2020
  ident: 10.1016/j.swevo.2025.101944_bib0061
  article-title: Dynamic scheduling for flexible job shop with new job insertions by deep reinforcement learning
  publication-title: Appl. Soft. Comput.
  doi: 10.1016/j.asoc.2020.106208
– volume: 59
  start-page: 6327
  issue: 20
  year: 2021
  ident: 10.1016/j.swevo.2025.101944_bib0023
  article-title: Parallel machine scheduling with stochastic release times and processing times
  publication-title: Int. J. Prod. Res.
  doi: 10.1080/00207543.2020.1812752
– volume: 38
  start-page: 157
  issue: 3
  year: 2021
  ident: 10.1016/j.swevo.2025.101944_bib0040
  article-title: The integrated production-distribution scheduling in parallel machine environment by using improved genetic algorithms
  publication-title: J. Ind. Prod. Eng.
– volume: 180
  year: 2023
  ident: 10.1016/j.swevo.2025.101944_bib0022
  article-title: Dynamic scheduling for flexible job shop using a deep reinforcement learning approach
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2023.109255
– volume: 299
  start-page: 75
  issue: 1
  year: 2022
  ident: 10.1016/j.swevo.2025.101944_bib0060
  article-title: Permutation flow shop scheduling with multiple lines and demand plans using reinforcement learning
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2021.08.007
– volume: 16
  year: 2024
  ident: 10.1016/j.swevo.2025.101944_bib0002
  article-title: Integrated proactive-reactive tool for dynamic scheduling of parallel machine operations
  publication-title: Int. J. Eng. Bus. Manag.
  doi: 10.1177/18479790241301164
– start-page: 1
  year: 2024
  ident: 10.1016/j.swevo.2025.101944_bib0016
  article-title: An energy-efficient unrelated parallel machine scheduling problem with learning effect of operators and deterioration of jobs
  publication-title: Int. J. Environ. Sci. Technol.
– year: 2024
  ident: 10.1016/j.swevo.2025.101944_bib0005
  article-title: Solving batch processing machine scheduling problems using a self-adaptive approach based on dynamic programming
  publication-title: Comput. Oper. Res.
– volume: 38
  start-page: 271
  issue: 4
  year: 2021
  ident: 10.1016/j.swevo.2025.101944_bib0025
  article-title: Makespan minimization for scheduling on two identical parallel machiens with flexible maintenance and nonresumable jobs
  publication-title: J. Ind. Prod. Eng.
– volume: 289
  start-page: 416
  issue: 2
  year: 2021
  ident: 10.1016/j.swevo.2025.101944_bib0034
  article-title: A bi-objective heuristic approach for green identical parallel machine scheduling
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2020.07.020
– volume: 60
  start-page: 4049
  issue: 13
  year: 2022
  ident: 10.1016/j.swevo.2025.101944_bib0062
  article-title: Deep reinforcement learning for dynamic scheduling of a flexible job shop
  publication-title: Int. J. Prod. Res.
  doi: 10.1080/00207543.2022.2058432
– volume: 8
  start-page: 94
  issue: 2
  year: 2016
  ident: 10.1016/j.swevo.2025.101944_bib0049
  article-title: Dynamic parallel machine scheduling with random breakdowns using the learning agent
  publication-title: Int. J. Serv. Oper. Informatics
– volume: 190
  year: 2021
  ident: 10.1016/j.swevo.2025.101944_bib0065
  article-title: Dynamic job-shop scheduling in smart manufacturing using deep reinforcement learning
  publication-title: Comput. Netw.
  doi: 10.1016/j.comnet.2021.107969
– volume: 229
  year: 2023
  ident: 10.1016/j.swevo.2025.101944_bib0027
  article-title: An improved spider monkey optimization algorithm for multi-objective planning and scheduling problems of PCB assembly line
  publication-title: Expert. Syst. Appl.
  doi: 10.1016/j.eswa.2023.120600
– volume: 145
  year: 2023
  ident: 10.1016/j.swevo.2025.101944_bib0056
  article-title: Evolution strategies-based optimized graph reinforcement learning for solving dynamic job shop scheduling problem
  publication-title: Appl. Soft. Comput.
  doi: 10.1016/j.asoc.2023.110596
– year: 2023
  ident: 10.1016/j.swevo.2025.101944_bib0068
  article-title: A deep multi-agent reinforcement learning approach to solve dynamic job shop scheduling problem
  publication-title: Comput. Oper. Res.
  doi: 10.1016/j.cor.2023.106294
– volume: 43
  start-page: 215
  year: 2014
  ident: 10.1016/j.swevo.2025.101944_bib0024
  article-title: A better online algorithm for the parallel machine scheduling to minimize the total weighted completion time
  publication-title: Comput. Oper. Res.
  doi: 10.1016/j.cor.2013.09.016
– ident: 10.1016/j.swevo.2025.101944_bib0054
– ident: 10.1016/j.swevo.2025.101944_bib0039
– volume: 176
  year: 2025
  ident: 10.1016/j.swevo.2025.101944_bib0038
  article-title: Batch processing machine scheduling problems using a self-adaptive approach based on dynamic programming
  publication-title: Comput. Oper. Res.
  doi: 10.1016/j.cor.2024.106933
– volume: 521
  start-page: 436
  issue: 7553
  year: 2015
  ident: 10.1016/j.swevo.2025.101944_bib0071
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 163
  year: 2024
  ident: 10.1016/j.swevo.2025.101944_bib0012
  article-title: Solving an unrelated parallel machines scheduling problem with machine-and job-dependent setups and precedence constraints considering support machines
  publication-title: Comput. Oper. Res.
  doi: 10.1016/j.cor.2023.106511
– volume: 149
  year: 2020
  ident: 10.1016/j.swevo.2025.101944_bib0064
  article-title: Deep reinforcement learning based AGVs real-time scheduling with mixed rule for flexible shop floor in industry 4.0
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2020.106749
– volume: 320
  year: 2021
  ident: 10.1016/j.swevo.2025.101944_bib0037
  article-title: A branch and bound algorithm for a parallel machine scheduling problem in green manufacturing industry considering time cost and power consumption
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2021.128867
– volume: 172
  year: 2021
  ident: 10.1016/j.swevo.2025.101944_bib0055
  article-title: NeuroEvolution of augmenting topologies for solving a two-stage hybrid flow shop scheduling problem: a comparison of different solution strategies
  publication-title: Expert. Syst. Appl.
  doi: 10.1016/j.eswa.2021.114666
– volume: 13
  start-page: 1521
  issue: 8
  year: 2021
  ident: 10.1016/j.swevo.2025.101944_bib0028
  article-title: Modeling and optimization for multi-objective nonidentical parallel machining line scheduling with a jumping process operation constraint
  publication-title: Symmetry. (Basel)
  doi: 10.3390/sym13081521
– volume: 90
  year: 2024
  ident: 10.1016/j.swevo.2025.101944_bib0044
  article-title: Two-stage double deep Q-network algorithm considering external non-dominant set for multi-objective dynamic flexible job shop scheduling problems
  publication-title: Swarm. Evol. Comput.
  doi: 10.1016/j.swevo.2024.101660
– volume: 132
  year: 2021
  ident: 10.1016/j.swevo.2025.101944_bib0017
  article-title: Unrelated parallel machine scheduling with new criteria: complexity and models
  publication-title: Comput. Oper. Res.
  doi: 10.1016/j.cor.2021.105291
– volume: 45
  start-page: 19
  issue: 1
  year: 2023
  ident: 10.1016/j.swevo.2025.101944_bib0041
  article-title: Unrelated parallel batch machine scheduling using a modified ABC algorithm
  publication-title: Eng. Proc.
– year: 2017
  ident: 10.1016/j.swevo.2025.101944_bib0057
  article-title: On the relationship between the OpenAI evolution strategy and stochastic gradient descent
  publication-title: arXiv preprint
– volume: 11
  start-page: 3846
  issue: 4
  year: 2011
  ident: 10.1016/j.swevo.2025.101944_bib0076
  article-title: Multi-objective electricity market clearing considering dynamic security by lexicographic optimization and augmented epsilon constraint method
  publication-title: Appl. Soft. Comput.
  doi: 10.1016/j.asoc.2011.02.022
– volume: 262
  year: 2025
  ident: 10.1016/j.swevo.2025.101944_bib0007
  article-title: An efficient Q-learning integrated multi-objective hyper-heuristic approach for hybrid flow shop scheduling problems with lot streaming
  publication-title: Expert. Syst. Appl.
  doi: 10.1016/j.eswa.2024.125616
– volume: 60
  start-page: 2346
  issue: 7
  year: 2022
  ident: 10.1016/j.swevo.2025.101944_bib0067
  article-title: Reinforcement learning for robotic flow shop scheduling with processing time variations
  publication-title: Int. J. Prod. Res.
  doi: 10.1080/00207543.2021.1887533
– volume: 159
  year: 2021
  ident: 10.1016/j.swevo.2025.101944_bib0066
  article-title: Dynamic multi-objective scheduling for flexible job shop by deep reinforcement learning
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2021.107489
– volume: 1
  start-page: 257
  issue: 4
  year: 2021
  ident: 10.1016/j.swevo.2025.101944_bib0070
  article-title: A review of reinforcement learning based intelligent optimization for manufacturing scheduling
  publication-title: Complex Syst. Model. Simul.
  doi: 10.23919/CSMS.2021.0027
– volume: 56
  year: 2020
  ident: 10.1016/j.swevo.2025.101944_bib0009
  article-title: Evolution strategies for continuous optimization: a survey of the state-of-the-art
  publication-title: Swarm. Evol. Comput.
  doi: 10.1016/j.swevo.2020.100694
– volume: 92
  year: 2025
  ident: 10.1016/j.swevo.2025.101944_bib0050
  article-title: A revised deep reinforcement learning algorithm for parallel machine scheduling problem under multi-scenario due date constraints
  publication-title: Swarm. Evol. Comput.
  doi: 10.1016/j.swevo.2024.101808
– volume: 84
  start-page: 213
  year: 2016
  ident: 10.1016/j.swevo.2025.101944_bib0036
  article-title: Unrelated parallel machine scheduling problem with energy and tardiness cost
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-015-7657-2
– volume: 44
  start-page: 228
  year: 2019
  ident: 10.1016/j.swevo.2025.101944_bib0010
  article-title: Reinforcement learning versus evolutionary computation: a survey on hybrid algorithms
  publication-title: Swarm. Evol. Comput.
  doi: 10.1016/j.swevo.2018.03.011
– volume: 55
  start-page: 1
  year: 2020
  ident: 10.1016/j.swevo.2025.101944_bib0059
  article-title: Petri-net-based dynamic scheduling of flexible manufacturing system via deep reinforcement learning with graph convolutional network
  publication-title: J. Manuf. Syst.
  doi: 10.1016/j.jmsy.2020.02.004
– start-page: 1
  year: 2024
  ident: 10.1016/j.swevo.2025.101944_bib0006
  article-title: A transformer-based deep reinforcement learning approach for dynamic parallel machine scheduling problem with family setups
  publication-title: J. Intell. Manuf.
– volume: 9
  start-page: 101390
  year: 2021
  ident: 10.1016/j.swevo.2025.101944_bib0072
  article-title: Deep reinforcement learning for minimizing tardiness in parallel machine scheduling with sequence dependent family setups
  publication-title: IEEe Access.
  doi: 10.1109/ACCESS.2021.3097254
– volume: 57
  start-page: 763
  year: 2011
  ident: 10.1016/j.swevo.2025.101944_bib0029
  article-title: Optimizing fuzzy makespan and tardiness for unrelated parallel machine scheduling with archived metaheuristics
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-011-3317-3
– volume: 11
  start-page: 729
  issue: 6
  year: 2019
  ident: 10.1016/j.swevo.2025.101944_bib0042
  article-title: Hybrid particle swarm algorithm for products’ scheduling problem in cellular manufacturing system
  publication-title: Symmetry (Basel)
  doi: 10.3390/sym11060729
– volume: 131
  start-page: 148
  year: 2019
  ident: 10.1016/j.swevo.2025.101944_bib0019
  article-title: A reinforcement learning-based multi-agent framework applied for solving routing and scheduling problems
  publication-title: Expert. Syst. Appl.
  doi: 10.1016/j.eswa.2019.04.056
– volume: 77
  start-page: 946
  year: 2024
  ident: 10.1016/j.swevo.2025.101944_bib0045
  article-title: Generative deep reinforcement learning method for dynamic parallel machines scheduling with adaptive maintenance activities
  publication-title: J. Manuf. Syst.
  doi: 10.1016/j.jmsy.2024.11.004
– year: 2023
  ident: 10.1016/j.swevo.2025.101944_bib0026
  article-title: Dynamic parallel machine scheduling with deep Q-network
  publication-title: IEEE Trans. Syst. Man Cybern.
  doi: 10.1109/TSMC.2023.3289322
– volume: 34
  start-page: 968
  year: 2007
  ident: 10.1016/j.swevo.2025.101944_bib0048
  article-title: Dynamic parallel machine scheduling with mean weighted tardiness objective by Q-Learning
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-006-0662-8
– volume: 170
  year: 2024
  ident: 10.1016/j.swevo.2025.101944_bib0015
  article-title: A distributionally robust approach for the parallel machine scheduling problem with optional machines and job tardiness
  publication-title: Comput. Oper. Res.
  doi: 10.1016/j.cor.2024.106776
– volume: 163
  year: 2024
  ident: 10.1016/j.swevo.2025.101944_bib0014
  article-title: Exact algorithms for a parallel machine scheduling problem with workforce and contiguity constraints
  publication-title: Comput. Oper. Res.
  doi: 10.1016/j.cor.2023.106484
– year: 2023
  ident: 10.1016/j.swevo.2025.101944_bib0058
  article-title: Deep reinforcement learning versus evolution strategies: a comparative survey
  publication-title: IEEe Trans. Neural Netw. Learn. Syst.
– year: 2024
  ident: 10.1016/j.swevo.2025.101944_bib0001
  article-title: Revisiting the development trajectory of parallel machine scheduling
  publication-title: Comput. Oper. Res.
  doi: 10.1016/j.cor.2024.106709
– volume: 14
  start-page: 539
  issue: 3
  year: 2023
  ident: 10.1016/j.swevo.2025.101944_bib0013
  article-title: Joint optimization of production and maintenance scheduling for unrelated parallel machine using hybrid discrete spider monkey optimization algorithm
  publication-title: Int. J. Ind. Eng. Comput.
– volume: 231
  year: 2023
  ident: 10.1016/j.swevo.2025.101944_bib0043
  article-title: Reinforcement learning algorithms: a brief survey
  publication-title: Expert. Syst. Appl.
  doi: 10.1016/j.eswa.2023.120495
– volume: 2
  year: 2024
  ident: 10.1016/j.swevo.2025.101944_bib0008
  article-title: Enhancing multi-objective evolutionary algorithms with machine learning for scheduling problems: recent advances and survey
  publication-title: Front. Ind. Eng.
  doi: 10.3389/fieng.2024.1337174
– volume: 24
  issue: 3
  year: 2023
  ident: 10.1016/j.swevo.2025.101944_bib0031
  article-title: Minimizing tardiness and makespan for distributed heterogeneous unrelated parallel machine scheduling by knowledge and Pareto-based memetic algorithm
  publication-title: Egyptian Informatics J.
  doi: 10.1016/j.eij.2023.05.008
– volume: 21
  start-page: 9651
  issue: 15
  year: 2024
  ident: 10.1016/j.swevo.2025.101944_bib0053
  article-title: An energy-efficient unrelated parallel machine scheduling problem with learning effect of operators and deterioration of jobs
  publication-title: Int. J. Environ. Sci. Technol.
  doi: 10.1007/s13762-024-05595-8
– volume: 80
  year: 2023
  ident: 10.1016/j.swevo.2025.101944_bib0069
  article-title: Bi-objective scenario-guided swarm intelligent algorithms based on reinforcement learning for robust unrelated parallel machines scheduling with setup times
  publication-title: Swarm. Evol. Comput.
  doi: 10.1016/j.swevo.2023.101321
– volume: 34
  start-page: 905
  issue: 3
  year: 2023
  ident: 10.1016/j.swevo.2025.101944_bib0004
  article-title: Reinforcement learning applications to machine scheduling problems: a comprehensive literature review
  publication-title: J. Intell. Manuf.
  doi: 10.1007/s10845-021-01847-3
– volume: 6
  start-page: 182
  issue: 2
  year: 2002
  ident: 10.1016/j.swevo.2025.101944_bib0073
  article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/4235.996017
– volume: 9
  start-page: 56822
  year: 2021
  ident: 10.1016/j.swevo.2025.101944_bib0033
  article-title: A hybrid multi-objective teaching-learning based optimization for scheduling problem of hybrid flow shop with unrelated parallel machine
  publication-title: IEEe Access.
  doi: 10.1109/ACCESS.2021.3071729
– ident: 10.1016/j.swevo.2025.101944_bib0011
– volume: 13
  start-page: 457
  issue: 4
  year: 2022
  ident: 10.1016/j.swevo.2025.101944_bib0032
  article-title: Bi-objective optimization of identical parallel machine scheduling with flexible maintenance and job release times
  publication-title: Int. J. Ind. Eng. Comput.
– volume: 203
  year: 2022
  ident: 10.1016/j.swevo.2025.101944_bib0074
  article-title: A reinforcement learning based RMOEA/D for bi-objective fuzzy flexible job shop scheduling
  publication-title: Expert. Syst. Appl.
  doi: 10.1016/j.eswa.2022.117380
– volume: 4
  issue: 4
  year: 2022
  ident: 10.1016/j.swevo.2025.101944_bib0051
  article-title: Stochastic parallel machine scheduling using reinforcement learning
  publication-title: J. Adv. Manuf. Process.
  doi: 10.1002/amp2.10119
– volume: 21
  start-page: 230
  issue: 3
  year: 2004
  ident: 10.1016/j.swevo.2025.101944_bib0003
  article-title: A survey of algorithms for single and multi-objective unrelated parallel-machine deterministic scheduling problems
  publication-title: J. Chin. Inst. Ind. Engineers
– volume: 125
  start-page: 604
  year: 2018
  ident: 10.1016/j.swevo.2025.101944_bib0020
  article-title: Real-time scheduling for a smart factory using a reinforcement learning approach
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2018.03.039
– volume: 37
  start-page: 182
  year: 2015
  ident: 10.1016/j.swevo.2025.101944_bib0035
  article-title: Multi-objective optimization of parallel machine scheduling integrated with multi-resources preventive maintenance planning
  publication-title: J. Manuf. Syst.
  doi: 10.1016/j.jmsy.2015.07.002
– volume: 39
  start-page: 1315
  issue: 7
  year: 2012
  ident: 10.1016/j.swevo.2025.101944_bib0063
  article-title: Minimizing mean weighted tardiness in unrelated parallel machine scheduling with reinforcement learning
  publication-title: Comput. Oper. Res.
  doi: 10.1016/j.cor.2011.07.019
– volume: 31
  start-page: 417
  issue: 2
  year: 2020
  ident: 10.1016/j.swevo.2025.101944_bib0021
  article-title: Adaptive job shop scheduling strategy based on weighted Q-learning algorithm
  publication-title: J. Intell. Manuf.
  doi: 10.1007/s10845-018-1454-3
SSID ssj0000602559
Score 2.3775513
Snippet •Proposed evolution strategies-based reinforcement learning algorithm.•A multi-agent system to generate scheduling policy for parallel machines.•Action with...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 101944
SubjectTerms Energy consumption
Evolution strategies
Multi-agent, reinforcement learning
Multi-objective optimization
Parallel machine scheduling problem
Title An evolution strategies-based reinforcement learning algorithm for multi-objective dynamic parallel machine scheduling problems
URI https://dx.doi.org/10.1016/j.swevo.2025.101944
Volume 95
WOSCitedRecordID wos001476858400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 2210-6502
  databaseCode: AIEXJ
  dateStart: 20110301
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0000602559
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Lb9MwGLdKx4ELb8QYIB-4hUx51vaxmoZgQhPSBiqnyHGc0SpNR5p20y7c-av5_EpfaAIkLlHl1HbS36_-HvoeCL1hhShJHAk_Z2HqJ0kifFYkoR8WALgIeEJ0r8MvH8npKR2N2Kde76fLhVlWpK7p9TW7_K9QwxiArVJn_wLublEYgM8AOlwBdrj-EfDD2pNLu4M3b10pCF_JK5WqokulCu0VdD0jLjxeXcyacfttqsMOdZShP8sn5jT0CtO23lN1wqtKVt5Uh2BKD0xjEFU2o113ppmva7tnV7wxLTi6J1JBekJ3ktgIATiySSJfeTOzsnTdm32yqCfjVZTuYtryGxPjm4-bFTOd7xsW-76wtLcejShdRV4ZN9tOqo06DSOwTX1QJzeObtOfc0cKGIfE5HB-BW93qLZQY8wUmtwqr32mFlbrgi6o6usN7qC9iKSM9tHe8MPx6KTz2AUDbX-pboXuWVwZKx0wuLPb71WdNfXl_CG6b-0OPDR8eYR6sn6MHrieHtge8U_Qj2GNO7DwNn3wBn2wow_u6IPhJt6iD7b0wY4-2NIHr-iDHX2eos_vjs-P3vu2SYcvQFS0_iDgYURImcpIloyzgMcpzYXIwc4XsQB9l6Y8ZKVyeMoQpAMrKSuIjGXC4Q6Nn6F-Pavlc4QDmpNY0oARFe5a5rSgCej3XEoW5oQU-yhyv2cmbAV71Uilylyo4iTTIGQKhMyAsI_edpMuTQGX278-cEBlVgc1umUG5Lpt4ot_nXiA7q3-BC9Rv20W8hW6K5bteN68tiT8BQeUtQQ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+evolution+strategies-based+reinforcement+learning+algorithm+for+multi-objective+dynamic+parallel+machine+scheduling+problems&rft.jtitle=Swarm+and+evolutionary+computation&rft.au=Chen%2C+Yarong&rft.au=Zhang%2C+Junjie&rft.au=Mumtaz%2C+Jabir&rft.au=Huang%2C+Shenquan&rft.date=2025-06-01&rft.pub=Elsevier+B.V&rft.issn=2210-6502&rft.volume=95&rft_id=info:doi/10.1016%2Fj.swevo.2025.101944&rft.externalDocID=S2210650225001026
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2210-6502&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2210-6502&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2210-6502&client=summon