High-Dimensional Approximate r-Nets
The construction of r -nets offers a powerful tool in computational and metric geometry. We focus on high-dimensional spaces and present a new randomized algorithm which efficiently computes approximate r -nets with respect to Euclidean distance. For any fixed ϵ > 0 , the approximation factor is...
Uložené v:
| Vydané v: | Algorithmica Ročník 82; číslo 6; s. 1675 - 1702 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York
Springer US
01.06.2020
Springer Nature B.V Springer Verlag |
| Predmet: | |
| ISSN: | 0178-4617, 1432-0541 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | The construction of
r
-nets offers a powerful tool in computational and metric geometry. We focus on high-dimensional spaces and present a new randomized algorithm which efficiently computes approximate
r
-nets with respect to Euclidean distance. For any fixed
ϵ
>
0
, the approximation factor is
1
+
ϵ
and the complexity is polynomial in the dimension and subquadratic in the number of points; the algorithm succeeds with high probability. Specifically, we improve upon the best previously known (LSH-based) construction of Eppstein et al. (Approximate greedy clustering and distance selection for graph metrics, 2015. CoRR
arxiv: abs/1507.01555
) in terms of complexity, by reducing the dependence on
ϵ
, provided that
ϵ
is sufficiently small. Moreover, our method does not require LSH but follows Valiant’s (J ACM 62(2):13, 2015.
https://doi.org/10.1145/2728167
) approach in designing a sequence of reductions of our problem to other problems in different spaces, under Euclidean distance or inner product, for which
r
-nets are computed efficiently and the error can be controlled. Our result immediately implies efficient solutions to a number of geometric problems in high dimension, such as finding the
(
1
+
ϵ
)
-approximate
k
-th nearest neighbor distance in time subquadratic in the size of the input. |
|---|---|
| AbstractList | The construction of r-nets offers a powerful tool in computational and metric geometry. We focus on high-dimensional spaces and present a new randomized algorithm which efficiently computes approximate r-nets with respect to Euclidean distance. For any fixed ϵ>0, the approximation factor is 1+ϵ and the complexity is polynomial in the dimension and subquadratic in the number of points; the algorithm succeeds with high probability. Specifically, we improve upon the best previously known (LSH-based) construction of Eppstein et al. (Approximate greedy clustering and distance selection for graph metrics, 2015. CoRR arxiv: abs/1507.01555) in terms of complexity, by reducing the dependence on ϵ, provided that ϵ is sufficiently small. Moreover, our method does not require LSH but follows Valiant’s (J ACM 62(2):13, 2015. 10.1145/2728167) approach in designing a sequence of reductions of our problem to other problems in different spaces, under Euclidean distance or inner product, for which r-nets are computed efficiently and the error can be controlled. Our result immediately implies efficient solutions to a number of geometric problems in high dimension, such as finding the (1+ϵ)-approximate k-th nearest neighbor distance in time subquadratic in the size of the input. The construction of r -nets offers a powerful tool in computational and metric geometry. We focus on high-dimensional spaces and present a new randomized algorithm which efficiently computes approximate r -nets with respect to Euclidean distance. For any fixed ϵ > 0 , the approximation factor is 1 + ϵ and the complexity is polynomial in the dimension and subquadratic in the number of points; the algorithm succeeds with high probability. Specifically, we improve upon the best previously known (LSH-based) construction of Eppstein et al. (Approximate greedy clustering and distance selection for graph metrics, 2015. CoRR arxiv: abs/1507.01555 ) in terms of complexity, by reducing the dependence on ϵ , provided that ϵ is sufficiently small. Moreover, our method does not require LSH but follows Valiant’s (J ACM 62(2):13, 2015. https://doi.org/10.1145/2728167 ) approach in designing a sequence of reductions of our problem to other problems in different spaces, under Euclidean distance or inner product, for which r -nets are computed efficiently and the error can be controlled. Our result immediately implies efficient solutions to a number of geometric problems in high dimension, such as finding the ( 1 + ϵ ) -approximate k -th nearest neighbor distance in time subquadratic in the size of the input. The construction of r-nets offers a powerful tool in computational and metric geometry. We focus on high-dimensional spaces and present a new randomized algorithm which efficiently computes approximate r-nets with respect to Euclidean distance. For any fixed ϵ>0, the approximation factor is 1+ϵ and the complexity is polynomial in the dimension and subquadratic in the number of points; the algorithm succeeds with high probability. Specifically, we improve upon the best previously known (LSH-based) construction of Eppstein et al. (Approximate greedy clustering and distance selection for graph metrics, 2015. CoRR arxiv: abs/1507.01555) in terms of complexity, by reducing the dependence on ϵ, provided that ϵ is sufficiently small. Moreover, our method does not require LSH but follows Valiant’s (J ACM 62(2):13, 2015. https://doi.org/10.1145/2728167) approach in designing a sequence of reductions of our problem to other problems in different spaces, under Euclidean distance or inner product, for which r-nets are computed efficiently and the error can be controlled. Our result immediately implies efficient solutions to a number of geometric problems in high dimension, such as finding the (1+ϵ)-approximate k-th nearest neighbor distance in time subquadratic in the size of the input. |
| Author | Avarikioti, Z. Psarros, I. Kavouras, L. Emiris, I. Z. |
| Author_xml | – sequence: 1 givenname: Z. surname: Avarikioti fullname: Avarikioti, Z. organization: School of Electrical and Computer Engineering, National Technical University of Athens – sequence: 2 givenname: I. Z. orcidid: 0000-0002-2339-5303 surname: Emiris fullname: Emiris, I. Z. organization: Department of Informatics and Telecommunications, National and Kapodistrian University of Athens, ATHENA Research Center – sequence: 3 givenname: L. surname: Kavouras fullname: Kavouras, L. organization: School of Electrical and Computer Engineering, National Technical University of Athens – sequence: 4 givenname: I. orcidid: 0000-0002-5079-5003 surname: Psarros fullname: Psarros, I. email: ipsarros@di.uoa.gr organization: Department of Informatics and Telecommunications, National and Kapodistrian University of Athens |
| BackLink | https://inria.hal.science/hal-03045138$$DView record in HAL |
| BookMark | eNp9kEtPwzAQhC1UJNrCH-BUqScOhrXXrxyr8ihSBBc4W07qtKnapNgpgn-PSxDcuOxKq29mRzMig6ZtPCGXDK4ZgL6JAEIiBZZRAKUENSdkyARyClKwARkC04YKxfQZGcW4AWBcZ2pIpot6taa39c43sW4bt53M9vvQftQ71_lJoE--i-fktHLb6C9-9pi83t-9zBc0f354nM9yWiKILs1MG3RemVJKQKi8YAZLjQY9Mq24WPKiKMpMFcxpLrOicHxpvKu4kkWV4Zhc9b5rt7X7kCKET9u62i5muT3ekqmQDM07S-y0Z1PYt4OPnd20h5DyR8vRmPTPaEwU76kytDEGX_3aMrDH4mxfnE3F2e_irEki7EUxwc3Khz_rf1RfHalvPg |
| Cites_doi | 10.1017/CBO9780511813603 10.1109/FOCS.2012.27 10.1145/2728167 10.1145/509907.509965 10.1145/2831230 10.1006/jcom.1997.0438 10.1145/1327452.1327494 10.1609/aaai.v33i01.33013207 10.1002/rsa.10073 10.1007/s00454-004-2822-7 10.1109/FOCS.2016.57 10.1137/1.9781611974782.2 10.1145/1064092.1064117 |
| ContentType | Journal Article |
| Copyright | Springer Science+Business Media, LLC, part of Springer Nature 2020 Springer Science+Business Media, LLC, part of Springer Nature 2020. Distributed under a Creative Commons Attribution 4.0 International License |
| Copyright_xml | – notice: Springer Science+Business Media, LLC, part of Springer Nature 2020 – notice: Springer Science+Business Media, LLC, part of Springer Nature 2020. – notice: Distributed under a Creative Commons Attribution 4.0 International License |
| DBID | AAYXX CITATION JQ2 1XC |
| DOI | 10.1007/s00453-019-00664-8 |
| DatabaseName | CrossRef ProQuest Computer Science Collection Hyper Article en Ligne (HAL) |
| DatabaseTitle | CrossRef ProQuest Computer Science Collection |
| DatabaseTitleList | ProQuest Computer Science Collection |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science Mathematics |
| EISSN | 1432-0541 |
| EndPage | 1702 |
| ExternalDocumentID | oai:HAL:hal-03045138v1 10_1007_s00453_019_00664_8 |
| GrantInformation_xml | – fundername: H2020 Marie Sklodowska-Curie Actions grantid: 734242 funderid: http://dx.doi.org/10.13039/100010665 |
| GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C -~X .86 .DC .VR 06D 0R~ 0VY 199 1N0 1SB 203 23M 28- 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDPE ABDZT ABECU ABFSI ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTAH ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AI. AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BBWZM BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP E.L EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ H~9 I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAS LLZTM M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P9O PF- PT4 PT5 QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TN5 TSG TSK TSV TUC U2A UG4 UOJIU UQL UTJUX UZXMN VC2 VFIZW VH1 VXZ W23 W48 WK8 YLTOR Z45 Z7X Z83 Z88 Z8R Z8W Z92 ZMTXR ZY4 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION JQ2 1XC |
| ID | FETCH-LOGICAL-c304t-c39783ae68c55030fe4183c7383e317624d2bbbc96b1a7259bba2d8eaf265bf93 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000524956400007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0178-4617 |
| IngestDate | Tue Oct 14 20:52:12 EDT 2025 Sun Nov 09 06:34:59 EST 2025 Sat Nov 29 02:20:29 EST 2025 Fri Feb 21 02:43:06 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Keywords | General dimension Locality sensitive hashing Approximation algorithm nets Metric geometry |
| Language | English |
| License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c304t-c39783ae68c55030fe4183c7383e317624d2bbbc96b1a7259bba2d8eaf265bf93 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-5079-5003 0000-0002-2339-5303 |
| PQID | 2388317873 |
| PQPubID | 2043795 |
| PageCount | 28 |
| ParticipantIDs | hal_primary_oai_HAL_hal_03045138v1 proquest_journals_2388317873 crossref_primary_10_1007_s00453_019_00664_8 springer_journals_10_1007_s00453_019_00664_8 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-06-01 |
| PublicationDateYYYYMMDD | 2020-06-01 |
| PublicationDate_xml | – month: 06 year: 2020 text: 2020-06-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | Algorithmica |
| PublicationTitleAbbrev | Algorithmica |
| PublicationYear | 2020 |
| Publisher | Springer US Springer Nature B.V Springer Verlag |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V – name: Springer Verlag |
| References | AndoniAIndykPNear-optimal hashing algorithms for approximate nearest neighbor in high dimensionsCommun. ACM200851111712210.1145/1327452.1327494 CoppersmithDRectangular matrix multiplication revisitedJ. Complex.19971314249144976010.1006/jcom.1997.04380872.68052 Agarwal, P.K., Har-Peled, S., Varadarajan, K.R.: Geometric approximation via coresets. In: Goodman, J.E., Pach, J., Welzl, E. (eds.) Combinatorial and Computational Geometry, MSRI, pp. 1–30. University Press (2005) Har-Peled, S., Mendel, M.: Fast construction of nets in low dimensional metrics, and their applications. In: Proceedings 21st Annual Symposium Computational Geometry, pp. 150–158 (2005). https://doi.org/10.1145/1064092.1064117 Anagnostopoulos, E., Emiris, I.Z., Psarros, I.: Low-quality dimension reduction and high-dimensional approximate nearest neighbor. CoRR arxiv: abs/1412.1683 (2014) ValiantGFinding correlations in subquadratic time, with applications to learning parities and the closest pair problemJ. ACM201562213334615210.1145/27281671333.68235 Alman, J., Chan, T.M., Williams, R.: Polynomial representations of threshold functions and algorithmic application. In: Proceedings 57th IEEE Symposium on Foundations of Computer Science (FOCS), pp. 467–476 (2016) MitzenmacherMUpfalEProbability and Computing: Randomized Algorithms and Probabilistic Analysis2005CambridgeCambridge University Press10.1017/CBO97805118136031092.60001 Avarikioti, G., Emiris, I.Z., Kavouras, L., Psarros, I.: High-dimensional approximate r-nets. In: Proceedings of the 28th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 16–30 (2017). https://doi.org/10.1137/1.9781611974782.2 Charikar, M.: Similarity estimation techniques from rounding algorithms. In: Proceedings 34th Annual ACM Symposium on Theory of Computing, 2002, Montréal, Canada, pp. 380–388 (2002) Eppstein, D., Har-Peled, S., Sidiropoulos, A.: Approximate greedy clustering and distance selection for graph metrics. CoRR arxiv: abs/1507.01555 (2015) Har-PeledSRaichelBNet and prune: a linear time algorithm for euclidean distance problemsJ. ACM201562644343722910.1145/28312301426.68273 Har-PeledSClustering motionDiscret. Comput. Geom.2004314545565205349810.1007/s00454-004-2822-71094.68103 Valiant, G.: Finding correlations in subquadratic time, with applications to learning parities and juntas. In: 53rd Annual IEEE Symposium Foundations of Computer Science (FOCS), pp. 11–20 (2012). https://doi.org/10.1109/FOCS.2012.27 Goel, A., Indyk, P., Varadarajan, K.: Reductions among high dimensional proximity problems. In: Proceedings 12th Symposium on Discrete Algorithms (SODA), pp. 769–778 (2001). http://dl.acm.org/citation.cfm?id=365411.365776. Accessed June 2016 DasguptaSGuptaAAn elementary proof of a theorem of Johnson and LindenstraussRandom Struct. Algorithms20032216065194385910.1002/rsa.100731018.51010 Avarikioti, G., Ryser, A., Wang, Y., Wattenhofer, R.: High dimensional clustering with r-nets. In: The Thirty-Third AAAI Conference on Artificial Intelligence, AAAI 2019, The Thirty-First Innovative Applications of Artificial Intelligence Conference, IAAI 2019, The Ninth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2019, pp. 3207–3214 (2019) S Har-Peled (664_CR12) 2004; 31 664_CR7 664_CR6 664_CR5 664_CR3 664_CR2 664_CR1 D Coppersmith (664_CR8) 1997; 13 S Dasgupta (664_CR9) 2003; 22 A Andoni (664_CR4) 2008; 51 S Har-Peled (664_CR14) 2015; 62 664_CR16 664_CR13 664_CR11 G Valiant (664_CR17) 2015; 62 M Mitzenmacher (664_CR15) 2005 664_CR10 |
| References_xml | – reference: Avarikioti, G., Ryser, A., Wang, Y., Wattenhofer, R.: High dimensional clustering with r-nets. In: The Thirty-Third AAAI Conference on Artificial Intelligence, AAAI 2019, The Thirty-First Innovative Applications of Artificial Intelligence Conference, IAAI 2019, The Ninth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2019, pp. 3207–3214 (2019) – reference: Har-Peled, S., Mendel, M.: Fast construction of nets in low dimensional metrics, and their applications. In: Proceedings 21st Annual Symposium Computational Geometry, pp. 150–158 (2005). https://doi.org/10.1145/1064092.1064117 – reference: Avarikioti, G., Emiris, I.Z., Kavouras, L., Psarros, I.: High-dimensional approximate r-nets. In: Proceedings of the 28th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 16–30 (2017). https://doi.org/10.1137/1.9781611974782.2 – reference: Har-PeledSClustering motionDiscret. Comput. Geom.2004314545565205349810.1007/s00454-004-2822-71094.68103 – reference: Charikar, M.: Similarity estimation techniques from rounding algorithms. In: Proceedings 34th Annual ACM Symposium on Theory of Computing, 2002, Montréal, Canada, pp. 380–388 (2002) – reference: Agarwal, P.K., Har-Peled, S., Varadarajan, K.R.: Geometric approximation via coresets. In: Goodman, J.E., Pach, J., Welzl, E. (eds.) Combinatorial and Computational Geometry, MSRI, pp. 1–30. University Press (2005) – reference: AndoniAIndykPNear-optimal hashing algorithms for approximate nearest neighbor in high dimensionsCommun. ACM200851111712210.1145/1327452.1327494 – reference: Eppstein, D., Har-Peled, S., Sidiropoulos, A.: Approximate greedy clustering and distance selection for graph metrics. CoRR arxiv: abs/1507.01555 (2015) – reference: Alman, J., Chan, T.M., Williams, R.: Polynomial representations of threshold functions and algorithmic application. In: Proceedings 57th IEEE Symposium on Foundations of Computer Science (FOCS), pp. 467–476 (2016) – reference: CoppersmithDRectangular matrix multiplication revisitedJ. Complex.19971314249144976010.1006/jcom.1997.04380872.68052 – reference: Goel, A., Indyk, P., Varadarajan, K.: Reductions among high dimensional proximity problems. In: Proceedings 12th Symposium on Discrete Algorithms (SODA), pp. 769–778 (2001). http://dl.acm.org/citation.cfm?id=365411.365776. Accessed June 2016 – reference: ValiantGFinding correlations in subquadratic time, with applications to learning parities and the closest pair problemJ. ACM201562213334615210.1145/27281671333.68235 – reference: MitzenmacherMUpfalEProbability and Computing: Randomized Algorithms and Probabilistic Analysis2005CambridgeCambridge University Press10.1017/CBO97805118136031092.60001 – reference: Valiant, G.: Finding correlations in subquadratic time, with applications to learning parities and juntas. In: 53rd Annual IEEE Symposium Foundations of Computer Science (FOCS), pp. 11–20 (2012). https://doi.org/10.1109/FOCS.2012.27 – reference: DasguptaSGuptaAAn elementary proof of a theorem of Johnson and LindenstraussRandom Struct. Algorithms20032216065194385910.1002/rsa.100731018.51010 – reference: Anagnostopoulos, E., Emiris, I.Z., Psarros, I.: Low-quality dimension reduction and high-dimensional approximate nearest neighbor. CoRR arxiv: abs/1412.1683 (2014) – reference: Har-PeledSRaichelBNet and prune: a linear time algorithm for euclidean distance problemsJ. ACM201562644343722910.1145/28312301426.68273 – volume-title: Probability and Computing: Randomized Algorithms and Probabilistic Analysis year: 2005 ident: 664_CR15 doi: 10.1017/CBO9780511813603 – ident: 664_CR10 – ident: 664_CR11 – ident: 664_CR16 doi: 10.1109/FOCS.2012.27 – volume: 62 start-page: 13 issue: 2 year: 2015 ident: 664_CR17 publication-title: J. ACM doi: 10.1145/2728167 – ident: 664_CR7 doi: 10.1145/509907.509965 – volume: 62 start-page: 44 issue: 6 year: 2015 ident: 664_CR14 publication-title: J. ACM doi: 10.1145/2831230 – ident: 664_CR1 – volume: 13 start-page: 42 issue: 1 year: 1997 ident: 664_CR8 publication-title: J. Complex. doi: 10.1006/jcom.1997.0438 – volume: 51 start-page: 117 issue: 1 year: 2008 ident: 664_CR4 publication-title: Commun. ACM doi: 10.1145/1327452.1327494 – ident: 664_CR3 – ident: 664_CR6 doi: 10.1609/aaai.v33i01.33013207 – volume: 22 start-page: 60 issue: 1 year: 2003 ident: 664_CR9 publication-title: Random Struct. Algorithms doi: 10.1002/rsa.10073 – volume: 31 start-page: 545 issue: 4 year: 2004 ident: 664_CR12 publication-title: Discret. Comput. Geom. doi: 10.1007/s00454-004-2822-7 – ident: 664_CR2 doi: 10.1109/FOCS.2016.57 – ident: 664_CR5 doi: 10.1137/1.9781611974782.2 – ident: 664_CR13 doi: 10.1145/1064092.1064117 |
| SSID | ssj0012796 |
| Score | 2.238372 |
| Snippet | The construction of
r
-nets offers a powerful tool in computational and metric geometry. We focus on high-dimensional spaces and present a new randomized... The construction of r-nets offers a powerful tool in computational and metric geometry. We focus on high-dimensional spaces and present a new randomized... |
| SourceID | hal proquest crossref springer |
| SourceType | Open Access Repository Aggregation Database Index Database Publisher |
| StartPage | 1675 |
| SubjectTerms | Algorithm Analysis and Problem Complexity Algorithms Clustering Complexity Computer Science Computer Systems Organization and Communication Networks Data Structures and Information Theory Euclidean geometry Geometry Mathematics Mathematics of Computing Metric Geometry Metric space Polynomials Software Theory of Computation |
| Title | High-Dimensional Approximate r-Nets |
| URI | https://link.springer.com/article/10.1007/s00453-019-00664-8 https://www.proquest.com/docview/2388317873 https://inria.hal.science/hal-03045138 |
| Volume | 82 |
| WOSCitedRecordID | wos000524956400007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1432-0541 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0012796 issn: 0178-4617 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED5BYWChPEWgoAjYwJLjOIkzVkDVAVWIl7pZceyILgU1oeLnc3aT8BAMsGRIrMQ--3Lf-c7fAZzGKhBUJ5pEKosILyglaYSKF0c51aEKNI0KV2wiGY3EeJze1IfCyibbvQlJuj91e9jNog-b-5MSayc5EcuwguZO2IINt3ePbeyAJa4ql607Tzga6PqozM_v-GKOlp9sMuQnpPktOOpszqD7v95uwHqNMf3-YlFswpKZbkG3qd_g1-q8DSc2yYNcWn7_BTeH37cM428TRLHGn5GRqcodeBhc3V8MSV00geQh5RVe7WZOZmKRo_MR0sJw1No8QU_UIFaIGddMKZWnOEtZgs6PUhnTwmQFiyNVpOEudKbPU7MHfopwTLOUFmEWcGxmqfHijGaGaSW45h6cNbKTLwtuDNmyILvxSxy_dOOXwoNjFG_b0NJaD_vX0t5z4dogFPPAg14jfVkrUykRVQjsukhCD84baX88_v2T-39rfgBrzHrTbo-lB51q9moOYTWfV5NyduQW2TubKsep |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLbYQIIL4ykGAyrgBpHSNm3T4wRMQ4wKwUC7RU2Til0G2srEz8fJ2vEQHODSQxu1iRPXn2PnM8BJKF1OVaRIINOAsJxSEgeoeGGQUeVLV9Egt8UmoiThg0F8Wx4Km1TZ7lVI0v6p54fdDPowuT8xMXaSEV6DRYYWyzDm390_zmMHXmSrcpm684ShgS6Pyvz8ji_mqPZkkiE_Ic1vwVFrczqN__V2DVZLjOm0Z4tiHRb0aAMaVf0Gp1TnTTg2SR7kwvD7z7g5nLZhGH8bIorVzpgkuphswUPnsn_eJWXRBJL5lBV4NZs5qQ55hs6HT3PNUGuzCD1RjVgh9JjypJRZjLOURuj8SJl6ius098JA5rG_DfXR80jvgBMjHFNeTHM_dRk2M9R4YUpT7SnJmWJNOK1kJ15m3BhizoJsxy9w_MKOX_AmHKF45w0NrXW33RPmng3Xuj6fuk1oVdIXpTJNBKIKjl3nkd-Es0raH49__-Tu35ofwnK3f9MTvavkeg9WPONZ2_2WFtSL8aveh6VsWgwn4wO74N4BAT_KjQ |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDLZgIMSF8RSFARVwg2hpm7bpcWJMQ0zVJB7aLWqaVOwypq1M_HyS9MFAcEBcemijNHZi2Y7tzwCXAXcoFqFAPk98RDKMUeQrwQv8FAuPOwL7mWk2EcYxHY2i4VIVv8l2r0KSRU2DRmma5O2pyNp14Zu2RHQeUIS0ziSIrsIa0Yn02l9_eK7jCG5oOnTpHvSIKGVdls38PMcX1bT6ohMjl6zOb4FSo396zf-vfBu2StvT7hSHZQdW5GQXmlVfB7sU8z240MkfqKtx_wvMDrujkcffx8q6lfYMxTKf78NT7_bxpo_KZgoo9TDJ1VNf8iQyoKlySjycSaKkOQ2VhyqVDRG4RLic8zRSu5eEyiniPHEFlUnmBj7PIu8AGpPXiTwEO1J8Fm6EMy9xiBqmIfOCBCfSFZwSQSy4qvjIpgVmBqvRkQ39TNHPDP2MWnCuWF0P1HDX_c6A6XcmjOt4dOFY0Kp2gpVCNmfK2qBq6TT0LLiuOP_5-fdfHv1t-BlsDLs9NriL749h09UOt7mGaUEjn73JE1hPF_l4Pjs1Z-8DevDTcQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High-Dimensional+Approximate+r-Nets&rft.jtitle=Algorithmica&rft.au=Avarikioti%2C+Z&rft.au=Emiris%2C+I+Z&rft.au=Kavouras%2C+L&rft.au=Psarros%2C+I&rft.date=2020-06-01&rft.pub=Springer+Nature+B.V&rft.issn=0178-4617&rft.eissn=1432-0541&rft.volume=82&rft.issue=6&rft.spage=1675&rft.epage=1702&rft_id=info:doi/10.1007%2Fs00453-019-00664-8&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0178-4617&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0178-4617&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0178-4617&client=summon |