Real Relative Encoding Genetic Algorithm for Workflow Scheduling in Heterogeneous Distributed Computing Systems

This paper introduces a novel Real Relative encoding Genetic Algorithm (R<inline-formula><tex-math notation="LaTeX">^{2}</tex-math> <mml:math><mml:msup><mml:mrow/><mml:mn>2</mml:mn></mml:msup></mml:math><inline-graphic xlink:hr...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on parallel and distributed systems Ročník 36; číslo 1; s. 1 - 14
Hlavní autori: Jiang, Junqiang, Sun, Zhifang, Lu, Ruiqi, Pan, Li, Peng, Zebo
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: IEEE 01.01.2025
Predmet:
ISSN:1045-9219, 1558-2183, 1558-2183
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract This paper introduces a novel Real Relative encoding Genetic Algorithm (R<inline-formula><tex-math notation="LaTeX">^{2}</tex-math> <mml:math><mml:msup><mml:mrow/><mml:mn>2</mml:mn></mml:msup></mml:math><inline-graphic xlink:href="jiang-ieq1-3492210.gif"/> </inline-formula>GA) to tackle the workflow scheduling problem in heterogeneous distributed computing systems (HDCS). R<inline-formula><tex-math notation="LaTeX">^{2}</tex-math> <mml:math><mml:msup><mml:mrow/><mml:mn>2</mml:mn></mml:msup></mml:math><inline-graphic xlink:href="jiang-ieq2-3492210.gif"/> </inline-formula>GA employs a unique encoding mechanism, using real numbers to represent the relative positions of tasks in the schedulable task set. Decoding is performed by interpreting these real numbers in relation to the directed acyclic graph (DAG) of the workflow. This approach ensures that any sequence of randomly generated real numbers, produced by cross-over and mutation operations, can always be decoded into a valid solution, as the precedence constraints between tasks are explicitly defined by the DAG. The proposed encoding and decoding mechanism simplifies genetic operations and facilitates efficient exploration of the solution space. This inherent flexibility also allows R<inline-formula><tex-math notation="LaTeX">^{2}</tex-math> <mml:math><mml:msup><mml:mrow/><mml:mn>2</mml:mn></mml:msup></mml:math><inline-graphic xlink:href="jiang-ieq3-3492210.gif"/> </inline-formula>GA to be easily adapted to various optimization scenarios in workflow scheduling within HDCS. Additionally, R<inline-formula><tex-math notation="LaTeX">^{2}</tex-math> <mml:math><mml:msup><mml:mrow/><mml:mn>2</mml:mn></mml:msup></mml:math><inline-graphic xlink:href="jiang-ieq4-3492210.gif"/> </inline-formula>GA overcomes several issues associated with traditional genetic algorithms (GAs) and existing real-number encoding GAs, such as the generation of chromosomes that violate task precedence constraints and the strict limitations on gene value ranges. Experimental results show that R<inline-formula><tex-math notation="LaTeX">^{2}</tex-math> <mml:math><mml:msup><mml:mrow/><mml:mn>2</mml:mn></mml:msup></mml:math><inline-graphic xlink:href="jiang-ieq5-3492210.gif"/> </inline-formula>GA consistently delivers superior performance in terms of solution quality and efficiency compared to existing techniques.
AbstractList This paper introduces a novel Real Relative encoding Genetic Algorithm (R<inline-formula><tex-math notation="LaTeX">^{2}</tex-math> <mml:math><mml:msup><mml:mrow/><mml:mn>2</mml:mn></mml:msup></mml:math><inline-graphic xlink:href="jiang-ieq1-3492210.gif"/> </inline-formula>GA) to tackle the workflow scheduling problem in heterogeneous distributed computing systems (HDCS). R<inline-formula><tex-math notation="LaTeX">^{2}</tex-math> <mml:math><mml:msup><mml:mrow/><mml:mn>2</mml:mn></mml:msup></mml:math><inline-graphic xlink:href="jiang-ieq2-3492210.gif"/> </inline-formula>GA employs a unique encoding mechanism, using real numbers to represent the relative positions of tasks in the schedulable task set. Decoding is performed by interpreting these real numbers in relation to the directed acyclic graph (DAG) of the workflow. This approach ensures that any sequence of randomly generated real numbers, produced by cross-over and mutation operations, can always be decoded into a valid solution, as the precedence constraints between tasks are explicitly defined by the DAG. The proposed encoding and decoding mechanism simplifies genetic operations and facilitates efficient exploration of the solution space. This inherent flexibility also allows R<inline-formula><tex-math notation="LaTeX">^{2}</tex-math> <mml:math><mml:msup><mml:mrow/><mml:mn>2</mml:mn></mml:msup></mml:math><inline-graphic xlink:href="jiang-ieq3-3492210.gif"/> </inline-formula>GA to be easily adapted to various optimization scenarios in workflow scheduling within HDCS. Additionally, R<inline-formula><tex-math notation="LaTeX">^{2}</tex-math> <mml:math><mml:msup><mml:mrow/><mml:mn>2</mml:mn></mml:msup></mml:math><inline-graphic xlink:href="jiang-ieq4-3492210.gif"/> </inline-formula>GA overcomes several issues associated with traditional genetic algorithms (GAs) and existing real-number encoding GAs, such as the generation of chromosomes that violate task precedence constraints and the strict limitations on gene value ranges. Experimental results show that R<inline-formula><tex-math notation="LaTeX">^{2}</tex-math> <mml:math><mml:msup><mml:mrow/><mml:mn>2</mml:mn></mml:msup></mml:math><inline-graphic xlink:href="jiang-ieq5-3492210.gif"/> </inline-formula>GA consistently delivers superior performance in terms of solution quality and efficiency compared to existing techniques.
This paper introduces a novel Real Relative encoding Genetic Algorithm (R(2)GA) to tackle the workflow scheduling problem in heterogeneous distributed computing systems (HDCS). R(2)GA employs a unique encoding mechanism, using real numbers to represent the relative positions of tasks in the schedulable task set. Decoding is performed by interpreting these real numbers in relation to the directed acyclic graph (DAG) of the workflow. This approach ensures that any sequence of randomly generated real numbers, produced by cross-over and mutation operations, can always be decoded into a valid solution, as the precedence constraints between tasks are explicitly defined by the DAG. The proposed encoding and decoding mechanism simplifies genetic operations and facilitates efficient exploration of the solution space. This inherent flexibility also allows R(2)GA to be easily adapted to various optimization scenarios in workflow scheduling within HDCS. Additionally, R(2)GA overcomes several issues associated with traditional genetic algorithms (GAs) and existing real-number encoding GAs, such as the generation of chromosomes that violate task precedence constraints and the strict limitations on gene value ranges. Experimental results show that R(2)GA consistently delivers superior performance in terms of solution quality and efficiency compared to existing techniques.
Author Jiang, Junqiang
Peng, Zebo
Sun, Zhifang
Lu, Ruiqi
Pan, Li
Author_xml – sequence: 1
  givenname: Junqiang
  orcidid: 0000-0002-6934-0113
  surname: Jiang
  fullname: Jiang, Junqiang
  email: jqjiang@hnist.edu.cn
  organization: School of Information Science and Engineering, Hunan Institute of Science and Technology, Yueyang, China
– sequence: 2
  givenname: Zhifang
  orcidid: 0000-0001-7546-2064
  surname: Sun
  fullname: Sun, Zhifang
  email: zf_sun@vip.hnist.edu.cn
  organization: School of Information Science and Engineering, Hunan Institute of Science and Technology, Yueyang, China
– sequence: 3
  givenname: Ruiqi
  orcidid: 0000-0001-6192-8177
  surname: Lu
  fullname: Lu, Ruiqi
  email: luruiqi@hnu.edu.cn
  organization: Key Laboratory for Embedded and Cyber-Physical Systems of Hunan Province, College of Computer Science and Electronic Engineering, Hunan University, Changsha, China
– sequence: 4
  givenname: Li
  orcidid: 0000-0002-9187-5544
  surname: Pan
  fullname: Pan, Li
  email: lipan@hnist.edu.cn
  organization: School of Information Science and Engineering, Hunan Institute of Science and Technology, Yueyang, China
– sequence: 5
  givenname: Zebo
  orcidid: 0000-0002-5137-565X
  surname: Peng
  fullname: Peng, Zebo
  email: zebo.peng@liu.se
  organization: Department of Computer and Information Science (IDA), Embedded Systems Laboratory (ESLAB), Linköping University, Linköping, Sweden
BackLink https://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-210129$$DView record from Swedish Publication Index (Linköpings universitet)
BookMark eNp9kE1PAjEQQBujiYD-ABMP_QOLbbf7dSSAYEKiAdRj0-3OQnXZkrYr4d-7G4gxHjzNHN6bSV4fXdamBoTuKBlSSrKH9ctkNWSE8WHIM8YouUA9GkVpwGgaXrY74VGQMZpdo75zH4RQHhHeQ2YJssJLqKTXX4CntTKFrjd4BjV4rfCo2hir_XaHS2Pxu7GfZWUOeKW2UDRVR-oaz8GDNZtWMY3DE-281XnjocBjs9s3vsNWR-dh527QVSkrB7fnOUCvj9P1eB4snmdP49EiUCHhPijKgvC0jJgKISKllKzMVRFDxgktUiYZVXmayiTO80RGMQEp45QwKkMat0seDlBwuusOsG9ysbd6J-1RGKnFRL-NhLEbUelGtKkoy1qennhljXMWyh-DEtEVFl1h0RUW58Ktk_xxlPZtR1N7K3X1r3l_MjUA_PqU8ChJWPgN30yN_g
CODEN ITDSEO
CitedBy_id crossref_primary_10_1038_s41598_025_94068_0
crossref_primary_10_1109_JIOT_2025_3567545
crossref_primary_10_1016_j_future_2025_108118
crossref_primary_10_3390_math13172867
crossref_primary_10_1016_j_eswa_2025_127439
Cites_doi 10.1109/TPDS.2021.3093234
10.1007/s10723-014-9306-7
10.1016/j.engappai.2022.104879
10.1007/s10723-022-09638-7
10.1109/72.265965
10.1109/TPDS.2021.3049780
10.1007/s10723-017-9391-5
10.1109/TASE.2019.2918691
10.26599/TST.2021.9010009
10.1109/TPDS.2020.3041829
10.1109/TCC.2021.3137881
10.1109/TPDS.2019.2959533
10.1109/CCGrid51090.2021.00095
10.1016/j.knosys.2020.105930
10.1109/TCYB.2018.2832640
10.1007/s10845-015-1117-6
10.1109/72.265964
10.1109/TSC.2019.2923912
10.1109/TPDS.2015.2446459
10.1109/IPDPSW52791.2021.00015
10.1007/s10586-013-0275-6
10.1109/TNSM.2018.2872066
10.1109/TSMC.2018.2881018
10.12694/scpe.v20i2.1515
10.1109/TSUSC.2023.3314759
10.1109/CCGrid.2012.49
10.1145/1496091.1496103
10.1109/71.993206
10.1109/TPDS.2019.2961098
10.1109/TCYB.2019.2933499
10.1007/s12652-020-02480-3
10.1109/TPDS.2016.2556668
10.1007/s10462-017-9605-z
10.1109/TPDS.2010.208
10.1109/TPDS.2014.2385698
10.1109/TDSC.2022.3194712
10.1016/j.jpdc.2015.10.001
10.1016/j.jss.2016.07.006
10.1109/TPDS.2017.2735400
10.1109/CONFLUENCE.2017.7943162
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
ADTPV
AOWAS
DG8
DOI 10.1109/TPDS.2024.3492210
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore : IEEE Electronic Library (IEL) [unlimited simultaenous users]
CrossRef
SwePub
SwePub Articles
SWEPUB Linköpings universitet
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore : IEEE Electronic Library (IEL) [unlimited simultaenous users]
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1558-2183
EndPage 14
ExternalDocumentID oai_DiVA_org_liu_210129
10_1109_TPDS_2024_3492210
10745772
Genre orig-research
GrantInformation_xml – fundername: China Scholarship Council
  grantid: 202008430052
  funderid: 10.13039/501100004543
GroupedDBID --Z
-~X
.DC
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
HZ~
H~9
ICLAB
IEDLZ
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNI
RNS
RZB
TN5
TWZ
UHB
VH1
AAYXX
CITATION
ADTPV
AOWAS
DG8
ID FETCH-LOGICAL-c304t-dfd048f52c3e50faa2fbcd6e9401d82a21cb88a76bb7a560eaa68021a316680b3
IEDL.DBID RIE
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001360420200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1045-9219
1558-2183
IngestDate Tue Nov 04 16:54:33 EST 2025
Sat Nov 29 06:06:51 EST 2025
Tue Nov 18 21:42:10 EST 2025
Wed Aug 27 02:32:55 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords workflow scheduling
Heuristic algorithms
Metaheuristics
Candidate task set
Quality of service
Encoding
Scheduling
real encoding
Distributed computing
Biological cells
Genetic algorithms
Genetic operators
genetic algorithm
Processor scheduling
directed acyclic graph (DAG)
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c304t-dfd048f52c3e50faa2fbcd6e9401d82a21cb88a76bb7a560eaa68021a316680b3
ORCID 0000-0001-7546-2064
0000-0002-9187-5544
0000-0002-5137-565X
0000-0001-6192-8177
0000-0002-6934-0113
PageCount 14
ParticipantIDs swepub_primary_oai_DiVA_org_liu_210129
crossref_primary_10_1109_TPDS_2024_3492210
crossref_citationtrail_10_1109_TPDS_2024_3492210
ieee_primary_10745772
PublicationCentury 2000
PublicationDate 2025-01-01
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – month: 01
  year: 2025
  text: 2025-01-01
  day: 01
PublicationDecade 2020
PublicationTitle IEEE transactions on parallel and distributed systems
PublicationTitleAbbrev TPDS
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
ref35
ref12
ref34
ref15
ref37
ref14
ref36
ref30
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref39
ref16
ref38
ref19
ref18
ref24
ref23
ref26
ref25
ref20
ref41
ref22
ref21
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
Janikow (ref31) 1991; 1991
ref40
References_xml – ident: ref3
  doi: 10.1109/TPDS.2021.3093234
– ident: ref7
  doi: 10.1007/s10723-014-9306-7
– ident: ref30
  doi: 10.1016/j.engappai.2022.104879
– ident: ref27
  doi: 10.1007/s10723-022-09638-7
– ident: ref32
  doi: 10.1109/72.265965
– ident: ref34
  doi: 10.1109/TPDS.2021.3049780
– ident: ref38
  doi: 10.1007/s10723-017-9391-5
– ident: ref1
  doi: 10.1109/TASE.2019.2918691
– ident: ref19
  doi: 10.26599/TST.2021.9010009
– ident: ref41
  doi: 10.1109/TPDS.2020.3041829
– ident: ref29
  doi: 10.1109/TCC.2021.3137881
– ident: ref14
  doi: 10.1109/TPDS.2019.2959533
– ident: ref13
  doi: 10.1109/CCGrid51090.2021.00095
– ident: ref22
  doi: 10.1016/j.knosys.2020.105930
– ident: ref26
  doi: 10.1109/TCYB.2018.2832640
– ident: ref18
  doi: 10.1007/s10845-015-1117-6
– ident: ref33
  doi: 10.1109/72.265964
– ident: ref4
  doi: 10.1109/TSC.2019.2923912
– ident: ref10
  doi: 10.1109/TPDS.2015.2446459
– ident: ref11
  doi: 10.1109/IPDPSW52791.2021.00015
– ident: ref15
  doi: 10.1007/s10586-013-0275-6
– ident: ref8
  doi: 10.1109/TNSM.2018.2872066
– ident: ref5
  doi: 10.1109/TSMC.2018.2881018
– ident: ref24
  doi: 10.12694/scpe.v20i2.1515
– ident: ref39
  doi: 10.1109/TSUSC.2023.3314759
– ident: ref37
  doi: 10.1109/CCGrid.2012.49
– ident: ref35
  doi: 10.1145/1496091.1496103
– ident: ref21
  doi: 10.1109/71.993206
– ident: ref12
  doi: 10.1109/TPDS.2019.2961098
– ident: ref25
  doi: 10.1109/TCYB.2019.2933499
– ident: ref23
  doi: 10.1007/s12652-020-02480-3
– ident: ref6
  doi: 10.1109/TPDS.2016.2556668
– ident: ref28
  doi: 10.1007/s10462-017-9605-z
– ident: ref36
  doi: 10.1109/TPDS.2010.208
– ident: ref9
  doi: 10.1109/TPDS.2014.2385698
– ident: ref40
  doi: 10.1109/TDSC.2022.3194712
– ident: ref16
  doi: 10.1016/j.jpdc.2015.10.001
– ident: ref20
  doi: 10.1016/j.jss.2016.07.006
– ident: ref2
  doi: 10.1109/TPDS.2017.2735400
– ident: ref17
  doi: 10.1109/CONFLUENCE.2017.7943162
– volume: 1991
  start-page: 31
  year: 1991
  ident: ref31
  article-title: An experimental comparison of binary and floating point representations in genetic algorithms
  publication-title: ICGA
SSID ssj0014504
Score 2.4663694
Snippet This paper introduces a novel Real Relative encoding Genetic Algorithm (R<inline-formula><tex-math notation="LaTeX">^{2}</tex-math>...
This paper introduces a novel Real Relative encoding Genetic Algorithm (R(2)GA) to tackle the workflow scheduling problem in heterogeneous distributed...
SourceID swepub
crossref
ieee
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Biological cells
Candidate task set
directed acyclic graph (DAG)
Distributed computing
Encoding
genetic algorithm
Genetic algorithms
Genetic operators
Heuristic algorithms
Metaheuristics
Processor scheduling
Quality of service
real encoding
Scheduling
workflow scheduling
Title Real Relative Encoding Genetic Algorithm for Workflow Scheduling in Heterogeneous Distributed Computing Systems
URI https://ieeexplore.ieee.org/document/10745772
https://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-210129
Volume 36
WOSCitedRecordID wos001360420200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Xplore : IEEE Electronic Library (IEL) [unlimited simultaenous users]
  customDbUrl:
  eissn: 1558-2183
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014504
  issn: 1045-9219
  databaseCode: RIE
  dateStart: 19900101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS-RAEC5UPLgH34uzq9IH8SBEM51nHwfHwZOIL7yFflTWwJjIOOP-_a3qZIZBcMFLCKTTCXxdVFV31fcBnFipI0vABjHy1k1u4yDXpqSLM8qVGWZovNhEdnOTPz-r265Z3ffCIKIvPsNzvvVn-a6xM94qu-DiwYTCwVVYzbK0bdZaHBnEidcKpPQiCRTZYXeE2Q_VxcPt8J5SQRmfMxef5G7ZJSfkVVU-MYV67zLa-uZ_bcNmF0aKQYv7DqxgvQtbc4kG0VnsLvxY4hvcg-aOwkLR1r99oLiqbcOuSzD3NE0kBuM_zaSavrwKCmUF76OX4-YvzfZCDon71kVVi2suoGlo3WEzexdDJt5lzSx0ov08D-t40PfhcXT1cHkddIoLgY3CeBq40pFFl4m0ESZhqbUsjXUpKsrCXC617FuT5zpLjck0xUqodZpTlKCjfko3JvoJa3VT4wGIMDVWJRQR0GKIlcE8ccqRI3SZlZYsswfhHILCdnTkrIoxLnxaEqqCUSsYtaJDrQdni1feWi6O_w3eZ6CWBrYY9eC0BXrxhAm2h9XToCBMi3E1KyRznqlfX0zwGzYkawD7bZhDWJtOZngE6_ZjWr1Pjv2a_Ac1y-Er
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fS9xAEB6sFqoP2lrFa7Xdh9KHQjS3-bmPh6ec1B7SXotvy_6KBq5JOe_sv9-ZzXocQgVfQiCbTeDbYWZ2Z74P4JPhKjEIbJQ62ropTRqVSld4sVrYqnCF015sohiPy-trcRWa1X0vjHPOF5-5Y7r1Z_m2NQvaKjuh4sEMw8EXsEHSWaFda3lokGZeLRATjCwSaInhELMfi5PJ1fAHJoM8PSY2Pk79situyOuqPOIK9f7lfOeZf_YatkMgyQYd8m9gzTW7sPMg0sCCze7C1grj4Ftov2NgyLoKuHvHzhrTkvNixD6NE7HB9Kad1fPb3wyDWUY76dW0_Yuz3aJLos51VjdsRCU0La481y7u2JCod0k1y1nWfZ6GBSb0Pfh5fjY5HUVBcyEySZzOI1tZtOkq4yZxWVwpxSttbO4E5mG25Ir3jS5LVeRaFwqjJadUXmKcoJJ-jjc62Yf1pm3cAbA410ZkGBPgckiFdmVmhUVXaAvDDdpmD-IHCKQJhOSkizGVPjGJhSTUJKEmA2o9-LJ85U_HxvHU4D0CamVgh1EPPndAL58Qxfaw_jWQiKmc1gvJifVMvPvPBB_h1Wjy7VJeXoy_vodNTorAflPmENbns4U7gpfmfl7fzT749fkPFfDkdA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Real+Relative+Encoding+Genetic+Algorithm+for+Workflow+Scheduling+in+Heterogeneous+Distributed+Computing+Systems&rft.jtitle=IEEE+transactions+on+parallel+and+distributed+systems&rft.au=Jiang%2C+Junqiang&rft.au=Sun%2C+Zhifang&rft.au=Lu%2C+Ruiqi&rft.au=Pan%2C+Li&rft.date=2025-01-01&rft.pub=IEEE&rft.issn=1045-9219&rft.volume=36&rft.issue=1&rft.spage=1&rft.epage=14&rft_id=info:doi/10.1109%2FTPDS.2024.3492210&rft.externalDocID=10745772
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1045-9219&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1045-9219&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1045-9219&client=summon