Evaluation of piglet suckling competition index based on YOLOv10 and optical flow direction distribution features

With the rapid development of intelligent farming technologies, effectively evaluating piglet competition behaviour during the suckling period has become a key research focus for enhancing livestock management. This paper presents a method for evaluating the piglet suckling competition index, which...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biosystems engineering Jg. 257; S. 104197
Hauptverfasser: Chen, Jinxin, Liu, Luo, Li, Peng, Yao, Wen, Shen, Mingxia, Liu, Longshen
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Ltd 01.09.2025
Schlagworte:
ISSN:1537-5110
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract With the rapid development of intelligent farming technologies, effectively evaluating piglet competition behaviour during the suckling period has become a key research focus for enhancing livestock management. This paper presents a method for evaluating the piglet suckling competition index, which integrates the YOLOv10 object detection algorithm and optical flow direction distribution features. First, the YOLOv10 model is employed to detect the sow's posture and the positions of the piglets, classifying the sow's posture into lateral recumbency and other postures. Subsequently, precise localisation of the lactation period is achieved by calculating the mask ratio of the piglets within the sow's region and the changes in group activity. Finally, the Farneback optical flow algorithm is utilised to analyse the direction distribution of the optical flow within the piglet region, and the variation coefficient of information entropy is employed to quantify the intensity of piglet suckling competition. Experimental results demonstrate that the proposed method performs well in both object detection and behaviour localisation, achieving a precision of 91.51 % and a recall of 96.04 % for lactation period localisation. Additionally, the method successfully validated the evaluation of piglet suckling competition in different test pens. This study provides technical support for intelligent farming technologies, helping to optimise piglet nutrition management and enhance farming efficiency. •Objectively assesses piglet suckling rivalry, independent of weight or activity.•YOLOv10 detects sow posture and piglet positions for behaviour analysis.•Sow nursing precisely located using piglet mask ratio and group activity.•Optical flow and entropy variation quantify suckling competition intensity.
AbstractList With the rapid development of intelligent farming technologies, effectively evaluating piglet competition behaviour during the suckling period has become a key research focus for enhancing livestock management. This paper presents a method for evaluating the piglet suckling competition index, which integrates the YOLOv10 object detection algorithm and optical flow direction distribution features. First, the YOLOv10 model is employed to detect the sow's posture and the positions of the piglets, classifying the sow's posture into lateral recumbency and other postures. Subsequently, precise localisation of the lactation period is achieved by calculating the mask ratio of the piglets within the sow's region and the changes in group activity. Finally, the Farneback optical flow algorithm is utilised to analyse the direction distribution of the optical flow within the piglet region, and the variation coefficient of information entropy is employed to quantify the intensity of piglet suckling competition. Experimental results demonstrate that the proposed method performs well in both object detection and behaviour localisation, achieving a precision of 91.51 % and a recall of 96.04 % for lactation period localisation. Additionally, the method successfully validated the evaluation of piglet suckling competition in different test pens. This study provides technical support for intelligent farming technologies, helping to optimise piglet nutrition management and enhance farming efficiency.
With the rapid development of intelligent farming technologies, effectively evaluating piglet competition behaviour during the suckling period has become a key research focus for enhancing livestock management. This paper presents a method for evaluating the piglet suckling competition index, which integrates the YOLOv10 object detection algorithm and optical flow direction distribution features. First, the YOLOv10 model is employed to detect the sow's posture and the positions of the piglets, classifying the sow's posture into lateral recumbency and other postures. Subsequently, precise localisation of the lactation period is achieved by calculating the mask ratio of the piglets within the sow's region and the changes in group activity. Finally, the Farneback optical flow algorithm is utilised to analyse the direction distribution of the optical flow within the piglet region, and the variation coefficient of information entropy is employed to quantify the intensity of piglet suckling competition. Experimental results demonstrate that the proposed method performs well in both object detection and behaviour localisation, achieving a precision of 91.51 % and a recall of 96.04 % for lactation period localisation. Additionally, the method successfully validated the evaluation of piglet suckling competition in different test pens. This study provides technical support for intelligent farming technologies, helping to optimise piglet nutrition management and enhance farming efficiency. •Objectively assesses piglet suckling rivalry, independent of weight or activity.•YOLOv10 detects sow posture and piglet positions for behaviour analysis.•Sow nursing precisely located using piglet mask ratio and group activity.•Optical flow and entropy variation quantify suckling competition intensity.
ArticleNumber 104197
Author Liu, Luo
Li, Peng
Shen, Mingxia
Chen, Jinxin
Yao, Wen
Liu, Longshen
Author_xml – sequence: 1
  givenname: Jinxin
  surname: Chen
  fullname: Chen, Jinxin
  organization: College of Engineering, Nanjing Agricultural University, Nanjing, 210031, China
– sequence: 2
  givenname: Luo
  surname: Liu
  fullname: Liu, Luo
  organization: College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
– sequence: 3
  givenname: Peng
  surname: Li
  fullname: Li, Peng
  organization: College of Artificial Intelligence, Nanjing Agricultural University, Nanjing, 210031, China
– sequence: 4
  givenname: Wen
  surname: Yao
  fullname: Yao, Wen
  organization: College of Animal Science & Technology, Nanjing Agricultural University, Nanjing, 210095, China
– sequence: 5
  givenname: Mingxia
  surname: Shen
  fullname: Shen, Mingxia
  organization: College of Artificial Intelligence, Nanjing Agricultural University, Nanjing, 210031, China
– sequence: 6
  givenname: Longshen
  orcidid: 0000-0002-6085-8047
  surname: Liu
  fullname: Liu, Longshen
  email: liulongshen@njau.edu.cn
  organization: College of Artificial Intelligence, Nanjing Agricultural University, Nanjing, 210031, China
BookMark eNqNkLtOwzAUhj0UiVJ4B0ssLC2-xq2YUFUuUqUuMDBZjnNSuaR2sJ0Cb0_asLAxHf36L9L5LtDIBw8IXVMyo4QWt7tZ6UL6Thn2Cfx2xgiTvSPoQo3QmEquppJSco4uUtoRQqUSxRh9rA6m6Ux2weNQ49ZtG8g4dfa9cX6Lbdi3kN3Jdr6CL1yaBBXu5dtmvTlQgo3vZZudNQ2um_CJKxfBnhqVSzm6sjuJGkzuIqRLdFabJsHV752g14fVy_Jput48Pi_v11PLichTkLBQYElpFoUByaSVlCm24EVpBCvnRSUsU4bUilnBjeCiD9SEGma5kAXnE3Qz7LYxfHSQst67ZKFpjIfQJc2ZovNCEan66N0QtTGkFKHWbXR7E781JfoIV-_0H7j6CFcPcPv2amhD_83BQdTJOvAWBhC6Cu5fOz8gdpCk
Cites_doi 10.1016/j.jveb.2014.01.005
10.1016/j.compag.2024.109243
10.1016/j.compag.2022.107162
10.1109/TPAMI.2018.2858826
10.1016/j.biosystemseng.2017.06.014
10.1016/j.compag.2024.109716
10.3390/e21060608
10.1016/j.compag.2022.107423
10.1016/j.compag.2022.106741
10.1016/j.compag.2021.106384
10.1016/j.compag.2024.109090
10.1016/j.biosystemseng.2022.03.005
10.1016/j.yhbeh.2007.03.022
10.3390/ani11061607
10.1016/j.compag.2023.107938
10.1016/j.compag.2021.106139
10.1016/j.scitotenv.2023.162730
10.1016/j.cviu.2016.10.018
10.1016/j.applanim.2014.09.005
10.1016/j.compag.2023.107877
10.1016/j.biosystemseng.2018.09.011
10.1016/j.biosystemseng.2022.03.006
10.1016/j.compag.2021.106376
10.1016/j.cviu.2015.02.008
10.1016/0004-3702(81)90024-2
10.1007/s00265-010-1128-4
10.1016/j.applanim.2012.11.014
10.1016/j.compag.2019.105048
10.1016/j.compag.2023.108167
10.1016/j.applanim.2019.03.001
10.1016/j.compag.2021.106357
ContentType Journal Article
Copyright 2025 IAgrE
Copyright_xml – notice: 2025 IAgrE
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.biosystemseng.2025.104197
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Agriculture
ExternalDocumentID 10_1016_j_biosystemseng_2025_104197
S1537511025001333
GroupedDBID --K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23N
4.4
457
4G.
53G
5GY
5VS
6J9
7-5
71M
8P~
AAEDT
AAEDW
AAHBH
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AATLK
AATTM
AAXKI
AAXUO
AAYWO
ABFNM
ABFRF
ABGRD
ABJNI
ABMAC
ABWVN
ABXDB
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
ADQTV
ADTZH
AEBSH
AECPX
AEFWE
AEIPS
AEKER
AENEX
AEQOU
AEUPX
AFJKZ
AFPUW
AFTJW
AFXIZ
AGCQF
AGHFR
AGUBO
AGYEJ
AHJVU
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
AXJTR
BJAXD
BKOJK
BLXMC
CAG
COF
CS3
DM4
DU5
EBS
EFBJH
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
K-O
KOM
LG5
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSA
SST
SSZ
T5K
UHS
UNMZH
~G-
~HD
~KM
9DU
AAYXX
ACLOT
CITATION
7S9
L.6
ID FETCH-LOGICAL-c304t-e5e97ec0ba96ae525c51272936ba42b86d4c27a0f72c43a434c51f01a2c345633
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001504842200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1537-5110
IngestDate Fri Nov 14 18:38:32 EST 2025
Sat Nov 29 07:36:50 EST 2025
Sat Sep 13 17:01:02 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Behavioural analysis
Sow posture recognition
Intelligent farming
Information entropy
Lactation monitoring
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c304t-e5e97ec0ba96ae525c51272936ba42b86d4c27a0f72c43a434c51f01a2c345633
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-6085-8047
PQID 3271867057
PQPubID 24069
ParticipantIDs proquest_miscellaneous_3271867057
crossref_primary_10_1016_j_biosystemseng_2025_104197
elsevier_sciencedirect_doi_10_1016_j_biosystemseng_2025_104197
PublicationCentury 2000
PublicationDate September 2025
2025-09-00
20250901
PublicationDateYYYYMMDD 2025-09-01
PublicationDate_xml – month: 09
  year: 2025
  text: September 2025
PublicationDecade 2020
PublicationTitle Biosystems engineering
PublicationYear 2025
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Fortun, Bouthemy, Kervrann (bib12) 2015; 134
Ho, Tsai, Kuo (bib20) 2021; 189
Verdon, Morrison, Rault (bib36) 2019; 214
Gan, Ou, Li, Wang, Guo, Mao (bib16) 2022; 199
Ding, Chen, Shen, Liu (bib8) 2022; 194
Liu, Anguelov, Erhan, Szegedy, Reed, Fu (bib28) 2016
Law, Deng (bib24) 2018
Jocher, Chaurasia, Qiu (bib23) 2023
Vaswani, Shazeer, Parmar, Uszkoreit, Jones, Gomez (bib35) 2017
Chollet (bib7) 2017
Zhang, Lin, Zheng, Tang, Fang, Yu (bib43) 2019; 21
Lin, Goyal, Girshick, He, Dollár (bib27) 2020; 42
Liu, Qi, Qin, Shi, Jia (bib29) 2018
Gan, Xu, Hou, Guo, Liu, Xue (bib17) 2022; 217
He, Guo, Guo, Lyu, Huang, Mao (bib19) 2025; 229
Yang, Huang, Yang, Li, Chen, Gan (bib40) 2019; 167
Loshchilov, Hutter (bib30) 2019
Farnebäck (bib10) 2003
Gan, Guo, Liu, Deng, Zhou, Luo (bib13) 2023; 210
Gan, Ou, Huang, Xu, Li, Li (bib15) 2021; 188
Skok, Prevolnik, Urek, Mesarec, Škorjanc (bib32) 2014; 161
Li, Zhang, Lv, Han, Jiang, Song (bib26) 2022; 218
Bradski (bib6) 2000
Feng, Zhong, Gao, Scott, Huang (bib11) 2021
Idrees, Zamir, Jiang, Gorban, Laptev, Sukthankar (bib22) 2017; 155
Algers, Uvnäs-Moberg (bib1) 2007; 52
Besteiro, Arango, Ortega, Fernández, Rodríguez (bib4) 2021; 11
Han, Liu, Li, Jiang, Ma, Chu (bib18) 2023; 877
Van Beirendonck, Van Thielen, Verbeke, Driessen (bib34) 2014; 9
Besteiro, Arango, Rodríguez, Fernández, Velo (bib5) 2018; 173
Badgujar, Poulose, Gan (bib3) 2024; 223
Horn, Schunck (bib21) 1981; 17
Yang, Huang, Zhu, Yang, Chen, Li (bib41) 2018; 175
Yang, Zheng, Zou, Gan, Li, Huang (bib42) 2021; 185
Andersen, Nævdal, Bøe (bib2) 2011; 65
Lucas, Kanade (bib31) 1981; 2
Wang, Chen, Liu, Chen, Lin, Han (bib37) 2024
Yan, Dai, Liu, Yin, Li, Wu (bib38) 2024; 224
Yang, Chen, Xu, Shen, Li, Norton (bib39) 2023; 213
Gan, Li, Ou, Yang, Huang, Liu (bib14) 2021; 189
Skok, Škorjanc (bib33) 2013; 144
Ding, Liu, Lu, Liu, Chen, Shen (bib9) 2022; 202
Li, Xu, Chen, Cheng, Shen (bib25) 2023; 210
Gan (10.1016/j.biosystemseng.2025.104197_bib16) 2022; 199
Jocher (10.1016/j.biosystemseng.2025.104197_bib23)
Yang (10.1016/j.biosystemseng.2025.104197_bib42) 2021; 185
Gan (10.1016/j.biosystemseng.2025.104197_bib15) 2021; 188
Yang (10.1016/j.biosystemseng.2025.104197_bib41) 2018; 175
Besteiro (10.1016/j.biosystemseng.2025.104197_bib5) 2018; 173
Loshchilov (10.1016/j.biosystemseng.2025.104197_bib30) 2019
Van Beirendonck (10.1016/j.biosystemseng.2025.104197_bib34) 2014; 9
Algers (10.1016/j.biosystemseng.2025.104197_bib1) 2007; 52
Skok (10.1016/j.biosystemseng.2025.104197_bib32) 2014; 161
He (10.1016/j.biosystemseng.2025.104197_bib19) 2025; 229
Yang (10.1016/j.biosystemseng.2025.104197_bib39) 2023; 213
Ding (10.1016/j.biosystemseng.2025.104197_bib8) 2022; 194
Zhang (10.1016/j.biosystemseng.2025.104197_bib43) 2019; 21
Skok (10.1016/j.biosystemseng.2025.104197_bib33) 2013; 144
Yan (10.1016/j.biosystemseng.2025.104197_bib38) 2024; 224
Verdon (10.1016/j.biosystemseng.2025.104197_bib36) 2019; 214
Chollet (10.1016/j.biosystemseng.2025.104197_bib7) 2017
Ding (10.1016/j.biosystemseng.2025.104197_bib9) 2022; 202
Liu (10.1016/j.biosystemseng.2025.104197_bib28) 2016
Ho (10.1016/j.biosystemseng.2025.104197_bib20) 2021; 189
Horn (10.1016/j.biosystemseng.2025.104197_bib21) 1981; 17
Lucas (10.1016/j.biosystemseng.2025.104197_bib31) 1981; 2
Idrees (10.1016/j.biosystemseng.2025.104197_bib22) 2017; 155
Gan (10.1016/j.biosystemseng.2025.104197_bib14) 2021; 189
Bradski (10.1016/j.biosystemseng.2025.104197_bib6) 2000
Badgujar (10.1016/j.biosystemseng.2025.104197_bib3) 2024; 223
Law (10.1016/j.biosystemseng.2025.104197_bib24) 2018
Vaswani (10.1016/j.biosystemseng.2025.104197_bib35) 2017
Feng (10.1016/j.biosystemseng.2025.104197_bib11) 2021
Wang (10.1016/j.biosystemseng.2025.104197_bib37) 2024
Liu (10.1016/j.biosystemseng.2025.104197_bib29) 2018
Andersen (10.1016/j.biosystemseng.2025.104197_bib2) 2011; 65
Yang (10.1016/j.biosystemseng.2025.104197_bib40) 2019; 167
Gan (10.1016/j.biosystemseng.2025.104197_bib13) 2023; 210
Farnebäck (10.1016/j.biosystemseng.2025.104197_bib10) 2003
Gan (10.1016/j.biosystemseng.2025.104197_bib17) 2022; 217
Li (10.1016/j.biosystemseng.2025.104197_bib25) 2023; 210
Fortun (10.1016/j.biosystemseng.2025.104197_bib12) 2015; 134
Li (10.1016/j.biosystemseng.2025.104197_bib26) 2022; 218
Lin (10.1016/j.biosystemseng.2025.104197_bib27) 2020; 42
Besteiro (10.1016/j.biosystemseng.2025.104197_bib4) 2021; 11
Han (10.1016/j.biosystemseng.2025.104197_bib18) 2023; 877
References_xml – volume: 218
  start-page: 62
  year: 2022
  end-page: 77
  ident: bib26
  article-title: Fusion of RGB, optical flow and skeleton features for the detection of lameness in dairy cows
  publication-title: Biosystems Engineering
– volume: 213
  year: 2023
  ident: bib39
  article-title: Recognizing the rooting action of prepartum sow in free-farrowing pen using computer vision
  publication-title: Computers and Electronics in Agriculture
– year: 2017
  ident: bib7
  article-title: Xception: Deep learning with depthwise separable convolutions
  publication-title: 2017 IEEE conference on computer vision and pattern recognition (CVPR)
– year: 2021
  ident: bib11
  article-title: Tood: Task-Aligned one-stage object detection
  publication-title: 2021 IEEE/CVF international conference on computer vision
– volume: 161
  start-page: 42
  year: 2014
  end-page: 50
  ident: bib32
  article-title: Behavioural patterns established during suckling reappear when piglets are forced to form a new dominance hierarchy
  publication-title: Applied Animal Behaviour Science
– volume: 134
  start-page: 1
  year: 2015
  end-page: 21
  ident: bib12
  article-title: Optical flow modeling and computation: A survey
  publication-title: Computer Vision and Image Understanding
– volume: 223
  year: 2024
  ident: bib3
  article-title: Agricultural object detection with you only look once (YOLO) algorithm: A bibliometric and systematic literature review
  publication-title: Computers and Electronics in Agriculture
– volume: 194
  year: 2022
  ident: bib8
  article-title: Activity detection of suckling piglets based on motion area analysis using frame differences in combination with convolution neural network
  publication-title: Computers and Electronics in Agriculture
– year: 2023
  ident: bib23
  article-title: Ultralytics YOLO
– volume: 217
  start-page: 102
  year: 2022
  end-page: 114
  ident: bib17
  article-title: Spatiotemporal graph convolutional network for automated detection and analysis of social behaviours among pre-weaning piglets
  publication-title: Biosystems Engineering
– volume: 175
  start-page: 133
  year: 2018
  end-page: 145
  ident: bib41
  article-title: Automatic recognition of sow nursing behaviour using deep learning-based segmentation and spatial and temporal features
  publication-title: Biosystems Engineering
– volume: 189
  year: 2021
  ident: bib20
  article-title: Automatic monitoring of lactation frequency of sows and movement quantification of newborn piglets in farrowing houses using convolutional neural networks
  publication-title: Computers and Electronics in Agriculture
– volume: 2
  start-page: 674
  year: 1981
  end-page: 679
  ident: bib31
  article-title: An iterative image registration technique with an application to stereo vision
  publication-title: IJCAI’81: 7th International Joint Conference on Artificial Intelligence
– volume: 155
  start-page: 1
  year: 2017
  end-page: 23
  ident: bib22
  article-title: The THUMOS challenge on action recognition for videos “in the wild.”
  publication-title: Computer Vision and Image Understanding
– volume: 224
  year: 2024
  ident: bib38
  article-title: Deep neural network with adaptive dual-modality fusion for temporal aggressive behavior detection of group-housed pigs
  publication-title: Computers and Electronics in Agriculture
– volume: 199
  year: 2022
  ident: bib16
  article-title: Automated detection and analysis of piglet suckling behaviour using high-accuracy amodal instance segmentation
  publication-title: Computers and Electronics in Agriculture
– year: 2016
  ident: bib28
  article-title: Ssd: Single shot MultiBox detector
  publication-title: Computer vision – ECCV 2016
– volume: 877
  year: 2023
  ident: bib18
  article-title: Novel risk assessment model of food quality and safety considering physical-chemical and pollutant indexes based on coefficient of variance integrating entropy weight
  publication-title: Science of The Total Environment
– volume: 9
  start-page: 107
  year: 2014
  end-page: 113
  ident: bib34
  article-title: The association between sow and piglet behavior
  publication-title: Journal of Veterinary Behavior
– volume: 214
  start-page: 25
  year: 2019
  end-page: 33
  ident: bib36
  article-title: Sow and piglet behaviour in group lactation housing from 7 or 14 days post-partum
  publication-title: Applied Animal Behaviour Science
– volume: 65
  start-page: 1159
  year: 2011
  end-page: 1167
  ident: bib2
  article-title: Maternal investment, sibling competition, and offspring survival with increasing litter size and parity in pigs (
  publication-title: Behavioral Ecology and Sociobiology
– volume: 229
  year: 2025
  ident: bib19
  article-title: Characterization of social cohesion status of pre-weaning piglets based on lightweight pose estimation
  publication-title: Computers and Electronics in Agriculture
– volume: 210
  year: 2023
  ident: bib13
  article-title: Counting piglet suckling events using deep learning-based action density estimation
  publication-title: Computers and Electronics in Agriculture
– volume: 210
  year: 2023
  ident: bib25
  article-title: Recognition of fine-grained sow nursing behavior based on the SlowFast and hidden Markov models
  publication-title: Computers and Electronics in Agriculture
– volume: 173
  start-page: 85
  year: 2018
  end-page: 92
  ident: bib5
  article-title: Estimation of patterns in weaned piglets' activity using spectral analysis
  publication-title: Biosystems Engineering
– year: 2000
  ident: bib6
  article-title: The OpenCV library
  publication-title: Dr. Dobb’s Journal of Software Tools
– volume: 17
  start-page: 185
  year: 1981
  end-page: 203
  ident: bib21
  article-title: Determining optical flow
  publication-title: Artificial Intelligence
– volume: 42
  start-page: 318
  year: 2020
  end-page: 327
  ident: bib27
  article-title: Focal loss for dense object detection
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– start-page: 1
  year: 2019
  end-page: 18
  ident: bib30
  article-title: Decoupled weight decay regularization
  publication-title: 7th International Conference on Learning Representations, ICLR
– volume: 185
  year: 2021
  ident: bib42
  article-title: A CNN-based posture change detection for lactating sow in untrimmed depth videos
  publication-title: Computers and Electronics in Agriculture
– year: 2003
  ident: bib10
  article-title: Two-frame motion estimation based on polynomial expansion
  publication-title: Proceedings of the 13th scandinavian conference on image analysis
– volume: 144
  start-page: 39
  year: 2013
  end-page: 45
  ident: bib33
  article-title: Formation of teat order and estimation of piglets' distribution along the mammary complex using mid-domain effect (MDE) model
  publication-title: Applied Animal Behaviour Science
– year: 2018
  ident: bib24
  article-title: CornerNet: Detecting objects as paired keypoints
  publication-title: Computer vision – ECCV 2018
– year: 2018
  ident: bib29
  article-title: Path aggregation network for instance segmentation
  publication-title: 2018 IEEE/CVF conference on computer vision and pattern recognition (CVPR)
– volume: 189
  year: 2021
  ident: bib14
  article-title: Fast and accurate detection of lactating sow nursing behavior with CNN-based optical flow and features
  publication-title: Computers and Electronics in Agriculture
– volume: 167
  year: 2019
  ident: bib40
  article-title: Automated video analysis of sow nursing behavior based on fully convolutional network and oriented optical flow
  publication-title: Computers and Electronics in Agriculture
– volume: 11
  year: 2021
  ident: bib4
  article-title: Long-term measurement of piglet activity using passive infrared detectors
  publication-title: Animals
– volume: 188
  year: 2021
  ident: bib15
  article-title: Automated detection and analysis of social behaviors among preweaning piglets using key point-based spatial and temporal features
  publication-title: Computers and Electronics in Agriculture
– volume: 52
  start-page: 78
  year: 2007
  end-page: 85
  ident: bib1
  article-title: Maternal behavior in pigs
  publication-title: Hormones and Behavior
– year: 2024
  ident: bib37
  article-title: YOLOv10: Real-Time end-to-end object detection
  publication-title: arXiv E-Prints
– volume: 202
  year: 2022
  ident: bib9
  article-title: Social density detection for suckling piglets based on convolutional neural network combined with local outlier factor algorithm
  publication-title: Computers and Electronics in Agriculture
– volume: 21
  year: 2019
  ident: bib43
  article-title: Detection of salient crowd motion based on repulsive force network and direction entropy
  publication-title: Entropy
– year: 2017
  ident: bib35
  article-title: Attention is all you need
  publication-title: Proceedings of the 31st international conference on neural information processing systems
– year: 2016
  ident: 10.1016/j.biosystemseng.2025.104197_bib28
  article-title: Ssd: Single shot MultiBox detector
– year: 2018
  ident: 10.1016/j.biosystemseng.2025.104197_bib24
  article-title: CornerNet: Detecting objects as paired keypoints
– volume: 9
  start-page: 107
  issue: 3
  year: 2014
  ident: 10.1016/j.biosystemseng.2025.104197_bib34
  article-title: The association between sow and piglet behavior
  publication-title: Journal of Veterinary Behavior
  doi: 10.1016/j.jveb.2014.01.005
– year: 2024
  ident: 10.1016/j.biosystemseng.2025.104197_bib37
  article-title: YOLOv10: Real-Time end-to-end object detection
  publication-title: arXiv E-Prints
– volume: 224
  year: 2024
  ident: 10.1016/j.biosystemseng.2025.104197_bib38
  article-title: Deep neural network with adaptive dual-modality fusion for temporal aggressive behavior detection of group-housed pigs
  publication-title: Computers and Electronics in Agriculture
  doi: 10.1016/j.compag.2024.109243
– volume: 199
  year: 2022
  ident: 10.1016/j.biosystemseng.2025.104197_bib16
  article-title: Automated detection and analysis of piglet suckling behaviour using high-accuracy amodal instance segmentation
  publication-title: Computers and Electronics in Agriculture
  doi: 10.1016/j.compag.2022.107162
– volume: 2
  start-page: 674
  year: 1981
  ident: 10.1016/j.biosystemseng.2025.104197_bib31
  article-title: An iterative image registration technique with an application to stereo vision
  publication-title: IJCAI’81: 7th International Joint Conference on Artificial Intelligence
– ident: 10.1016/j.biosystemseng.2025.104197_bib23
– volume: 42
  start-page: 318
  issue: 2
  year: 2020
  ident: 10.1016/j.biosystemseng.2025.104197_bib27
  article-title: Focal loss for dense object detection
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2018.2858826
– volume: 173
  start-page: 85
  year: 2018
  ident: 10.1016/j.biosystemseng.2025.104197_bib5
  article-title: Estimation of patterns in weaned piglets' activity using spectral analysis
  publication-title: Biosystems Engineering
  doi: 10.1016/j.biosystemseng.2017.06.014
– volume: 229
  year: 2025
  ident: 10.1016/j.biosystemseng.2025.104197_bib19
  article-title: Characterization of social cohesion status of pre-weaning piglets based on lightweight pose estimation
  publication-title: Computers and Electronics in Agriculture
  doi: 10.1016/j.compag.2024.109716
– year: 2017
  ident: 10.1016/j.biosystemseng.2025.104197_bib35
  article-title: Attention is all you need
– volume: 21
  issue: 6
  year: 2019
  ident: 10.1016/j.biosystemseng.2025.104197_bib43
  article-title: Detection of salient crowd motion based on repulsive force network and direction entropy
  publication-title: Entropy
  doi: 10.3390/e21060608
– volume: 202
  year: 2022
  ident: 10.1016/j.biosystemseng.2025.104197_bib9
  article-title: Social density detection for suckling piglets based on convolutional neural network combined with local outlier factor algorithm
  publication-title: Computers and Electronics in Agriculture
  doi: 10.1016/j.compag.2022.107423
– volume: 194
  year: 2022
  ident: 10.1016/j.biosystemseng.2025.104197_bib8
  article-title: Activity detection of suckling piglets based on motion area analysis using frame differences in combination with convolution neural network
  publication-title: Computers and Electronics in Agriculture
  doi: 10.1016/j.compag.2022.106741
– volume: 189
  year: 2021
  ident: 10.1016/j.biosystemseng.2025.104197_bib14
  article-title: Fast and accurate detection of lactating sow nursing behavior with CNN-based optical flow and features
  publication-title: Computers and Electronics in Agriculture
  doi: 10.1016/j.compag.2021.106384
– volume: 223
  year: 2024
  ident: 10.1016/j.biosystemseng.2025.104197_bib3
  article-title: Agricultural object detection with you only look once (YOLO) algorithm: A bibliometric and systematic literature review
  publication-title: Computers and Electronics in Agriculture
  doi: 10.1016/j.compag.2024.109090
– volume: 217
  start-page: 102
  year: 2022
  ident: 10.1016/j.biosystemseng.2025.104197_bib17
  article-title: Spatiotemporal graph convolutional network for automated detection and analysis of social behaviours among pre-weaning piglets
  publication-title: Biosystems Engineering
  doi: 10.1016/j.biosystemseng.2022.03.005
– year: 2003
  ident: 10.1016/j.biosystemseng.2025.104197_bib10
  article-title: Two-frame motion estimation based on polynomial expansion
– volume: 52
  start-page: 78
  issue: 1
  year: 2007
  ident: 10.1016/j.biosystemseng.2025.104197_bib1
  article-title: Maternal behavior in pigs
  publication-title: Hormones and Behavior
  doi: 10.1016/j.yhbeh.2007.03.022
– volume: 11
  issue: 6
  year: 2021
  ident: 10.1016/j.biosystemseng.2025.104197_bib4
  article-title: Long-term measurement of piglet activity using passive infrared detectors
  publication-title: Animals
  doi: 10.3390/ani11061607
– volume: 210
  year: 2023
  ident: 10.1016/j.biosystemseng.2025.104197_bib25
  article-title: Recognition of fine-grained sow nursing behavior based on the SlowFast and hidden Markov models
  publication-title: Computers and Electronics in Agriculture
  doi: 10.1016/j.compag.2023.107938
– volume: 185
  year: 2021
  ident: 10.1016/j.biosystemseng.2025.104197_bib42
  article-title: A CNN-based posture change detection for lactating sow in untrimmed depth videos
  publication-title: Computers and Electronics in Agriculture
  doi: 10.1016/j.compag.2021.106139
– volume: 877
  year: 2023
  ident: 10.1016/j.biosystemseng.2025.104197_bib18
  article-title: Novel risk assessment model of food quality and safety considering physical-chemical and pollutant indexes based on coefficient of variance integrating entropy weight
  publication-title: Science of The Total Environment
  doi: 10.1016/j.scitotenv.2023.162730
– volume: 155
  start-page: 1
  year: 2017
  ident: 10.1016/j.biosystemseng.2025.104197_bib22
  article-title: The THUMOS challenge on action recognition for videos “in the wild.”
  publication-title: Computer Vision and Image Understanding
  doi: 10.1016/j.cviu.2016.10.018
– volume: 161
  start-page: 42
  year: 2014
  ident: 10.1016/j.biosystemseng.2025.104197_bib32
  article-title: Behavioural patterns established during suckling reappear when piglets are forced to form a new dominance hierarchy
  publication-title: Applied Animal Behaviour Science
  doi: 10.1016/j.applanim.2014.09.005
– volume: 210
  year: 2023
  ident: 10.1016/j.biosystemseng.2025.104197_bib13
  article-title: Counting piglet suckling events using deep learning-based action density estimation
  publication-title: Computers and Electronics in Agriculture
  doi: 10.1016/j.compag.2023.107877
– volume: 175
  start-page: 133
  year: 2018
  ident: 10.1016/j.biosystemseng.2025.104197_bib41
  article-title: Automatic recognition of sow nursing behaviour using deep learning-based segmentation and spatial and temporal features
  publication-title: Biosystems Engineering
  doi: 10.1016/j.biosystemseng.2018.09.011
– year: 2000
  ident: 10.1016/j.biosystemseng.2025.104197_bib6
  article-title: The OpenCV library
  publication-title: Dr. Dobb’s Journal of Software Tools
– volume: 218
  start-page: 62
  year: 2022
  ident: 10.1016/j.biosystemseng.2025.104197_bib26
  article-title: Fusion of RGB, optical flow and skeleton features for the detection of lameness in dairy cows
  publication-title: Biosystems Engineering
  doi: 10.1016/j.biosystemseng.2022.03.006
– volume: 189
  year: 2021
  ident: 10.1016/j.biosystemseng.2025.104197_bib20
  article-title: Automatic monitoring of lactation frequency of sows and movement quantification of newborn piglets in farrowing houses using convolutional neural networks
  publication-title: Computers and Electronics in Agriculture
  doi: 10.1016/j.compag.2021.106376
– year: 2018
  ident: 10.1016/j.biosystemseng.2025.104197_bib29
  article-title: Path aggregation network for instance segmentation
– year: 2021
  ident: 10.1016/j.biosystemseng.2025.104197_bib11
  article-title: Tood: Task-Aligned one-stage object detection
– volume: 134
  start-page: 1
  year: 2015
  ident: 10.1016/j.biosystemseng.2025.104197_bib12
  article-title: Optical flow modeling and computation: A survey
  publication-title: Computer Vision and Image Understanding
  doi: 10.1016/j.cviu.2015.02.008
– volume: 17
  start-page: 185
  issue: 1
  year: 1981
  ident: 10.1016/j.biosystemseng.2025.104197_bib21
  article-title: Determining optical flow
  publication-title: Artificial Intelligence
  doi: 10.1016/0004-3702(81)90024-2
– volume: 65
  start-page: 1159
  year: 2011
  ident: 10.1016/j.biosystemseng.2025.104197_bib2
  article-title: Maternal investment, sibling competition, and offspring survival with increasing litter size and parity in pigs (Sus scrofa)
  publication-title: Behavioral Ecology and Sociobiology
  doi: 10.1007/s00265-010-1128-4
– volume: 144
  start-page: 39
  issue: 1
  year: 2013
  ident: 10.1016/j.biosystemseng.2025.104197_bib33
  article-title: Formation of teat order and estimation of piglets' distribution along the mammary complex using mid-domain effect (MDE) model
  publication-title: Applied Animal Behaviour Science
  doi: 10.1016/j.applanim.2012.11.014
– volume: 167
  year: 2019
  ident: 10.1016/j.biosystemseng.2025.104197_bib40
  article-title: Automated video analysis of sow nursing behavior based on fully convolutional network and oriented optical flow
  publication-title: Computers and Electronics in Agriculture
  doi: 10.1016/j.compag.2019.105048
– volume: 213
  year: 2023
  ident: 10.1016/j.biosystemseng.2025.104197_bib39
  article-title: Recognizing the rooting action of prepartum sow in free-farrowing pen using computer vision
  publication-title: Computers and Electronics in Agriculture
  doi: 10.1016/j.compag.2023.108167
– start-page: 1
  year: 2019
  ident: 10.1016/j.biosystemseng.2025.104197_bib30
  article-title: Decoupled weight decay regularization
  publication-title: 7th International Conference on Learning Representations, ICLR
– volume: 214
  start-page: 25
  year: 2019
  ident: 10.1016/j.biosystemseng.2025.104197_bib36
  article-title: Sow and piglet behaviour in group lactation housing from 7 or 14 days post-partum
  publication-title: Applied Animal Behaviour Science
  doi: 10.1016/j.applanim.2019.03.001
– year: 2017
  ident: 10.1016/j.biosystemseng.2025.104197_bib7
  article-title: Xception: Deep learning with depthwise separable convolutions
– volume: 188
  year: 2021
  ident: 10.1016/j.biosystemseng.2025.104197_bib15
  article-title: Automated detection and analysis of social behaviors among preweaning piglets using key point-based spatial and temporal features
  publication-title: Computers and Electronics in Agriculture
  doi: 10.1016/j.compag.2021.106357
SSID ssj0015746
Score 2.4425886
Snippet With the rapid development of intelligent farming technologies, effectively evaluating piglet competition behaviour during the suckling period has become a key...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Index Database
Publisher
StartPage 104197
SubjectTerms algorithms
Behavioural analysis
entropy
Information entropy
Intelligent farming
lactation
Lactation monitoring
livestock husbandry
nutrition
piglets
posture
Sow posture recognition
Title Evaluation of piglet suckling competition index based on YOLOv10 and optical flow direction distribution features
URI https://dx.doi.org/10.1016/j.biosystemseng.2025.104197
https://www.proquest.com/docview/3271867057
Volume 257
WOSCitedRecordID wos001504842200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 1537-5110
  databaseCode: AIEXJ
  dateStart: 20020101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0015746
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwGLVgQ4g9IG4TGxcZwVuUKbGdOH5BqlARoGlDYkD3FDmOM2VCSWna0Z_P50uSbmjSEOIlaqwmTnpO7c_f5RihN0bznJUkDkmmWMjAQA4LJoqQiQrsg5Tw2Ebwvx3yo6NsNhOfvUO_s9sJ8KbJ1msx_69QQxuAbUpn_wLu4abQAJ8BdDgC7HC8EfDTQb_bZjPXZ4BM0JkQrq-vnWsnUBRYpcTAzGOliRmcHh8eX8SRDSe0c1_b-KP9Fbhpz1xRGpldv0NWUGkrCtpdigvXrdOG7gI9Kh2OOQS-FKRu1vWYC1SvrHdg1Y4tLnV4vPJUWpfud1-45t0UJBnysLzvrK-fGZOV3HDLQzD5os3xmDjF6j_GdudmOD8ohjeBxzgwfZlAdezSfK-IZ38xPZgOwNIDY5fS22ib8ETA-Lc9-TidfRoiTgl3lWj9E91Fr8dcwGu7vM6auTKvW2Pl5AG671cZeOLY8RDd0s0jtDM5W3ilFQ1nG0qUj9HPkTW4rbBjDe5ZgzdYgy1rsGUNhlPPGgyswZ412LAGD6zBm6zBPWueoK_vpyfvPoR-N45Q0YgtQ51owbWKCilSqROSKLAVYWlG00IyUmRpyRThMqo4UYxKRhl8oYpiSRQFK53SXbTVtI1-inBZJapKuSoSMGal4CIVcUVKKnUB6-lK7CHW_6r53Imu5H024nl-CYzcgJE7MPbQ2x6B3NuP7lVzoNDNbvCqxy2HUdaEzmSj21WXUxi0spTD4mb_Xzt5hu6N_4_naGu5WOkX6I66WNbd4qWn5W_Pf61x
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evaluation+of+piglet+suckling+competition+index+based+on+YOLOv10+and+optical+flow+direction+distribution+features&rft.jtitle=Biosystems+engineering&rft.au=Chen%2C+Jinxin&rft.au=Liu%2C+Luo&rft.au=Li%2C+Peng&rft.au=Yao%2C+Wen&rft.date=2025-09-01&rft.pub=Elsevier+Ltd&rft.issn=1537-5110&rft.volume=257&rft_id=info:doi/10.1016%2Fj.biosystemseng.2025.104197&rft.externalDocID=S1537511025001333
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1537-5110&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1537-5110&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1537-5110&client=summon