Real Relative Encoding Genetic Algorithm for Workflow Scheduling in Heterogeneous Distributed Computing Systems
This paper introduces a novel Real Relative encoding Genetic Algorithm (R<inline-formula><tex-math notation="LaTeX">^{2}</tex-math> <mml:math><mml:msup><mml:mrow/><mml:mn>2</mml:mn></mml:msup></mml:math><inline-graphic xlink:hr...
Uložené v:
| Vydané v: | IEEE transactions on parallel and distributed systems Ročník 36; číslo 1; s. 1 - 14 |
|---|---|
| Hlavní autori: | , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
IEEE
01.01.2025
|
| Predmet: | |
| ISSN: | 1045-9219, 1558-2183, 1558-2183 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | This paper introduces a novel Real Relative encoding Genetic Algorithm (R<inline-formula><tex-math notation="LaTeX">^{2}</tex-math> <mml:math><mml:msup><mml:mrow/><mml:mn>2</mml:mn></mml:msup></mml:math><inline-graphic xlink:href="jiang-ieq1-3492210.gif"/> </inline-formula>GA) to tackle the workflow scheduling problem in heterogeneous distributed computing systems (HDCS). R<inline-formula><tex-math notation="LaTeX">^{2}</tex-math> <mml:math><mml:msup><mml:mrow/><mml:mn>2</mml:mn></mml:msup></mml:math><inline-graphic xlink:href="jiang-ieq2-3492210.gif"/> </inline-formula>GA employs a unique encoding mechanism, using real numbers to represent the relative positions of tasks in the schedulable task set. Decoding is performed by interpreting these real numbers in relation to the directed acyclic graph (DAG) of the workflow. This approach ensures that any sequence of randomly generated real numbers, produced by cross-over and mutation operations, can always be decoded into a valid solution, as the precedence constraints between tasks are explicitly defined by the DAG. The proposed encoding and decoding mechanism simplifies genetic operations and facilitates efficient exploration of the solution space. This inherent flexibility also allows R<inline-formula><tex-math notation="LaTeX">^{2}</tex-math> <mml:math><mml:msup><mml:mrow/><mml:mn>2</mml:mn></mml:msup></mml:math><inline-graphic xlink:href="jiang-ieq3-3492210.gif"/> </inline-formula>GA to be easily adapted to various optimization scenarios in workflow scheduling within HDCS. Additionally, R<inline-formula><tex-math notation="LaTeX">^{2}</tex-math> <mml:math><mml:msup><mml:mrow/><mml:mn>2</mml:mn></mml:msup></mml:math><inline-graphic xlink:href="jiang-ieq4-3492210.gif"/> </inline-formula>GA overcomes several issues associated with traditional genetic algorithms (GAs) and existing real-number encoding GAs, such as the generation of chromosomes that violate task precedence constraints and the strict limitations on gene value ranges. Experimental results show that R<inline-formula><tex-math notation="LaTeX">^{2}</tex-math> <mml:math><mml:msup><mml:mrow/><mml:mn>2</mml:mn></mml:msup></mml:math><inline-graphic xlink:href="jiang-ieq5-3492210.gif"/> </inline-formula>GA consistently delivers superior performance in terms of solution quality and efficiency compared to existing techniques. |
|---|---|
| AbstractList | This paper introduces a novel Real Relative encoding Genetic Algorithm (R<inline-formula><tex-math notation="LaTeX">^{2}</tex-math> <mml:math><mml:msup><mml:mrow/><mml:mn>2</mml:mn></mml:msup></mml:math><inline-graphic xlink:href="jiang-ieq1-3492210.gif"/> </inline-formula>GA) to tackle the workflow scheduling problem in heterogeneous distributed computing systems (HDCS). R<inline-formula><tex-math notation="LaTeX">^{2}</tex-math> <mml:math><mml:msup><mml:mrow/><mml:mn>2</mml:mn></mml:msup></mml:math><inline-graphic xlink:href="jiang-ieq2-3492210.gif"/> </inline-formula>GA employs a unique encoding mechanism, using real numbers to represent the relative positions of tasks in the schedulable task set. Decoding is performed by interpreting these real numbers in relation to the directed acyclic graph (DAG) of the workflow. This approach ensures that any sequence of randomly generated real numbers, produced by cross-over and mutation operations, can always be decoded into a valid solution, as the precedence constraints between tasks are explicitly defined by the DAG. The proposed encoding and decoding mechanism simplifies genetic operations and facilitates efficient exploration of the solution space. This inherent flexibility also allows R<inline-formula><tex-math notation="LaTeX">^{2}</tex-math> <mml:math><mml:msup><mml:mrow/><mml:mn>2</mml:mn></mml:msup></mml:math><inline-graphic xlink:href="jiang-ieq3-3492210.gif"/> </inline-formula>GA to be easily adapted to various optimization scenarios in workflow scheduling within HDCS. Additionally, R<inline-formula><tex-math notation="LaTeX">^{2}</tex-math> <mml:math><mml:msup><mml:mrow/><mml:mn>2</mml:mn></mml:msup></mml:math><inline-graphic xlink:href="jiang-ieq4-3492210.gif"/> </inline-formula>GA overcomes several issues associated with traditional genetic algorithms (GAs) and existing real-number encoding GAs, such as the generation of chromosomes that violate task precedence constraints and the strict limitations on gene value ranges. Experimental results show that R<inline-formula><tex-math notation="LaTeX">^{2}</tex-math> <mml:math><mml:msup><mml:mrow/><mml:mn>2</mml:mn></mml:msup></mml:math><inline-graphic xlink:href="jiang-ieq5-3492210.gif"/> </inline-formula>GA consistently delivers superior performance in terms of solution quality and efficiency compared to existing techniques. This paper introduces a novel Real Relative encoding Genetic Algorithm (R(2)GA) to tackle the workflow scheduling problem in heterogeneous distributed computing systems (HDCS). R(2)GA employs a unique encoding mechanism, using real numbers to represent the relative positions of tasks in the schedulable task set. Decoding is performed by interpreting these real numbers in relation to the directed acyclic graph (DAG) of the workflow. This approach ensures that any sequence of randomly generated real numbers, produced by cross-over and mutation operations, can always be decoded into a valid solution, as the precedence constraints between tasks are explicitly defined by the DAG. The proposed encoding and decoding mechanism simplifies genetic operations and facilitates efficient exploration of the solution space. This inherent flexibility also allows R(2)GA to be easily adapted to various optimization scenarios in workflow scheduling within HDCS. Additionally, R(2)GA overcomes several issues associated with traditional genetic algorithms (GAs) and existing real-number encoding GAs, such as the generation of chromosomes that violate task precedence constraints and the strict limitations on gene value ranges. Experimental results show that R(2)GA consistently delivers superior performance in terms of solution quality and efficiency compared to existing techniques. |
| Author | Jiang, Junqiang Peng, Zebo Sun, Zhifang Lu, Ruiqi Pan, Li |
| Author_xml | – sequence: 1 givenname: Junqiang orcidid: 0000-0002-6934-0113 surname: Jiang fullname: Jiang, Junqiang email: jqjiang@hnist.edu.cn organization: School of Information Science and Engineering, Hunan Institute of Science and Technology, Yueyang, China – sequence: 2 givenname: Zhifang orcidid: 0000-0001-7546-2064 surname: Sun fullname: Sun, Zhifang email: zf_sun@vip.hnist.edu.cn organization: School of Information Science and Engineering, Hunan Institute of Science and Technology, Yueyang, China – sequence: 3 givenname: Ruiqi orcidid: 0000-0001-6192-8177 surname: Lu fullname: Lu, Ruiqi email: luruiqi@hnu.edu.cn organization: Key Laboratory for Embedded and Cyber-Physical Systems of Hunan Province, College of Computer Science and Electronic Engineering, Hunan University, Changsha, China – sequence: 4 givenname: Li orcidid: 0000-0002-9187-5544 surname: Pan fullname: Pan, Li email: lipan@hnist.edu.cn organization: School of Information Science and Engineering, Hunan Institute of Science and Technology, Yueyang, China – sequence: 5 givenname: Zebo orcidid: 0000-0002-5137-565X surname: Peng fullname: Peng, Zebo email: zebo.peng@liu.se organization: Department of Computer and Information Science (IDA), Embedded Systems Laboratory (ESLAB), Linköping University, Linköping, Sweden |
| BackLink | https://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-210129$$DView record from Swedish Publication Index (Linköpings universitet) |
| BookMark | eNp9kE1PAjEQQBujiYD-ABMP_QOLbbf7dSSAYEKiAdRj0-3OQnXZkrYr4d-7G4gxHjzNHN6bSV4fXdamBoTuKBlSSrKH9ctkNWSE8WHIM8YouUA9GkVpwGgaXrY74VGQMZpdo75zH4RQHhHeQ2YJssJLqKTXX4CntTKFrjd4BjV4rfCo2hir_XaHS2Pxu7GfZWUOeKW2UDRVR-oaz8GDNZtWMY3DE-281XnjocBjs9s3vsNWR-dh527QVSkrB7fnOUCvj9P1eB4snmdP49EiUCHhPijKgvC0jJgKISKllKzMVRFDxgktUiYZVXmayiTO80RGMQEp45QwKkMat0seDlBwuusOsG9ysbd6J-1RGKnFRL-NhLEbUelGtKkoy1qennhljXMWyh-DEtEVFl1h0RUW58Ktk_xxlPZtR1N7K3X1r3l_MjUA_PqU8ChJWPgN30yN_g |
| CODEN | ITDSEO |
| CitedBy_id | crossref_primary_10_1038_s41598_025_94068_0 crossref_primary_10_1109_JIOT_2025_3567545 crossref_primary_10_1016_j_future_2025_108118 crossref_primary_10_3390_math13172867 crossref_primary_10_1016_j_eswa_2025_127439 |
| Cites_doi | 10.1109/TPDS.2021.3093234 10.1007/s10723-014-9306-7 10.1016/j.engappai.2022.104879 10.1007/s10723-022-09638-7 10.1109/72.265965 10.1109/TPDS.2021.3049780 10.1007/s10723-017-9391-5 10.1109/TASE.2019.2918691 10.26599/TST.2021.9010009 10.1109/TPDS.2020.3041829 10.1109/TCC.2021.3137881 10.1109/TPDS.2019.2959533 10.1109/CCGrid51090.2021.00095 10.1016/j.knosys.2020.105930 10.1109/TCYB.2018.2832640 10.1007/s10845-015-1117-6 10.1109/72.265964 10.1109/TSC.2019.2923912 10.1109/TPDS.2015.2446459 10.1109/IPDPSW52791.2021.00015 10.1007/s10586-013-0275-6 10.1109/TNSM.2018.2872066 10.1109/TSMC.2018.2881018 10.12694/scpe.v20i2.1515 10.1109/TSUSC.2023.3314759 10.1109/CCGrid.2012.49 10.1145/1496091.1496103 10.1109/71.993206 10.1109/TPDS.2019.2961098 10.1109/TCYB.2019.2933499 10.1007/s12652-020-02480-3 10.1109/TPDS.2016.2556668 10.1007/s10462-017-9605-z 10.1109/TPDS.2010.208 10.1109/TPDS.2014.2385698 10.1109/TDSC.2022.3194712 10.1016/j.jpdc.2015.10.001 10.1016/j.jss.2016.07.006 10.1109/TPDS.2017.2735400 10.1109/CONFLUENCE.2017.7943162 |
| ContentType | Journal Article |
| DBID | 97E RIA RIE AAYXX CITATION ADTPV AOWAS DG8 |
| DOI | 10.1109/TPDS.2024.3492210 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore : IEEE Electronic Library (IEL) [unlimited simultaenous users] CrossRef SwePub SwePub Articles SWEPUB Linköpings universitet |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore : IEEE Electronic Library (IEL) [unlimited simultaenous users] url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 1558-2183 |
| EndPage | 14 |
| ExternalDocumentID | oai_DiVA_org_liu_210129 10_1109_TPDS_2024_3492210 10745772 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: China Scholarship Council grantid: 202008430052 funderid: 10.13039/501100004543 |
| GroupedDBID | --Z -~X .DC 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABFSI ABQJQ ABVLG ACGFO ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD HZ~ H~9 ICLAB IEDLZ IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNI RNS RZB TN5 TWZ UHB VH1 AAYXX CITATION ADTPV AOWAS DG8 |
| ID | FETCH-LOGICAL-c304t-dfd048f52c3e50faa2fbcd6e9401d82a21cb88a76bb7a560eaa68021a316680b3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 5 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001360420200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1045-9219 1558-2183 |
| IngestDate | Tue Nov 04 16:54:33 EST 2025 Sat Nov 29 06:06:51 EST 2025 Tue Nov 18 21:42:10 EST 2025 Wed Aug 27 02:32:55 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | workflow scheduling Heuristic algorithms Metaheuristics Candidate task set Quality of service Encoding Scheduling real encoding Distributed computing Biological cells Genetic algorithms Genetic operators genetic algorithm Processor scheduling directed acyclic graph (DAG) |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c304t-dfd048f52c3e50faa2fbcd6e9401d82a21cb88a76bb7a560eaa68021a316680b3 |
| ORCID | 0000-0001-7546-2064 0000-0002-9187-5544 0000-0002-5137-565X 0000-0001-6192-8177 0000-0002-6934-0113 |
| PageCount | 14 |
| ParticipantIDs | swepub_primary_oai_DiVA_org_liu_210129 crossref_primary_10_1109_TPDS_2024_3492210 crossref_citationtrail_10_1109_TPDS_2024_3492210 ieee_primary_10745772 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-01-01 |
| PublicationDateYYYYMMDD | 2025-01-01 |
| PublicationDate_xml | – month: 01 year: 2025 text: 2025-01-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | IEEE transactions on parallel and distributed systems |
| PublicationTitleAbbrev | TPDS |
| PublicationYear | 2025 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| References | ref13 ref35 ref12 ref34 ref15 ref37 ref14 ref36 ref30 ref11 ref33 ref10 ref32 ref2 ref1 ref17 ref39 ref16 ref38 ref19 ref18 ref24 ref23 ref26 ref25 ref20 ref41 ref22 ref21 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 Janikow (ref31) 1991; 1991 ref40 |
| References_xml | – ident: ref3 doi: 10.1109/TPDS.2021.3093234 – ident: ref7 doi: 10.1007/s10723-014-9306-7 – ident: ref30 doi: 10.1016/j.engappai.2022.104879 – ident: ref27 doi: 10.1007/s10723-022-09638-7 – ident: ref32 doi: 10.1109/72.265965 – ident: ref34 doi: 10.1109/TPDS.2021.3049780 – ident: ref38 doi: 10.1007/s10723-017-9391-5 – ident: ref1 doi: 10.1109/TASE.2019.2918691 – ident: ref19 doi: 10.26599/TST.2021.9010009 – ident: ref41 doi: 10.1109/TPDS.2020.3041829 – ident: ref29 doi: 10.1109/TCC.2021.3137881 – ident: ref14 doi: 10.1109/TPDS.2019.2959533 – ident: ref13 doi: 10.1109/CCGrid51090.2021.00095 – ident: ref22 doi: 10.1016/j.knosys.2020.105930 – ident: ref26 doi: 10.1109/TCYB.2018.2832640 – ident: ref18 doi: 10.1007/s10845-015-1117-6 – ident: ref33 doi: 10.1109/72.265964 – ident: ref4 doi: 10.1109/TSC.2019.2923912 – ident: ref10 doi: 10.1109/TPDS.2015.2446459 – ident: ref11 doi: 10.1109/IPDPSW52791.2021.00015 – ident: ref15 doi: 10.1007/s10586-013-0275-6 – ident: ref8 doi: 10.1109/TNSM.2018.2872066 – ident: ref5 doi: 10.1109/TSMC.2018.2881018 – ident: ref24 doi: 10.12694/scpe.v20i2.1515 – ident: ref39 doi: 10.1109/TSUSC.2023.3314759 – ident: ref37 doi: 10.1109/CCGrid.2012.49 – ident: ref35 doi: 10.1145/1496091.1496103 – ident: ref21 doi: 10.1109/71.993206 – ident: ref12 doi: 10.1109/TPDS.2019.2961098 – ident: ref25 doi: 10.1109/TCYB.2019.2933499 – ident: ref23 doi: 10.1007/s12652-020-02480-3 – ident: ref6 doi: 10.1109/TPDS.2016.2556668 – ident: ref28 doi: 10.1007/s10462-017-9605-z – ident: ref36 doi: 10.1109/TPDS.2010.208 – ident: ref9 doi: 10.1109/TPDS.2014.2385698 – ident: ref40 doi: 10.1109/TDSC.2022.3194712 – ident: ref16 doi: 10.1016/j.jpdc.2015.10.001 – ident: ref20 doi: 10.1016/j.jss.2016.07.006 – ident: ref2 doi: 10.1109/TPDS.2017.2735400 – ident: ref17 doi: 10.1109/CONFLUENCE.2017.7943162 – volume: 1991 start-page: 31 year: 1991 ident: ref31 article-title: An experimental comparison of binary and floating point representations in genetic algorithms publication-title: ICGA |
| SSID | ssj0014504 |
| Score | 2.4663694 |
| Snippet | This paper introduces a novel Real Relative encoding Genetic Algorithm (R<inline-formula><tex-math notation="LaTeX">^{2}</tex-math>... This paper introduces a novel Real Relative encoding Genetic Algorithm (R(2)GA) to tackle the workflow scheduling problem in heterogeneous distributed... |
| SourceID | swepub crossref ieee |
| SourceType | Open Access Repository Enrichment Source Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Biological cells Candidate task set directed acyclic graph (DAG) Distributed computing Encoding genetic algorithm Genetic algorithms Genetic operators Heuristic algorithms Metaheuristics Processor scheduling Quality of service real encoding Scheduling workflow scheduling |
| Title | Real Relative Encoding Genetic Algorithm for Workflow Scheduling in Heterogeneous Distributed Computing Systems |
| URI | https://ieeexplore.ieee.org/document/10745772 https://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-210129 |
| Volume | 36 |
| WOSCitedRecordID | wos001360420200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Xplore : IEEE Electronic Library (IEL) [unlimited simultaenous users] customDbUrl: eissn: 1558-2183 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014504 issn: 1045-9219 databaseCode: RIE dateStart: 19900101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS-RAEC5UPLgH34uzq9IH8SBEM51nHwfHwZOIL7yFflTWwJjIOOP-_a3qZIZBcMFLCKTTCXxdVFV31fcBnFipI0vABjHy1k1u4yDXpqSLM8qVGWZovNhEdnOTPz-r265Z3ffCIKIvPsNzvvVn-a6xM94qu-DiwYTCwVVYzbK0bdZaHBnEidcKpPQiCRTZYXeE2Q_VxcPt8J5SQRmfMxef5G7ZJSfkVVU-MYV67zLa-uZ_bcNmF0aKQYv7DqxgvQtbc4kG0VnsLvxY4hvcg-aOwkLR1r99oLiqbcOuSzD3NE0kBuM_zaSavrwKCmUF76OX4-YvzfZCDon71kVVi2suoGlo3WEzexdDJt5lzSx0ov08D-t40PfhcXT1cHkddIoLgY3CeBq40pFFl4m0ESZhqbUsjXUpKsrCXC617FuT5zpLjck0xUqodZpTlKCjfko3JvoJa3VT4wGIMDVWJRQR0GKIlcE8ccqRI3SZlZYsswfhHILCdnTkrIoxLnxaEqqCUSsYtaJDrQdni1feWi6O_w3eZ6CWBrYY9eC0BXrxhAm2h9XToCBMi3E1KyRznqlfX0zwGzYkawD7bZhDWJtOZngE6_ZjWr1Pjv2a_Ac1y-Er |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fS9xAEB6sFqoP2lrFa7Xdh9KHQjS3-bmPh6ec1B7SXotvy_6KBq5JOe_sv9-ZzXocQgVfQiCbTeDbYWZ2Z74P4JPhKjEIbJQ62ropTRqVSld4sVrYqnCF015sohiPy-trcRWa1X0vjHPOF5-5Y7r1Z_m2NQvaKjuh4sEMw8EXsEHSWaFda3lokGZeLRATjCwSaInhELMfi5PJ1fAHJoM8PSY2Pk79situyOuqPOIK9f7lfOeZf_YatkMgyQYd8m9gzTW7sPMg0sCCze7C1grj4Ftov2NgyLoKuHvHzhrTkvNixD6NE7HB9Kad1fPb3wyDWUY76dW0_Yuz3aJLos51VjdsRCU0La481y7u2JCod0k1y1nWfZ6GBSb0Pfh5fjY5HUVBcyEySZzOI1tZtOkq4yZxWVwpxSttbO4E5mG25Ir3jS5LVeRaFwqjJadUXmKcoJJ-jjc62Yf1pm3cAbA410ZkGBPgckiFdmVmhUVXaAvDDdpmD-IHCKQJhOSkizGVPjGJhSTUJKEmA2o9-LJ85U_HxvHU4D0CamVgh1EPPndAL58Qxfaw_jWQiKmc1gvJifVMvPvPBB_h1Wjy7VJeXoy_vodNTorAflPmENbns4U7gpfmfl7fzT749fkPFfDkdA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Real+Relative+Encoding+Genetic+Algorithm+for+Workflow+Scheduling+in+Heterogeneous+Distributed+Computing+Systems&rft.jtitle=IEEE+transactions+on+parallel+and+distributed+systems&rft.au=Jiang%2C+Junqiang&rft.au=Sun%2C+Zhifang&rft.au=Lu%2C+Ruiqi&rft.au=Pan%2C+Li&rft.date=2025-01-01&rft.pub=IEEE&rft.issn=1045-9219&rft.volume=36&rft.issue=1&rft.spage=1&rft.epage=14&rft_id=info:doi/10.1109%2FTPDS.2024.3492210&rft.externalDocID=10745772 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1045-9219&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1045-9219&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1045-9219&client=summon |