High-Dimensional Approximate r-Nets

The construction of r -nets offers a powerful tool in computational and metric geometry. We focus on high-dimensional spaces and present a new randomized algorithm which efficiently computes approximate r -nets with respect to Euclidean distance. For any fixed ϵ > 0 , the approximation factor is...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Algorithmica Ročník 82; číslo 6; s. 1675 - 1702
Hlavní autori: Avarikioti, Z., Emiris, I. Z., Kavouras, L., Psarros, I.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York Springer US 01.06.2020
Springer Nature B.V
Springer Verlag
Predmet:
ISSN:0178-4617, 1432-0541
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The construction of r -nets offers a powerful tool in computational and metric geometry. We focus on high-dimensional spaces and present a new randomized algorithm which efficiently computes approximate r -nets with respect to Euclidean distance. For any fixed ϵ > 0 , the approximation factor is 1 + ϵ and the complexity is polynomial in the dimension and subquadratic in the number of points; the algorithm succeeds with high probability. Specifically, we improve upon the best previously known (LSH-based) construction of Eppstein et al. (Approximate greedy clustering and distance selection for graph metrics, 2015. CoRR arxiv: abs/1507.01555 ) in terms of complexity, by reducing the dependence on ϵ , provided that ϵ is sufficiently small. Moreover, our method does not require LSH but follows Valiant’s (J ACM 62(2):13, 2015. https://doi.org/10.1145/2728167 ) approach in designing a sequence of reductions of our problem to other problems in different spaces, under Euclidean distance or inner product, for which r -nets are computed efficiently and the error can be controlled. Our result immediately implies efficient solutions to a number of geometric problems in high dimension, such as finding the ( 1 + ϵ ) -approximate k -th nearest neighbor distance in time subquadratic in the size of the input.
AbstractList The construction of r-nets offers a powerful tool in computational and metric geometry. We focus on high-dimensional spaces and present a new randomized algorithm which efficiently computes approximate r-nets with respect to Euclidean distance. For any fixed ϵ>0, the approximation factor is 1+ϵ and the complexity is polynomial in the dimension and subquadratic in the number of points; the algorithm succeeds with high probability. Specifically, we improve upon the best previously known (LSH-based) construction of Eppstein et al. (Approximate greedy clustering and distance selection for graph metrics, 2015. CoRR arxiv: abs/1507.01555) in terms of complexity, by reducing the dependence on ϵ, provided that ϵ is sufficiently small. Moreover, our method does not require LSH but follows Valiant’s (J ACM 62(2):13, 2015. 10.1145/2728167) approach in designing a sequence of reductions of our problem to other problems in different spaces, under Euclidean distance or inner product, for which r-nets are computed efficiently and the error can be controlled. Our result immediately implies efficient solutions to a number of geometric problems in high dimension, such as finding the (1+ϵ)-approximate k-th nearest neighbor distance in time subquadratic in the size of the input.
The construction of r -nets offers a powerful tool in computational and metric geometry. We focus on high-dimensional spaces and present a new randomized algorithm which efficiently computes approximate r -nets with respect to Euclidean distance. For any fixed ϵ > 0 , the approximation factor is 1 + ϵ and the complexity is polynomial in the dimension and subquadratic in the number of points; the algorithm succeeds with high probability. Specifically, we improve upon the best previously known (LSH-based) construction of Eppstein et al. (Approximate greedy clustering and distance selection for graph metrics, 2015. CoRR arxiv: abs/1507.01555 ) in terms of complexity, by reducing the dependence on ϵ , provided that ϵ is sufficiently small. Moreover, our method does not require LSH but follows Valiant’s (J ACM 62(2):13, 2015. https://doi.org/10.1145/2728167 ) approach in designing a sequence of reductions of our problem to other problems in different spaces, under Euclidean distance or inner product, for which r -nets are computed efficiently and the error can be controlled. Our result immediately implies efficient solutions to a number of geometric problems in high dimension, such as finding the ( 1 + ϵ ) -approximate k -th nearest neighbor distance in time subquadratic in the size of the input.
The construction of r-nets offers a powerful tool in computational and metric geometry. We focus on high-dimensional spaces and present a new randomized algorithm which efficiently computes approximate r-nets with respect to Euclidean distance. For any fixed ϵ>0, the approximation factor is 1+ϵ and the complexity is polynomial in the dimension and subquadratic in the number of points; the algorithm succeeds with high probability. Specifically, we improve upon the best previously known (LSH-based) construction of Eppstein et al. (Approximate greedy clustering and distance selection for graph metrics, 2015. CoRR arxiv: abs/1507.01555) in terms of complexity, by reducing the dependence on ϵ, provided that ϵ is sufficiently small. Moreover, our method does not require LSH but follows Valiant’s (J ACM 62(2):13, 2015. https://doi.org/10.1145/2728167) approach in designing a sequence of reductions of our problem to other problems in different spaces, under Euclidean distance or inner product, for which r-nets are computed efficiently and the error can be controlled. Our result immediately implies efficient solutions to a number of geometric problems in high dimension, such as finding the (1+ϵ)-approximate k-th nearest neighbor distance in time subquadratic in the size of the input.
Author Avarikioti, Z.
Psarros, I.
Kavouras, L.
Emiris, I. Z.
Author_xml – sequence: 1
  givenname: Z.
  surname: Avarikioti
  fullname: Avarikioti, Z.
  organization: School of Electrical and Computer Engineering, National Technical University of Athens
– sequence: 2
  givenname: I. Z.
  orcidid: 0000-0002-2339-5303
  surname: Emiris
  fullname: Emiris, I. Z.
  organization: Department of Informatics and Telecommunications, National and Kapodistrian University of Athens, ATHENA Research Center
– sequence: 3
  givenname: L.
  surname: Kavouras
  fullname: Kavouras, L.
  organization: School of Electrical and Computer Engineering, National Technical University of Athens
– sequence: 4
  givenname: I.
  orcidid: 0000-0002-5079-5003
  surname: Psarros
  fullname: Psarros, I.
  email: ipsarros@di.uoa.gr
  organization: Department of Informatics and Telecommunications, National and Kapodistrian University of Athens
BackLink https://inria.hal.science/hal-03045138$$DView record in HAL
BookMark eNp9kEtPwzAQhC1UJNrCH-BUqScOhrXXrxyr8ihSBBc4W07qtKnapNgpgn-PSxDcuOxKq29mRzMig6ZtPCGXDK4ZgL6JAEIiBZZRAKUENSdkyARyClKwARkC04YKxfQZGcW4AWBcZ2pIpot6taa39c43sW4bt53M9vvQftQ71_lJoE--i-fktHLb6C9-9pi83t-9zBc0f354nM9yWiKILs1MG3RemVJKQKi8YAZLjQY9Mq24WPKiKMpMFcxpLrOicHxpvKu4kkWV4Zhc9b5rt7X7kCKET9u62i5muT3ekqmQDM07S-y0Z1PYt4OPnd20h5DyR8vRmPTPaEwU76kytDEGX_3aMrDH4mxfnE3F2e_irEki7EUxwc3Khz_rf1RfHalvPg
Cites_doi 10.1017/CBO9780511813603
10.1109/FOCS.2012.27
10.1145/2728167
10.1145/509907.509965
10.1145/2831230
10.1006/jcom.1997.0438
10.1145/1327452.1327494
10.1609/aaai.v33i01.33013207
10.1002/rsa.10073
10.1007/s00454-004-2822-7
10.1109/FOCS.2016.57
10.1137/1.9781611974782.2
10.1145/1064092.1064117
ContentType Journal Article
Copyright Springer Science+Business Media, LLC, part of Springer Nature 2020
Springer Science+Business Media, LLC, part of Springer Nature 2020.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: Springer Science+Business Media, LLC, part of Springer Nature 2020
– notice: Springer Science+Business Media, LLC, part of Springer Nature 2020.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
JQ2
1XC
DOI 10.1007/s00453-019-00664-8
DatabaseName CrossRef
ProQuest Computer Science Collection
Hyper Article en Ligne (HAL)
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList ProQuest Computer Science Collection


DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
Mathematics
EISSN 1432-0541
EndPage 1702
ExternalDocumentID oai:HAL:hal-03045138v1
10_1007_s00453_019_00664_8
GrantInformation_xml – fundername: H2020 Marie Sklodowska-Curie Actions
  grantid: 734242
  funderid: http://dx.doi.org/10.13039/100010665
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
203
23M
28-
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDPE
ABDZT
ABECU
ABFSI
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
E.L
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P9O
PF-
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TN5
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UQL
UTJUX
UZXMN
VC2
VFIZW
VH1
VXZ
W23
W48
WK8
YLTOR
Z45
Z7X
Z83
Z88
Z8R
Z8W
Z92
ZMTXR
ZY4
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
JQ2
1XC
ID FETCH-LOGICAL-c304t-c39783ae68c55030fe4183c7383e317624d2bbbc96b1a7259bba2d8eaf265bf93
IEDL.DBID RSV
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000524956400007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0178-4617
IngestDate Tue Oct 14 20:52:12 EDT 2025
Sun Nov 09 06:34:59 EST 2025
Sat Nov 29 02:20:29 EST 2025
Fri Feb 21 02:43:06 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords General dimension
Locality sensitive hashing
Approximation algorithm
nets
Metric geometry
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c304t-c39783ae68c55030fe4183c7383e317624d2bbbc96b1a7259bba2d8eaf265bf93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5079-5003
0000-0002-2339-5303
PQID 2388317873
PQPubID 2043795
PageCount 28
ParticipantIDs hal_primary_oai_HAL_hal_03045138v1
proquest_journals_2388317873
crossref_primary_10_1007_s00453_019_00664_8
springer_journals_10_1007_s00453_019_00664_8
PublicationCentury 2000
PublicationDate 2020-06-01
PublicationDateYYYYMMDD 2020-06-01
PublicationDate_xml – month: 06
  year: 2020
  text: 2020-06-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Algorithmica
PublicationTitleAbbrev Algorithmica
PublicationYear 2020
Publisher Springer US
Springer Nature B.V
Springer Verlag
Publisher_xml – name: Springer US
– name: Springer Nature B.V
– name: Springer Verlag
References AndoniAIndykPNear-optimal hashing algorithms for approximate nearest neighbor in high dimensionsCommun. ACM200851111712210.1145/1327452.1327494
CoppersmithDRectangular matrix multiplication revisitedJ. Complex.19971314249144976010.1006/jcom.1997.04380872.68052
Agarwal, P.K., Har-Peled, S., Varadarajan, K.R.: Geometric approximation via coresets. In: Goodman, J.E., Pach, J., Welzl, E. (eds.) Combinatorial and Computational Geometry, MSRI, pp. 1–30. University Press (2005)
Har-Peled, S., Mendel, M.: Fast construction of nets in low dimensional metrics, and their applications. In: Proceedings 21st Annual Symposium Computational Geometry, pp. 150–158 (2005). https://doi.org/10.1145/1064092.1064117
Anagnostopoulos, E., Emiris, I.Z., Psarros, I.: Low-quality dimension reduction and high-dimensional approximate nearest neighbor. CoRR arxiv: abs/1412.1683 (2014)
ValiantGFinding correlations in subquadratic time, with applications to learning parities and the closest pair problemJ. ACM201562213334615210.1145/27281671333.68235
Alman, J., Chan, T.M., Williams, R.: Polynomial representations of threshold functions and algorithmic application. In: Proceedings 57th IEEE Symposium on Foundations of Computer Science (FOCS), pp. 467–476 (2016)
MitzenmacherMUpfalEProbability and Computing: Randomized Algorithms and Probabilistic Analysis2005CambridgeCambridge University Press10.1017/CBO97805118136031092.60001
Avarikioti, G., Emiris, I.Z., Kavouras, L., Psarros, I.: High-dimensional approximate r-nets. In: Proceedings of the 28th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 16–30 (2017). https://doi.org/10.1137/1.9781611974782.2
Charikar, M.: Similarity estimation techniques from rounding algorithms. In: Proceedings 34th Annual ACM Symposium on Theory of Computing, 2002, Montréal, Canada, pp. 380–388 (2002)
Eppstein, D., Har-Peled, S., Sidiropoulos, A.: Approximate greedy clustering and distance selection for graph metrics. CoRR arxiv: abs/1507.01555 (2015)
Har-PeledSRaichelBNet and prune: a linear time algorithm for euclidean distance problemsJ. ACM201562644343722910.1145/28312301426.68273
Har-PeledSClustering motionDiscret. Comput. Geom.2004314545565205349810.1007/s00454-004-2822-71094.68103
Valiant, G.: Finding correlations in subquadratic time, with applications to learning parities and juntas. In: 53rd Annual IEEE Symposium Foundations of Computer Science (FOCS), pp. 11–20 (2012). https://doi.org/10.1109/FOCS.2012.27
Goel, A., Indyk, P., Varadarajan, K.: Reductions among high dimensional proximity problems. In: Proceedings 12th Symposium on Discrete Algorithms (SODA), pp. 769–778 (2001). http://dl.acm.org/citation.cfm?id=365411.365776. Accessed June 2016
DasguptaSGuptaAAn elementary proof of a theorem of Johnson and LindenstraussRandom Struct. Algorithms20032216065194385910.1002/rsa.100731018.51010
Avarikioti, G., Ryser, A., Wang, Y., Wattenhofer, R.: High dimensional clustering with r-nets. In: The Thirty-Third AAAI Conference on Artificial Intelligence, AAAI 2019, The Thirty-First Innovative Applications of Artificial Intelligence Conference, IAAI 2019, The Ninth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2019, pp. 3207–3214 (2019)
S Har-Peled (664_CR12) 2004; 31
664_CR7
664_CR6
664_CR5
664_CR3
664_CR2
664_CR1
D Coppersmith (664_CR8) 1997; 13
S Dasgupta (664_CR9) 2003; 22
A Andoni (664_CR4) 2008; 51
S Har-Peled (664_CR14) 2015; 62
664_CR16
664_CR13
664_CR11
G Valiant (664_CR17) 2015; 62
M Mitzenmacher (664_CR15) 2005
664_CR10
References_xml – reference: Avarikioti, G., Ryser, A., Wang, Y., Wattenhofer, R.: High dimensional clustering with r-nets. In: The Thirty-Third AAAI Conference on Artificial Intelligence, AAAI 2019, The Thirty-First Innovative Applications of Artificial Intelligence Conference, IAAI 2019, The Ninth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2019, pp. 3207–3214 (2019)
– reference: Har-Peled, S., Mendel, M.: Fast construction of nets in low dimensional metrics, and their applications. In: Proceedings 21st Annual Symposium Computational Geometry, pp. 150–158 (2005). https://doi.org/10.1145/1064092.1064117
– reference: Avarikioti, G., Emiris, I.Z., Kavouras, L., Psarros, I.: High-dimensional approximate r-nets. In: Proceedings of the 28th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 16–30 (2017). https://doi.org/10.1137/1.9781611974782.2
– reference: Har-PeledSClustering motionDiscret. Comput. Geom.2004314545565205349810.1007/s00454-004-2822-71094.68103
– reference: Charikar, M.: Similarity estimation techniques from rounding algorithms. In: Proceedings 34th Annual ACM Symposium on Theory of Computing, 2002, Montréal, Canada, pp. 380–388 (2002)
– reference: Agarwal, P.K., Har-Peled, S., Varadarajan, K.R.: Geometric approximation via coresets. In: Goodman, J.E., Pach, J., Welzl, E. (eds.) Combinatorial and Computational Geometry, MSRI, pp. 1–30. University Press (2005)
– reference: AndoniAIndykPNear-optimal hashing algorithms for approximate nearest neighbor in high dimensionsCommun. ACM200851111712210.1145/1327452.1327494
– reference: Eppstein, D., Har-Peled, S., Sidiropoulos, A.: Approximate greedy clustering and distance selection for graph metrics. CoRR arxiv: abs/1507.01555 (2015)
– reference: Alman, J., Chan, T.M., Williams, R.: Polynomial representations of threshold functions and algorithmic application. In: Proceedings 57th IEEE Symposium on Foundations of Computer Science (FOCS), pp. 467–476 (2016)
– reference: CoppersmithDRectangular matrix multiplication revisitedJ. Complex.19971314249144976010.1006/jcom.1997.04380872.68052
– reference: Goel, A., Indyk, P., Varadarajan, K.: Reductions among high dimensional proximity problems. In: Proceedings 12th Symposium on Discrete Algorithms (SODA), pp. 769–778 (2001). http://dl.acm.org/citation.cfm?id=365411.365776. Accessed June 2016
– reference: ValiantGFinding correlations in subquadratic time, with applications to learning parities and the closest pair problemJ. ACM201562213334615210.1145/27281671333.68235
– reference: MitzenmacherMUpfalEProbability and Computing: Randomized Algorithms and Probabilistic Analysis2005CambridgeCambridge University Press10.1017/CBO97805118136031092.60001
– reference: Valiant, G.: Finding correlations in subquadratic time, with applications to learning parities and juntas. In: 53rd Annual IEEE Symposium Foundations of Computer Science (FOCS), pp. 11–20 (2012). https://doi.org/10.1109/FOCS.2012.27
– reference: DasguptaSGuptaAAn elementary proof of a theorem of Johnson and LindenstraussRandom Struct. Algorithms20032216065194385910.1002/rsa.100731018.51010
– reference: Anagnostopoulos, E., Emiris, I.Z., Psarros, I.: Low-quality dimension reduction and high-dimensional approximate nearest neighbor. CoRR arxiv: abs/1412.1683 (2014)
– reference: Har-PeledSRaichelBNet and prune: a linear time algorithm for euclidean distance problemsJ. ACM201562644343722910.1145/28312301426.68273
– volume-title: Probability and Computing: Randomized Algorithms and Probabilistic Analysis
  year: 2005
  ident: 664_CR15
  doi: 10.1017/CBO9780511813603
– ident: 664_CR10
– ident: 664_CR11
– ident: 664_CR16
  doi: 10.1109/FOCS.2012.27
– volume: 62
  start-page: 13
  issue: 2
  year: 2015
  ident: 664_CR17
  publication-title: J. ACM
  doi: 10.1145/2728167
– ident: 664_CR7
  doi: 10.1145/509907.509965
– volume: 62
  start-page: 44
  issue: 6
  year: 2015
  ident: 664_CR14
  publication-title: J. ACM
  doi: 10.1145/2831230
– ident: 664_CR1
– volume: 13
  start-page: 42
  issue: 1
  year: 1997
  ident: 664_CR8
  publication-title: J. Complex.
  doi: 10.1006/jcom.1997.0438
– volume: 51
  start-page: 117
  issue: 1
  year: 2008
  ident: 664_CR4
  publication-title: Commun. ACM
  doi: 10.1145/1327452.1327494
– ident: 664_CR3
– ident: 664_CR6
  doi: 10.1609/aaai.v33i01.33013207
– volume: 22
  start-page: 60
  issue: 1
  year: 2003
  ident: 664_CR9
  publication-title: Random Struct. Algorithms
  doi: 10.1002/rsa.10073
– volume: 31
  start-page: 545
  issue: 4
  year: 2004
  ident: 664_CR12
  publication-title: Discret. Comput. Geom.
  doi: 10.1007/s00454-004-2822-7
– ident: 664_CR2
  doi: 10.1109/FOCS.2016.57
– ident: 664_CR5
  doi: 10.1137/1.9781611974782.2
– ident: 664_CR13
  doi: 10.1145/1064092.1064117
SSID ssj0012796
Score 2.238372
Snippet The construction of r -nets offers a powerful tool in computational and metric geometry. We focus on high-dimensional spaces and present a new randomized...
The construction of r-nets offers a powerful tool in computational and metric geometry. We focus on high-dimensional spaces and present a new randomized...
SourceID hal
proquest
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 1675
SubjectTerms Algorithm Analysis and Problem Complexity
Algorithms
Clustering
Complexity
Computer Science
Computer Systems Organization and Communication Networks
Data Structures and Information Theory
Euclidean geometry
Geometry
Mathematics
Mathematics of Computing
Metric Geometry
Metric space
Polynomials
Software
Theory of Computation
Title High-Dimensional Approximate r-Nets
URI https://link.springer.com/article/10.1007/s00453-019-00664-8
https://www.proquest.com/docview/2388317873
https://inria.hal.science/hal-03045138
Volume 82
WOSCitedRecordID wos000524956400007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1432-0541
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012796
  issn: 0178-4617
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED5BYWChPEWgoAjYwJLjOIkzVkDVAVWIl7pZceyILgU1oeLnc3aT8BAMsGRIrMQ--3Lf-c7fAZzGKhBUJ5pEKosILyglaYSKF0c51aEKNI0KV2wiGY3EeJze1IfCyibbvQlJuj91e9jNog-b-5MSayc5EcuwguZO2IINt3ePbeyAJa4ql607Tzga6PqozM_v-GKOlp9sMuQnpPktOOpszqD7v95uwHqNMf3-YlFswpKZbkG3qd_g1-q8DSc2yYNcWn7_BTeH37cM428TRLHGn5GRqcodeBhc3V8MSV00geQh5RVe7WZOZmKRo_MR0sJw1No8QU_UIFaIGddMKZWnOEtZgs6PUhnTwmQFiyNVpOEudKbPU7MHfopwTLOUFmEWcGxmqfHijGaGaSW45h6cNbKTLwtuDNmyILvxSxy_dOOXwoNjFG_b0NJaD_vX0t5z4dogFPPAg14jfVkrUykRVQjsukhCD84baX88_v2T-39rfgBrzHrTbo-lB51q9moOYTWfV5NyduQW2TubKsep
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLbYQIIL4ykGAyrgBpHSNm3T4wRMQ4wKwUC7RU2Til0G2srEz8fJ2vEQHODSQxu1iRPXn2PnM8BJKF1OVaRIINOAsJxSEgeoeGGQUeVLV9Egt8UmoiThg0F8Wx4Km1TZ7lVI0v6p54fdDPowuT8xMXaSEV6DRYYWyzDm390_zmMHXmSrcpm684ShgS6Pyvz8ji_mqPZkkiE_Ic1vwVFrczqN__V2DVZLjOm0Z4tiHRb0aAMaVf0Gp1TnTTg2SR7kwvD7z7g5nLZhGH8bIorVzpgkuphswUPnsn_eJWXRBJL5lBV4NZs5qQ55hs6HT3PNUGuzCD1RjVgh9JjypJRZjLOURuj8SJl6ius098JA5rG_DfXR80jvgBMjHFNeTHM_dRk2M9R4YUpT7SnJmWJNOK1kJ15m3BhizoJsxy9w_MKOX_AmHKF45w0NrXW33RPmng3Xuj6fuk1oVdIXpTJNBKIKjl3nkd-Es0raH49__-Tu35ofwnK3f9MTvavkeg9WPONZ2_2WFtSL8aveh6VsWgwn4wO74N4BAT_KjQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDLZgIMSF8RSFARVwg2hpm7bpcWJMQ0zVJB7aLWqaVOwypq1M_HyS9MFAcEBcemijNHZi2Y7tzwCXAXcoFqFAPk98RDKMUeQrwQv8FAuPOwL7mWk2EcYxHY2i4VIVv8l2r0KSRU2DRmma5O2pyNp14Zu2RHQeUIS0ziSIrsIa0Yn02l9_eK7jCG5oOnTpHvSIKGVdls38PMcX1bT6ohMjl6zOb4FSo396zf-vfBu2StvT7hSHZQdW5GQXmlVfB7sU8z240MkfqKtx_wvMDrujkcffx8q6lfYMxTKf78NT7_bxpo_KZgoo9TDJ1VNf8iQyoKlySjycSaKkOQ2VhyqVDRG4RLic8zRSu5eEyiniPHEFlUnmBj7PIu8AGpPXiTwEO1J8Fm6EMy9xiBqmIfOCBCfSFZwSQSy4qvjIpgVmBqvRkQ39TNHPDP2MWnCuWF0P1HDX_c6A6XcmjOt4dOFY0Kp2gpVCNmfK2qBq6TT0LLiuOP_5-fdfHv1t-BlsDLs9NriL749h09UOt7mGaUEjn73JE1hPF_l4Pjs1Z-8DevDTcQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High-Dimensional+Approximate+r-Nets&rft.jtitle=Algorithmica&rft.au=Avarikioti%2C+Z&rft.au=Emiris%2C+I+Z&rft.au=Kavouras%2C+L&rft.au=Psarros%2C+I&rft.date=2020-06-01&rft.pub=Springer+Nature+B.V&rft.issn=0178-4617&rft.eissn=1432-0541&rft.volume=82&rft.issue=6&rft.spage=1675&rft.epage=1702&rft_id=info:doi/10.1007%2Fs00453-019-00664-8&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0178-4617&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0178-4617&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0178-4617&client=summon