Penalized empirical likelihood for longitudinal expectile regression with growing dimensional data

Expectile regression (ER) naturally extends the classical least squares to investigate heterogeneous effects of covariates on the distribution of the response variable. In this paper, we propose a penalized empirical likelihood (PEL) based ER estimator, which incorporates quadratic inference functio...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of the Korean Statistical Society Ročník 53; číslo 3; s. 752 - 773
Hlavní autoři: Zhang, Ting, Wang, Yanan, Wang, Lei
Médium: Journal Article
Jazyk:angličtina
Vydáno: Singapore Springer Nature Singapore 01.09.2024
Springer Nature B.V
한국통계학회
Témata:
ISSN:1226-3192, 2005-2863
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Expectile regression (ER) naturally extends the classical least squares to investigate heterogeneous effects of covariates on the distribution of the response variable. In this paper, we propose a penalized empirical likelihood (PEL) based ER estimator, which incorporates quadratic inference function and generalized estimating equation to construct the PEL procedure for longitudinal data. We investigate the asymptotic properties of the PEL estimator when the number of covariates is allowed to diverge as the sample size increases. The finite-sample performance of the proposed estimator is studied through simulations, and an application to yeast cell-cycle gene expression data is also presented.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1226-3192
2005-2863
DOI:10.1007/s42952-024-00265-4