AADS: Augmented autonomous driving simulation using data-driven algorithms

Simulation systems have become essential to the development and validation of autonomous driving (AD) technologies. The prevailing state-of-the-art approach for simulation uses game engines or high-fidelity computer graphics (CG) models to create driving scenarios. However, creating CG models and ve...

Full description

Saved in:
Bibliographic Details
Published in:Science robotics Vol. 4; no. 28
Main Authors: Li, W, Pan, C W, Zhang, R, Ren, J P, Ma, Y X, Fang, J, Yan, F L, Geng, Q C, Huang, X Y, Gong, H J, Xu, W W, Wang, G P, Manocha, D, Yang, R G
Format: Journal Article
Language:English
Published: United States 27.03.2019
ISSN:2470-9476, 2470-9476
Online Access:Get more information
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Simulation systems have become essential to the development and validation of autonomous driving (AD) technologies. The prevailing state-of-the-art approach for simulation uses game engines or high-fidelity computer graphics (CG) models to create driving scenarios. However, creating CG models and vehicle movements (the assets for simulation) remain manual tasks that can be costly and time consuming. In addition, CG images still lack the richness and authenticity of real-world images, and using CG images for training leads to degraded performance. Here, we present our augmented autonomous driving simulation (AADS). Our formulation augmented real-world pictures with a simulated traffic flow to create photorealistic simulation images and renderings. More specifically, we used LiDAR and cameras to scan street scenes. From the acquired trajectory data, we generated plausible traffic flows for cars and pedestrians and composed them into the background. The composite images could be resynthesized with different viewpoints and sensor models (camera or LiDAR). The resulting images are photorealistic, fully annotated, and ready for training and testing of AD systems from perception to planning. We explain our system design and validate our algorithms with a number of AD tasks from detection to segmentation and predictions. Compared with traditional approaches, our method offers scalability and realism. Scalability is particularly important for AD simulations, and we believe that real-world complexity and diversity cannot be realistically captured in a virtual environment. Our augmented approach combines the flexibility of a virtual environment (e.g., vehicle movements) with the richness of the real world to allow effective simulation.
AbstractList Simulation systems have become essential to the development and validation of autonomous driving (AD) technologies. The prevailing state-of-the-art approach for simulation uses game engines or high-fidelity computer graphics (CG) models to create driving scenarios. However, creating CG models and vehicle movements (the assets for simulation) remain manual tasks that can be costly and time consuming. In addition, CG images still lack the richness and authenticity of real-world images, and using CG images for training leads to degraded performance. Here, we present our augmented autonomous driving simulation (AADS). Our formulation augmented real-world pictures with a simulated traffic flow to create photorealistic simulation images and renderings. More specifically, we used LiDAR and cameras to scan street scenes. From the acquired trajectory data, we generated plausible traffic flows for cars and pedestrians and composed them into the background. The composite images could be resynthesized with different viewpoints and sensor models (camera or LiDAR). The resulting images are photorealistic, fully annotated, and ready for training and testing of AD systems from perception to planning. We explain our system design and validate our algorithms with a number of AD tasks from detection to segmentation and predictions. Compared with traditional approaches, our method offers scalability and realism. Scalability is particularly important for AD simulations, and we believe that real-world complexity and diversity cannot be realistically captured in a virtual environment. Our augmented approach combines the flexibility of a virtual environment (e.g., vehicle movements) with the richness of the real world to allow effective simulation.Simulation systems have become essential to the development and validation of autonomous driving (AD) technologies. The prevailing state-of-the-art approach for simulation uses game engines or high-fidelity computer graphics (CG) models to create driving scenarios. However, creating CG models and vehicle movements (the assets for simulation) remain manual tasks that can be costly and time consuming. In addition, CG images still lack the richness and authenticity of real-world images, and using CG images for training leads to degraded performance. Here, we present our augmented autonomous driving simulation (AADS). Our formulation augmented real-world pictures with a simulated traffic flow to create photorealistic simulation images and renderings. More specifically, we used LiDAR and cameras to scan street scenes. From the acquired trajectory data, we generated plausible traffic flows for cars and pedestrians and composed them into the background. The composite images could be resynthesized with different viewpoints and sensor models (camera or LiDAR). The resulting images are photorealistic, fully annotated, and ready for training and testing of AD systems from perception to planning. We explain our system design and validate our algorithms with a number of AD tasks from detection to segmentation and predictions. Compared with traditional approaches, our method offers scalability and realism. Scalability is particularly important for AD simulations, and we believe that real-world complexity and diversity cannot be realistically captured in a virtual environment. Our augmented approach combines the flexibility of a virtual environment (e.g., vehicle movements) with the richness of the real world to allow effective simulation.
Simulation systems have become essential to the development and validation of autonomous driving (AD) technologies. The prevailing state-of-the-art approach for simulation uses game engines or high-fidelity computer graphics (CG) models to create driving scenarios. However, creating CG models and vehicle movements (the assets for simulation) remain manual tasks that can be costly and time consuming. In addition, CG images still lack the richness and authenticity of real-world images, and using CG images for training leads to degraded performance. Here, we present our augmented autonomous driving simulation (AADS). Our formulation augmented real-world pictures with a simulated traffic flow to create photorealistic simulation images and renderings. More specifically, we used LiDAR and cameras to scan street scenes. From the acquired trajectory data, we generated plausible traffic flows for cars and pedestrians and composed them into the background. The composite images could be resynthesized with different viewpoints and sensor models (camera or LiDAR). The resulting images are photorealistic, fully annotated, and ready for training and testing of AD systems from perception to planning. We explain our system design and validate our algorithms with a number of AD tasks from detection to segmentation and predictions. Compared with traditional approaches, our method offers scalability and realism. Scalability is particularly important for AD simulations, and we believe that real-world complexity and diversity cannot be realistically captured in a virtual environment. Our augmented approach combines the flexibility of a virtual environment (e.g., vehicle movements) with the richness of the real world to allow effective simulation.
Author Pan, C W
Zhang, R
Ma, Y X
Ren, J P
Yan, F L
Yang, R G
Geng, Q C
Gong, H J
Fang, J
Li, W
Manocha, D
Xu, W W
Huang, X Y
Wang, G P
Author_xml – sequence: 1
  givenname: W
  orcidid: 0000-0002-0059-3745
  surname: Li
  fullname: Li, W
  email: liwei87@baidu.com, yangruigang@baidu.com, dm@cs.umd.edu
  organization: Nanjing University of Aeronautics and Astronautics, Nanjing, China
– sequence: 2
  givenname: C W
  orcidid: 0000-0003-0497-7903
  surname: Pan
  fullname: Pan, C W
  organization: Deepwise AI Lab, Beijing, China
– sequence: 3
  givenname: R
  orcidid: 0000-0002-4614-7644
  surname: Zhang
  fullname: Zhang, R
  organization: Zhejiang University, Hangzhou, China
– sequence: 4
  givenname: J P
  orcidid: 0000-0002-7658-6912
  surname: Ren
  fullname: Ren, J P
  organization: Zhejiang University, Hangzhou, China
– sequence: 5
  givenname: Y X
  orcidid: 0000-0001-7237-988X
  surname: Ma
  fullname: Ma, Y X
  organization: University of Hong Kong, Hong Kong, China
– sequence: 6
  givenname: J
  orcidid: 0000-0002-7947-6807
  surname: Fang
  fullname: Fang, J
  organization: National Engineering Laboratory of Deep Learning Technology and Application, Beijing, China
– sequence: 7
  givenname: F L
  orcidid: 0000-0003-4418-3809
  surname: Yan
  fullname: Yan, F L
  organization: National Engineering Laboratory of Deep Learning Technology and Application, Beijing, China
– sequence: 8
  givenname: Q C
  orcidid: 0000-0002-0046-5794
  surname: Geng
  fullname: Geng, Q C
  organization: Beihang University, Beijing, China
– sequence: 9
  givenname: X Y
  orcidid: 0000-0002-5786-3101
  surname: Huang
  fullname: Huang, X Y
  organization: National Engineering Laboratory of Deep Learning Technology and Application, Beijing, China
– sequence: 10
  givenname: H J
  surname: Gong
  fullname: Gong, H J
  organization: Nanjing University of Aeronautics and Astronautics, Nanjing, China
– sequence: 11
  givenname: W W
  surname: Xu
  fullname: Xu, W W
  organization: Zhejiang University, Hangzhou, China
– sequence: 12
  givenname: G P
  orcidid: 0000-0001-7819-0076
  surname: Wang
  fullname: Wang, G P
  organization: Beijing Engineering Technology Research Center of Virtual Simulation and Visualization, Peking University, Beijing, China
– sequence: 13
  givenname: D
  orcidid: 0000-0001-7047-9801
  surname: Manocha
  fullname: Manocha, D
  email: liwei87@baidu.com, yangruigang@baidu.com, dm@cs.umd.edu
  organization: University of Maryland, College Park, MD, USA. liwei87@baidu.com yangruigang@baidu.com dm@cs.umd.edu
– sequence: 14
  givenname: R G
  orcidid: 0000-0001-5296-6307
  surname: Yang
  fullname: Yang, R G
  email: liwei87@baidu.com, yangruigang@baidu.com, dm@cs.umd.edu
  organization: National Engineering Laboratory of Deep Learning Technology and Application, Beijing, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33137750$$D View this record in MEDLINE/PubMed
BookMark eNpNT8lOwzAUtBCIltIvQEI5ckmxHS8xt6jsqsQBOEfPiVOMErvENoi_pxVF4jSjN4venKBD551B6IzgBSFUXIbGjl77aJuwAPjCpSgO0JQyiXPFpDj8xydoHsI7xphIUQhGj9GkKEghJcdT9FhV189XWZXWg3HRtBmk6J0ffApZO9pP69ZZsEPqIVrvshR2hxYi5DvVuAz6tR9tfBvCKTrqoA9mvscZer29eVne56unu4dltcqbAvOYEwDJO9V1oLgCYYwhRhCmCWDgzAhNtGYYVEex4lwXZUOZ0sRIvQ0Ab-kMXfz2bkb_kUyI9WBDY_oenNm-XVPGJS1xKdXWer63Jj2Ytt6MdoDxu_7bT38Adp5jYQ
CitedBy_id crossref_primary_10_1016_j_infsof_2025_107828
crossref_primary_10_1111_mice_13167
crossref_primary_10_1007_s42154_023_00256_x
crossref_primary_10_1016_j_visinf_2025_100262
crossref_primary_10_1002_stvr_1892
crossref_primary_10_1016_j_rcim_2023_102641
crossref_primary_10_1016_j_eswa_2023_119990
crossref_primary_10_1177_01423312241296919
crossref_primary_10_1016_j_physa_2023_128628
crossref_primary_10_1109_TNNLS_2021_3053249
crossref_primary_10_1111_cgf_14699
crossref_primary_10_1109_ACCESS_2020_2965089
crossref_primary_10_1038_s41928_022_00719_9
crossref_primary_10_1080_17452759_2022_2068804
crossref_primary_10_3390_s22249930
crossref_primary_10_1111_cgf_13803
crossref_primary_10_26599_JICV_2024_9210048
crossref_primary_10_1109_LRA_2022_3152594
crossref_primary_10_1038_s41467_021_21007_8
crossref_primary_10_1109_LRA_2024_3444671
crossref_primary_10_1126_scirobotics_aaw8703
crossref_primary_10_1177_03611981211035756
crossref_primary_10_1109_TPAMI_2024_3456473
crossref_primary_10_1109_TITS_2025_3571966
crossref_primary_10_1002_rob_22289
crossref_primary_10_1002_cav_70071
crossref_primary_10_1007_s12239_025_00261_5
crossref_primary_10_1109_TIV_2022_3145035
crossref_primary_10_1007_s10462_022_10358_3
crossref_primary_10_1007_s00521_021_06275_1
crossref_primary_10_1109_JSEN_2025_3567617
crossref_primary_10_1109_TITS_2023_3286384
crossref_primary_10_1109_TITS_2024_3369097
crossref_primary_10_1109_TVCG_2021_3114855
crossref_primary_10_1109_TIV_2023_3287278
crossref_primary_10_1109_TAES_2022_3207705
crossref_primary_10_1016_j_trc_2025_105106
crossref_primary_10_1155_2022_7975523
crossref_primary_10_1016_j_trc_2023_104451
crossref_primary_10_1038_s41467_023_37677_5
crossref_primary_10_1109_MITS_2023_3345930
crossref_primary_10_1016_j_nanoen_2025_111292
crossref_primary_10_1109_TIV_2023_3348632
crossref_primary_10_1109_TPAMI_2025_3543072
crossref_primary_10_1016_j_neucom_2019_06_038
crossref_primary_10_1109_TITS_2024_3376579
crossref_primary_10_1038_s44172_024_00220_5
crossref_primary_10_1080_15389588_2024_2399305
crossref_primary_10_1063_5_0272210
crossref_primary_10_3390_electronics13173486
crossref_primary_10_1177_00368504211037771
crossref_primary_10_3390_rs13244999
crossref_primary_10_1109_JSTQE_2021_3093721
crossref_primary_10_3389_fnbot_2022_843026
crossref_primary_10_1109_TSMC_2022_3228590
crossref_primary_10_3390_en15010194
crossref_primary_10_1145_3571286
crossref_primary_10_1109_LRA_2020_2966414
crossref_primary_10_1109_LRA_2024_3375266
crossref_primary_10_1155_2020_8454327
crossref_primary_10_3390_s23198130
crossref_primary_10_1109_MNET_104_2100403
crossref_primary_10_3390_rs15184628
crossref_primary_10_1016_j_aei_2024_102699
crossref_primary_10_1109_TIP_2019_2955280
crossref_primary_10_1080_15472450_2025_2497510
crossref_primary_10_1007_s11042_024_19409_z
crossref_primary_10_3390_smartcities8040129
crossref_primary_10_1109_JAS_2022_106115
crossref_primary_10_1109_TGRS_2020_3035469
crossref_primary_10_1109_TASE_2024_3410891
crossref_primary_10_1177_09544070251327256
crossref_primary_10_1155_2021_2444363
crossref_primary_10_1016_j_aap_2022_106812
crossref_primary_10_1016_j_inffus_2024_102665
crossref_primary_10_1007_s42154_024_00289_w
crossref_primary_10_1109_TMTT_2023_3234466
crossref_primary_10_1002_smr_2644
crossref_primary_10_1109_ACCESS_2025_3525805
crossref_primary_10_1109_TVT_2022_3165172
crossref_primary_10_1016_j_aap_2025_108043
crossref_primary_10_1007_s00530_025_01927_x
crossref_primary_10_1109_LRA_2025_3555938
crossref_primary_10_3390_s24020452
crossref_primary_10_1109_TITS_2021_3072774
crossref_primary_10_1109_TVT_2021_3083268
crossref_primary_10_1016_j_jss_2024_112017
crossref_primary_10_1108_JICV_05_2022_0017
crossref_primary_10_1109_TITS_2023_3259322
crossref_primary_10_3390_rs15153808
crossref_primary_10_1016_j_nanoen_2022_107198
crossref_primary_10_1016_j_procs_2024_06_014
crossref_primary_10_1109_TITS_2020_2991039
crossref_primary_10_1177_09544070251332327
crossref_primary_10_1016_j_physa_2025_130923
ContentType Journal Article
Copyright Copyright © 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
Copyright_xml – notice: Copyright © 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
DBID NPM
7X8
DOI 10.1126/scirobotics.aaw0863
DatabaseName PubMed
MEDLINE - Academic
DatabaseTitle PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Engineering
EISSN 2470-9476
ExternalDocumentID 33137750
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID 0R~
ABJNI
ACGFS
AJGZS
ALMA_UNASSIGNED_HOLDINGS
ARCSS
BKF
EBS
NPM
O9-
SJN
7X8
ID FETCH-LOGICAL-c305t-1aa75f9ffa959a6eee1e614b1a0a54e6b1bb40a9f20955b38c249b1e7ba95a5d2
IEDL.DBID 7X8
ISICitedReferencesCount 145
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000464024300007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2470-9476
IngestDate Thu Oct 02 10:43:58 EDT 2025
Wed Feb 19 02:29:50 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 28
Language English
License Copyright © 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c305t-1aa75f9ffa959a6eee1e614b1a0a54e6b1bb40a9f20955b38c249b1e7ba95a5d2
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-0059-3745
0000-0001-7237-988X
0000-0002-7947-6807
0000-0001-7819-0076
0000-0003-0497-7903
0000-0002-7658-6912
0000-0002-4614-7644
0000-0003-4418-3809
0000-0002-0046-5794
0000-0002-5786-3101
0000-0001-5296-6307
0000-0001-7047-9801
PMID 33137750
PQID 2457280879
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2457280879
pubmed_primary_33137750
PublicationCentury 2000
PublicationDate 2019-03-27
PublicationDateYYYYMMDD 2019-03-27
PublicationDate_xml – month: 03
  year: 2019
  text: 2019-03-27
  day: 27
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Science robotics
PublicationTitleAlternate Sci Robot
PublicationYear 2019
SSID ssj0001763642
Score 2.5006065
Snippet Simulation systems have become essential to the development and validation of autonomous driving (AD) technologies. The prevailing state-of-the-art approach...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
Title AADS: Augmented autonomous driving simulation using data-driven algorithms
URI https://www.ncbi.nlm.nih.gov/pubmed/33137750
https://www.proquest.com/docview/2457280879
Volume 4
WOSCitedRecordID wos000464024300007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA7qetCD78f6IoLXaJukTetFirqI6LKgwt5K0iTrgtuu267-fSfdynoRBC-9lJA2zEy-TGa-D6GzKNSWU2OJlsYdUDgjCpA9CcOMqYwa6pm6UfhBdLtRvx_3moRb2ZRVfsfEOlDrInM58gvKA6ekFIn4avxOnGqUu11tJDQWUYsBlHGOKfrRPMcCzhPW-jmUC4_EXIQN8VDTNzMpVOHYkM-l_ARsz36HmfV201n_74duoLUGaOJkZhmbaMHkW2j1B_3gNrpPkpunS5xMBzUzp8ZyWrkeh2JaYj0ZulQDLoejRuALuxL5AXYlpcS9NTmWbwOYuXodlTvopXP7fH1HGm0FkoGHV8SXUgQ2tlbGQSxDY4xvYKdWvvRkwE2ofKW4J2NLHUedYlEG5zTlG6FggAw03UVLeZGbfYRVBiFSSOtJyrjHuAJQqCFMREp7FtBYG51-L1QKtusuJGRu4FfS-VK10d5stdPxjGQjZcxxIQbewR9GH6IVwDGxKw2j4gi1LHiuOUbL2Uc1LCcntVHAs9t7_AIdF8Rc
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=AADS%3A+Augmented+autonomous+driving+simulation+using+data-driven+algorithms&rft.jtitle=Science+robotics&rft.au=Li%2C+W&rft.au=Pan%2C+C+W&rft.au=Zhang%2C+R&rft.au=Ren%2C+J+P&rft.date=2019-03-27&rft.eissn=2470-9476&rft.volume=4&rft.issue=28&rft_id=info:doi/10.1126%2Fscirobotics.aaw0863&rft_id=info%3Apmid%2F33137750&rft_id=info%3Apmid%2F33137750&rft.externalDocID=33137750
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2470-9476&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2470-9476&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2470-9476&client=summon