A Characterization of Functions over the Integers Computable in Polynomial Time Using Discrete Ordinary Differential Equations

This paper studies the expressive and computational power of discrete Ordinary Differential Equations (ODEs), a.k.a. (Ordinary) Difference Equations. It presents a new framework using these equations as a central tool for computation and algorithm design. We present the general theory of discrete OD...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Computational complexity Ročník 32; číslo 2; s. 7
Hlavní autoři: Bournez, Olivier, Durand, Arnaud
Médium: Journal Article
Jazyk:angličtina
Vydáno: Cham Springer International Publishing 01.12.2023
Springer Nature B.V
Springer Verlag
Témata:
ISSN:1016-3328, 1420-8954
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract This paper studies the expressive and computational power of discrete Ordinary Differential Equations (ODEs), a.k.a. (Ordinary) Difference Equations. It presents a new framework using these equations as a central tool for computation and algorithm design. We present the general theory of discrete ODEs for computation theory, we illustrate this with various examples of algorithms, and we provide several implicit characterizations of complexity and computability classes. The proposed framework presents an original point of view on complexity and computation classes. It unifies several constructions that have been proposed for characterizing these classes including classical approaches in implicit complexity using restricted recursion schemes, as well as recent characterizations of computability and complexity by classes of continuous ordinary differential equations. It also helps understanding the relationships between analog computations and classical discrete models of computation theory. At a more technical point of view, this paper points out the fundamental role of linear (discrete) ODEs and classical ODE tools such as changes of variables to capture computability and complexity measures, or as a tool for programming many algorithms.
AbstractList This paper studies the expressive and computational power of discrete Ordinary Differential Equations (ODEs), a.k.a. (Ordinary) Difference Equations. It presents a new framework using these equations as a central tool for computation and algorithm design. We present the general theory of discrete ODEs for computation theory, we illustrate this with various examples of algorithms, and we provide several implicit characterizations of complexity and computability classes. The proposed framework presents an original point of view on complexity and computation classes. It unifies several constructions that have been proposed for characterizing these classes including classical approaches in implicit complexity using restricted recursion schemes, as well as recent characterizations of computability and complexity by classes of continuous ordinary differential equations. It also helps understanding the relationships between analog computations and classical discrete models of computation theory. At a more technical point of view, this paper points out the fundamental role of linear (discrete) ODEs and classical ODE tools such as changes of variables to capture computability and complexity measures, or as a tool for programming many algorithms.
This paper studies the expressive and computational power of discrete Ordinary Differential Equations (ODEs), a.k.a. (Ordinary) Difference Equations. It presents a new framework using these equations as a central tool for computation and algorithm design. We present the general theory of discrete ODEs for computation theory, we illustrate this with various examples of algorithms, and we provide several implicit characterizations of complexity and computability classes.The proposed framework presents an original point of view on complexity and computation classes. It unifies several constructions that have been proposed for characterizing these classes including classical approaches in implicit complexity using restricted recursion schemes, as well as recent characterizations of computability and complexity by classes of continuous ordinary differential equations. It also helps understanding the relationships between analog computations and classical discrete models of computation theory.At a more technical point of view, this paper points out the fundamental role of linear (discrete) ODEs and classical ODE tools such as changes of variables to capture computability and complexity measures, or as a tool for programming many algorithms.
ArticleNumber 7
Author Bournez, Olivier
Durand, Arnaud
Author_xml – sequence: 1
  givenname: Olivier
  surname: Bournez
  fullname: Bournez, Olivier
  email: Olivier.Bournez@lix.polytechnique.fr
  organization: LIX, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris
– sequence: 2
  givenname: Arnaud
  surname: Durand
  fullname: Durand, Arnaud
  organization: IMJ-PRG, Université Paris Cité, CNRS
BackLink https://cnrs.hal.science/hal-04303945$$DView record in HAL
BookMark eNp9kUFvFDEMhSNUJNrCH-AUiROHASdOOjPH1dLSSiuVQ3uOsllPN9Vssk0ylcqB306mg-DGydbT52fL74ydhBiIsY8CvgiA9msGAGwbkNgASAWNeMNOhZLQdL1WJ7UHcdEgyu4dO8v5EUDoDtUp-7Xi671N1hVK_qctPgYeB341BTf3mcdnSrzsid-EQg-UMl_Hw3EqdjsS94H_iONLiAdvR37nD8Tvsw8P_JvPLlEhfpt2Ptj0UpVhoEShzOTl0_S6Kr9nbwc7Zvrwp56z-6vLu_V1s7n9frNebRqHoErTt66_UFvZWtFvOxwkdggCNDh0LVKVKydQtajVru2c1FvqaDcI0QNR5_CcfV5893Y0x-QP9SQTrTfXq42ZNVAI2Cv9LCr7aWGPKT5NlIt5jFMK9TyDUiuhVat0peRCuRRzTjT8tRVg5kzMkompmZjXTMxsjctQrnCo3_xn_Z-p3z7AkHQ
Cites_doi 10.1007/978-1-4612-2566-9_11
10.3233/FI-1993-191-207
10.2174/97816080508641090101
10.1007/BF01201998
10.1016/0304-3975(95)00248-0
10.1145/3127496
10.1016/S0049-237X(99)80033-0
10.1007/3-540-45833-6_1
10.1006/jcom.2002.0655
10.1016/j.jco.2005.07.003
10.1063/1.4822863
10.1109/CCC.2009.34
10.1007/BF01706069
10.1016/j.entcs.2008.12.010
10.1016/S0019-9958(83)80062-X
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature Switzerland AG 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
The Author(s), under exclusive licence to Springer Nature Switzerland AG 2023.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature Switzerland AG 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: The Author(s), under exclusive licence to Springer Nature Switzerland AG 2023.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
7XB
8FE
8FG
ABJCF
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L6V
M2P
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
1XC
DOI 10.1007/s00037-023-00240-1
DatabaseName CrossRef
ProQuest Central (purchase pre-March 2016)
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Engineering Collection
Science Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
ProQuest Central Basic
Hyper Article en Ligne (HAL)
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Computer Science Database
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Computer Science
EISSN 1420-8954
ExternalDocumentID oai:HAL:hal-04303945v1
10_1007_s00037_023_00240_1
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29F
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
78A
8TC
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
MBV
N2Q
N9A
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P9O
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7X
Z83
Z88
Z8R
Z8W
Z92
ZMTXR
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABJCF
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFKRA
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ARAPS
ATHPR
AYFIA
AZQEC
BENPR
BGLVJ
CCPQU
CITATION
DWQXO
GNUQQ
HCIFZ
K7-
M2P
M7S
PHGZM
PHGZT
PQGLB
PTHSS
7XB
8FE
8FG
JQ2
L6V
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
Q9U
1XC
ID FETCH-LOGICAL-c304t-97c964b27a19b83f238301050c3c73e7a1c301347354d78c25be8edf1190ee8c3
IEDL.DBID RSV
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001024342500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1016-3328
IngestDate Tue Oct 14 20:40:11 EDT 2025
Fri Sep 26 03:12:44 EDT 2025
Sat Nov 29 02:52:51 EST 2025
Fri Feb 21 02:40:54 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords 68Q15
03D20
68Q01
65Q10
discrete ordinary differential equations
recursion scheme
03D15
Implicit complexity
difference equations
65L99
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c304t-97c964b27a19b83f238301050c3c73e7a1c301347354d78c25be8edf1190ee8c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3254154745
PQPubID 2044003
ParticipantIDs hal_primary_oai_HAL_hal_04303945v1
proquest_journals_3254154745
crossref_primary_10_1007_s00037_023_00240_1
springer_journals_10_1007_s00037_023_00240_1
PublicationCentury 2000
PublicationDate 2023-12-01
PublicationDateYYYYMMDD 2023-12-01
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Heidelberg
PublicationTitle Computational complexity
PublicationTitleAbbrev comput. complex
PublicationYear 2023
Publisher Springer International Publishing
Springer Nature B.V
Springer Verlag
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
– name: Springer Verlag
References Garrett Birkhoff & Gian-Carlo Rota (1989). Ordinary Differential Equations. John Wiley & Sons, 4th edition.
David Gleich (2005). Finite calculus: A tutorial for solving nasty sums. Stanford University .
Manuel L. Campagnolo (2001). Computational Complexity of Real Valued Recursive Functions and Analog Circuits. Ph.D. thesis, Universidade T´ecnica de Lisboa.
Olivier Bournez, Daniel S. Graςa & Amaury Pouly (2017). Polynomial Time corresponds to Solutions of Polynomial Ordinary Differential Equations of Polynomial Length. Journal of the ACM 64(6), 38:1–38:76.
Earl A. Coddington & Norman Levinson (1955).Theory of Ordinary Differential Equations . Mc-Graw-Hill.
Manuel L. Campagnolo, Cristopher Moore & José Félix Costa (2002b).An analog characterization of the Grzegorczyk hierarchy . Journal of Complexity 18(4), 977–1000.
Ker-I Ko (1983). On the Computational Complexity of Ordinary Differential Equations. Information and Control 58(1–3), 157–194.
Daniel Leivant (1994). Predicative recurrence and computational complexity I: Word recurrence and poly-time. In Feasible Mathematics II, Peter Clote & Jeffery Remmel, editors, 320–343. Birkhäuser.
Ronald L. Graham, Donald E. Knuth, Oren Patashnik & Stanley Liu (1989). Concrete mathematics: a foundation for computer science. Computers in Physics 3(5), 106–107.
Stephen Bellantoni & Stephen Cook (1992). A new recursion_ theoretic characterization of the poly-time functions. Computational Complexity 2, 97–110.
A.O. Gelfand (1963). Calcul des différences finies. Dunod.
László. Kalmár (1943). Egyzzerü példa eldönthetetlen aritmetikai problémára. Mate és Fizikai Lapok 50, 1–23.
H.E. Rose (1984).Subrecursion . Oxford university press.
David B Thompson (1972). Subrecursiveness: Machine-independent notions of computability in restricted time and storage. Mathematical Systems Theory 6(1-2), 3–15.
Michael Sipser (1997). Introduction to the Theory of Computation. PWS Publishing Company.
Gustavo Lau (2018). URL http://www.acm.ciens.ucv.ve/main/entrenamiento/material/DiscreteCalculus.pdf.Discrete calculus.
Thomas H Cormen, Charles E Leiserson, Ronald L Rivest & Clifford Stein (2009). Introduction to algorithms (third edition). MIT press.
Jerzy Mycka & José Félix Costa (2005). What lies beyond the mountains? Computational systems beyond the Turing limit. European Association for Theoretical Computer Science Bulletin 85, 181–189.
F.A. Izadi, N. Aliev & G Bagirov (2009). Discrete Calculus by Analogy. Bentham Science Publishers.
V.I. Arnold (1978). Ordinary Differential Equations. MIT Press.
Olivier Bournez & Arnaud Durand (2019). Recursion Schemes, Discrete Differential Equations and Characterization of Polynomial Time Computations. In 44th International Symposium on Mathematical Foundations of Computer Science, MFCS 2019, August 26–30, 2019, Aachen, Germany, Peter Rossmanith, Pinar Heggernes & Joost- Pieter Katoen, editors, volume 138 of LIPIcs, 23:1–23:14. Schloss Dagstuhl - Leibniz-Zentrum f¨ur Informatik. URL https://doi.org/10.4230/LIPIcs.MFCS.2019.23.
Pieter Collins & Daniel S Graςa (2008). Effective computability of solutions of ordinary differential equations the thousand monkeys approach. Electronic Notes in Theoretical Computer Science 221, 103– 114.
Piergiorgio Odifreddi (1992). Classical Recursion Theory, volume 125 of Studies in Logic and the foundations of mathematics .North- Holland.
Olivier Bournez & Amaury Pouly (2018). A Survey on Analog Models of Computation. In Handbook of Computability and Complexity in Analysis, Vasco Brattka & Peter Hertling, editors. Springer. To appear.
Bruno Loff, José Félix Costa & Jerzy Mycka (2007). The New Promise of Analog Computation. In Computability in Europe 2007: Computation and Logic in the Real World.
Jerzy Mycka & José Félix Costa (2006). The P≠NP conjecture in the context of real and complex analysis. Journal of Complexity 22(2), 287–303.
Manuel L. Campagnolo, Cristopher Moore & José Félix Costa (2002a). An analog characterization of the Grzegorczyk hierarchy 18(4), 977–1000.
Peter Clote & Evangelos Kranakis (2013).Boolean functions and computation models . Springer Science & Business Media.
P. Clote (1998). Computational Models and Function Algebras. In Handbook of Computability Theory, Edward R. Griffor, editor, 589– 681. North-Holland, Amsterdam. ISBN 0-444-89882-4.
Amaury Pouly (2015). Continuous models of computation: from computability to complexity. Ph.D. thesis, Ecole Polytechnique and Unidersidade Do Algarve. https://pastel.archives-ouvertes.fr/tel-01223284, Ackermann Award 2017.
Cristopher Moore (1996). Recursion theory on the reals and continuous-time computation. Theoretical Computer Science 162(1), 23–44.
Daniel Leivant & Jean-Yves Marion (1993). Lambda Calculus Characterizations of Poly-Time. Fundamenta Informatica 19(1,2), 167,184.
Alan Cobham (1962). The intrinsic computational difficulty of functions. In Proceedings of the International Conference on Logic, Methodology, and Philosophy of Science, Y. Bar-Hillel, editor, 24–30. North- Holland, Amsterdam.
Charles Jordan & Károly Jordán (1965).Calculus of finite differences , volume 33. American Mathematical Soc.
Akitoshi Kawamura (2009). Lipschitz continuous ordinary differential equations are polynomial-space complete. In 2009 24th Annual IEEE Conference on Computational Complexity, 149–160. IEEE.
Daniel Leivant & Jean-Yves Marion (1995). Ramified recurrence and computational complexity II: substitution and poly-space. In Computer Science Logic, 8th Workshop, CSL’94, L. Pacholski & J. Tiuryn, editors, volume 933 of Lecture Notes in Computer Science, 369–380. Springer, Kazimierz, Poland.
240_CR12
240_CR34
240_CR11
240_CR33
240_CR14
240_CR36
240_CR13
240_CR35
240_CR16
240_CR15
240_CR18
240_CR17
240_CR19
240_CR4
240_CR5
240_CR6
240_CR7
240_CR1
240_CR2
240_CR3
240_CR8
240_CR9
240_CR21
240_CR20
240_CR23
240_CR22
240_CR25
240_CR24
240_CR27
240_CR26
240_CR29
240_CR28
240_CR30
240_CR10
240_CR32
240_CR31
References_xml – reference: Manuel L. Campagnolo (2001). Computational Complexity of Real Valued Recursive Functions and Analog Circuits. Ph.D. thesis, Universidade T´ecnica de Lisboa.
– reference: Earl A. Coddington & Norman Levinson (1955).Theory of Ordinary Differential Equations . Mc-Graw-Hill.
– reference: Olivier Bournez, Daniel S. Graςa & Amaury Pouly (2017). Polynomial Time corresponds to Solutions of Polynomial Ordinary Differential Equations of Polynomial Length. Journal of the ACM 64(6), 38:1–38:76.
– reference: V.I. Arnold (1978). Ordinary Differential Equations. MIT Press.
– reference: Charles Jordan & Károly Jordán (1965).Calculus of finite differences , volume 33. American Mathematical Soc.
– reference: Garrett Birkhoff & Gian-Carlo Rota (1989). Ordinary Differential Equations. John Wiley & Sons, 4th edition.
– reference: Akitoshi Kawamura (2009). Lipschitz continuous ordinary differential equations are polynomial-space complete. In 2009 24th Annual IEEE Conference on Computational Complexity, 149–160. IEEE.
– reference: Stephen Bellantoni & Stephen Cook (1992). A new recursion_ theoretic characterization of the poly-time functions. Computational Complexity 2, 97–110.
– reference: Bruno Loff, José Félix Costa & Jerzy Mycka (2007). The New Promise of Analog Computation. In Computability in Europe 2007: Computation and Logic in the Real World.
– reference: P. Clote (1998). Computational Models and Function Algebras. In Handbook of Computability Theory, Edward R. Griffor, editor, 589– 681. North-Holland, Amsterdam. ISBN 0-444-89882-4.
– reference: Peter Clote & Evangelos Kranakis (2013).Boolean functions and computation models . Springer Science & Business Media.
– reference: Jerzy Mycka & José Félix Costa (2005). What lies beyond the mountains? Computational systems beyond the Turing limit. European Association for Theoretical Computer Science Bulletin 85, 181–189.
– reference: Michael Sipser (1997). Introduction to the Theory of Computation. PWS Publishing Company.
– reference: David Gleich (2005). Finite calculus: A tutorial for solving nasty sums. Stanford University .
– reference: Piergiorgio Odifreddi (1992). Classical Recursion Theory, volume 125 of Studies in Logic and the foundations of mathematics .North- Holland.
– reference: Daniel Leivant & Jean-Yves Marion (1993). Lambda Calculus Characterizations of Poly-Time. Fundamenta Informatica 19(1,2), 167,184.
– reference: A.O. Gelfand (1963). Calcul des différences finies. Dunod.
– reference: Olivier Bournez & Amaury Pouly (2018). A Survey on Analog Models of Computation. In Handbook of Computability and Complexity in Analysis, Vasco Brattka & Peter Hertling, editors. Springer. To appear.
– reference: David B Thompson (1972). Subrecursiveness: Machine-independent notions of computability in restricted time and storage. Mathematical Systems Theory 6(1-2), 3–15.
– reference: Pieter Collins & Daniel S Graςa (2008). Effective computability of solutions of ordinary differential equations the thousand monkeys approach. Electronic Notes in Theoretical Computer Science 221, 103– 114.
– reference: Ronald L. Graham, Donald E. Knuth, Oren Patashnik & Stanley Liu (1989). Concrete mathematics: a foundation for computer science. Computers in Physics 3(5), 106–107.
– reference: F.A. Izadi, N. Aliev & G Bagirov (2009). Discrete Calculus by Analogy. Bentham Science Publishers.
– reference: Thomas H Cormen, Charles E Leiserson, Ronald L Rivest & Clifford Stein (2009). Introduction to algorithms (third edition). MIT press.
– reference: Manuel L. Campagnolo, Cristopher Moore & José Félix Costa (2002b).An analog characterization of the Grzegorczyk hierarchy . Journal of Complexity 18(4), 977–1000.
– reference: Daniel Leivant & Jean-Yves Marion (1995). Ramified recurrence and computational complexity II: substitution and poly-space. In Computer Science Logic, 8th Workshop, CSL’94, L. Pacholski & J. Tiuryn, editors, volume 933 of Lecture Notes in Computer Science, 369–380. Springer, Kazimierz, Poland.
– reference: Olivier Bournez & Arnaud Durand (2019). Recursion Schemes, Discrete Differential Equations and Characterization of Polynomial Time Computations. In 44th International Symposium on Mathematical Foundations of Computer Science, MFCS 2019, August 26–30, 2019, Aachen, Germany, Peter Rossmanith, Pinar Heggernes & Joost- Pieter Katoen, editors, volume 138 of LIPIcs, 23:1–23:14. Schloss Dagstuhl - Leibniz-Zentrum f¨ur Informatik. URL https://doi.org/10.4230/LIPIcs.MFCS.2019.23.
– reference: Jerzy Mycka & José Félix Costa (2006). The P≠NP conjecture in the context of real and complex analysis. Journal of Complexity 22(2), 287–303.
– reference: László. Kalmár (1943). Egyzzerü példa eldönthetetlen aritmetikai problémára. Mate és Fizikai Lapok 50, 1–23.
– reference: H.E. Rose (1984).Subrecursion . Oxford university press.
– reference: Daniel Leivant (1994). Predicative recurrence and computational complexity I: Word recurrence and poly-time. In Feasible Mathematics II, Peter Clote & Jeffery Remmel, editors, 320–343. Birkhäuser.
– reference: Manuel L. Campagnolo, Cristopher Moore & José Félix Costa (2002a). An analog characterization of the Grzegorczyk hierarchy 18(4), 977–1000.
– reference: Amaury Pouly (2015). Continuous models of computation: from computability to complexity. Ph.D. thesis, Ecole Polytechnique and Unidersidade Do Algarve. https://pastel.archives-ouvertes.fr/tel-01223284, Ackermann Award 2017.
– reference: Gustavo Lau (2018). URL http://www.acm.ciens.ucv.ve/main/entrenamiento/material/DiscreteCalculus.pdf.Discrete calculus.
– reference: Cristopher Moore (1996). Recursion theory on the reals and continuous-time computation. Theoretical Computer Science 162(1), 23–44.
– reference: Ker-I Ko (1983). On the Computational Complexity of Ordinary Differential Equations. Information and Control 58(1–3), 157–194.
– reference: Alan Cobham (1962). The intrinsic computational difficulty of functions. In Proceedings of the International Conference on Logic, Methodology, and Philosophy of Science, Y. Bar-Hillel, editor, 24–30. North- Holland, Amsterdam.
– ident: 240_CR25
  doi: 10.1007/978-1-4612-2566-9_11
– ident: 240_CR26
  doi: 10.3233/FI-1993-191-207
– ident: 240_CR19
  doi: 10.2174/97816080508641090101
– ident: 240_CR20
– ident: 240_CR24
– ident: 240_CR2
  doi: 10.1007/BF01201998
– ident: 240_CR30
– ident: 240_CR28
– ident: 240_CR29
  doi: 10.1016/0304-3975(95)00248-0
– ident: 240_CR5
  doi: 10.1145/3127496
– ident: 240_CR11
– ident: 240_CR10
  doi: 10.1016/S0049-237X(99)80033-0
– ident: 240_CR13
– ident: 240_CR34
– ident: 240_CR7
  doi: 10.1007/3-540-45833-6_1
– ident: 240_CR15
– ident: 240_CR32
– ident: 240_CR8
  doi: 10.1006/jcom.2002.0655
– ident: 240_CR17
– ident: 240_CR31
  doi: 10.1016/j.jco.2005.07.003
– ident: 240_CR4
– ident: 240_CR6
– ident: 240_CR21
– ident: 240_CR27
– ident: 240_CR18
  doi: 10.1063/1.4822863
– ident: 240_CR9
  doi: 10.1006/jcom.2002.0655
– ident: 240_CR35
– ident: 240_CR12
– ident: 240_CR22
  doi: 10.1109/CCC.2009.34
– ident: 240_CR36
  doi: 10.1007/BF01706069
– ident: 240_CR16
– ident: 240_CR33
– ident: 240_CR14
  doi: 10.1016/j.entcs.2008.12.010
– ident: 240_CR3
– ident: 240_CR1
– ident: 240_CR23
  doi: 10.1016/S0019-9958(83)80062-X
SSID ssj0015834
Score 2.3209472
Snippet This paper studies the expressive and computational power of discrete Ordinary Differential Equations (ODEs), a.k.a. (Ordinary) Difference Equations. It...
SourceID hal
proquest
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 7
SubjectTerms Algorithm Analysis and Problem Complexity
Algorithms
Complexity
Computation
Computational Mathematics and Numerical Analysis
Computer Science
Difference equations
Differential equations
Ordinary differential equations
Polynomials
SummonAdditionalLinks – databaseName: Science Database
  dbid: M2P
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDI7Y4AAH3ojBQBHiBhFtk67tCU2DaYdt7ABot6pJUzEJ7dUyiQu_HTvtOkCCC9fUbSp9ru3G9mdCLpW2hGpInBEmBRMqkkxylTBHRLYbWVx5psr3uev1-_5wGAyKA7e0KKtc2kRjqOOJwjPyGw5_MuDuPeHeTmcMp0ZhdrUYoVEh6xDZ2FjS1XMGZRbB9fOsMoQ1jHPHL5pmTOucYV5h4LGYofli9jfHVHnBssgvMeePNKnxPu2d_773Ltku4k7azBVlj6zp8T7Z6pWkrekB-WjSVknfnHdn0klC2-D5jHJSrPakcAPFY0R4yZTmMyGw-4qOxnQweX3HLmfYBztLqClHoHcjsEwQmtMH0EVs_oWVfChLhpL3s5xsPD0kT-37x1aHFeMZmOKWyFjgqaAhpONFdiB9noDz5zhv01KAMNewDHLYqcpdEXu-clypfR0nNsQgWvuKH5HqeDLWx4R6XMa2Y0sZR65IPFfyWDoWmF4_trhUTo1cLbEJpzkLR1jyLRskQ0AyNEiGdo1cAHylIBJod5rdENeQ4YwHwl2AUH2JV1h8tmm4AqtGrpeIry7_vuXJ3087JZs4pj4vg6mTajZ_02dkQy2yUTo_N0r7CXJy8jY
  priority: 102
  providerName: ProQuest
Title A Characterization of Functions over the Integers Computable in Polynomial Time Using Discrete Ordinary Differential Equations
URI https://link.springer.com/article/10.1007/s00037-023-00240-1
https://www.proquest.com/docview/3254154745
https://cnrs.hal.science/hal-04303945
Volume 32
WOSCitedRecordID wos001024342500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1420-8954
  dateEnd: 20241211
  omitProxy: false
  ssIdentifier: ssj0015834
  issn: 1016-3328
  databaseCode: P5Z
  dateStart: 20230601
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1420-8954
  dateEnd: 20241211
  omitProxy: false
  ssIdentifier: ssj0015834
  issn: 1016-3328
  databaseCode: K7-
  dateStart: 20230601
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1420-8954
  dateEnd: 20241211
  omitProxy: false
  ssIdentifier: ssj0015834
  issn: 1016-3328
  databaseCode: M7S
  dateStart: 20230601
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1420-8954
  dateEnd: 20241211
  omitProxy: false
  ssIdentifier: ssj0015834
  issn: 1016-3328
  databaseCode: BENPR
  dateStart: 20230601
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 1420-8954
  dateEnd: 20241211
  omitProxy: false
  ssIdentifier: ssj0015834
  issn: 1016-3328
  databaseCode: M2P
  dateStart: 20230601
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: Springer Nature - Connect here FIRST to enable access
  customDbUrl:
  eissn: 1420-8954
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0015834
  issn: 1016-3328
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB71wQEOtBQqFtqVhbiBpSS2a-e4lF1VaruNWqgqLlHsOOpK1S40SyUu_e2dcR5QBIf24oMzcSyP7RnH830D8N75SLo9SznCrOTSFZZb4SqeyCJWRSScDlG-50d6OjUXF2nWgsLqLtq9u5IMO3UPdgtcKRxtDA_EXBzPPOto7gwlbDg9O-_vDpRp7pLRmeFCJKaFyvy7jXvmaPWSgiH_8DT_uhwNNmey8bjebsLz1sdko2ZSvIAVP9-CjS5_A2uX8xY8O-45W-uXcDti-z17cwPOZIuKTdDwhbnJKNiT4QuM_iJiT2rWNEngKzabs2xx9YtAzvhpApawEI3APs9wY0LPnJ3gVCTsL9Y0OVmWJDn-0XCN16_g62T8Zf-At9kZuBORXPJUu3RP2kQXcWqNqND2C0q3GTlUsPBYjXIEVBVKltq4RFlvfFnF6IJ4b5zYhrX5Yu5fA9PClnESW1sWSlZaWVHaJMKd15SRsC4ZwIdOSfn3hoQj7-mWw0DnONB5GOg8HsA71GMvSPzZB6OjnOqI4EykUt2g0E6n5rxdtXUu8LSMLqWWagAfO7X-fvz_T755mPhbeEpZ65uomB1YW17_9LvwxN0sZ_X1ENY_jafZ6RBWDzXH8jjJqNRnWGbq2zDM9jseuPOY
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3Pb9MwFH7qBtLGYfzYphUKWAhOm0ViO0tymFDVreq0rvQw0G4mdhyt0tRuSxnqhT-Jv5H3nCYDJLjtwNVx7Mj57Gf7ve97AG-tC5TdN5QjzCiubGa4kbbgQmVhlAXSxj7K9_MwHo2S8_N03IIfNReGwirrNdEv1PnM0h35e4knGTT3sYo-XF1zyhpF3tU6hUYFixO3-IZHtvLg-BD_7zsh-kdnvQFfZhXgFo_uc57GNt1XRsRZmJpEFmizJKWJDCx-mHRYjPWIYCkjlceJFZFxicuLEE2nc4mV2O4KPFCkLEahgmLceC2ipPJi4zaKSymSJUnHU_W80gtHC8m9rBgPfzOEKxcUhvnLHvcPt6y3dv3H_9s4PYGN5b6adauJ8BRabvoMHp02orTlJnzvsl4jT12xT9msYH207H7yMYpmZfgCo2tSHJSSVTkviF3GJlM2nl0uiMWN_RBzhvlwC3Y4wZUXjx7sI841IjdjSZV0Zk41j64rMfVyCz7dywBsw-p0NnU7wGJp8lCExuRZpIo4MjI3IkDTkuSBNFa0YbfGgr6qVEZ0oyftkaMROdojR4dteINwaSqSQPigO9RURgpuMlXRLVbq1PjQy2Wp1HfgaMNejbC7x3_v8vm_W3sNa4Oz06EeHo9OXsC6IJj7kJ8OrM5vvrqX8NDeziflzSs_YRh8uW_k_QQZPkyH
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9wwEB0VWiE48NUitqXFQtxaiyR2SHJcASuqbrcrtSBuVuw46kooCyQgceG3M2MngVbtoerVmdiRZ2yPM_PeAOwbG0hzqKlGmJZcmlxzLUzJI5mHcR4Ik7gs3_NxMpmkFxfZ9BmK32W7dyFJj2kglqaqObgqyoMe-OZ4UzieN9yRdHG8_7yUlEhP9_Xv530cIU59XBkdGy5ElLawmT_38cvRtPCTEiOfeZ2_BUrd-TNa-_8vX4fV1vdkQ28sG_DCVpuw1tV1YO0y34SVrz2Xa_0aHobsqGd19qBNNi_ZCA9EZ7OMkkAZvsDo7yJ-Vc18lwTKYrOKTeeX9wR-xqEJcMJclgI7nuGGhR47-4YmSphgbPG1WhqSPLn2HOT1Gzgbnfw4OuVt1QZuRCAbniUmO5Q6SvIw06ko0ScQVIYzMKh4YbEZ5QjAKmJZJKmJYm1TW5QhuibWpkZswWI1r-w2sEToIoxCrYs8lmUSa1HoKMAdOS0CoU00gI-dwtSVJ-dQPQ2zm2iFE63cRKtwAHuo016QeLVPh2NFbUR8JjIZ36HQTqdy1a7mWgm8RaOrmch4AJ86FT89_vuQb_9NfBeWpscjNf48-fIOlqmwvU-c2YHF5ubWvodX5q6Z1TcfnJE_Al4Z-g4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Characterization+of+Functions+over+the+Integers+Computable+in+Polynomial+Time+Using+Discrete+Ordinary+Differential+Equations&rft.jtitle=Computational+complexity&rft.au=Bournez%2C+Olivier&rft.au=Durand%2C+Arnaud&rft.date=2023-12-01&rft.pub=Springer+International+Publishing&rft.issn=1016-3328&rft.eissn=1420-8954&rft.volume=32&rft.issue=2&rft_id=info:doi/10.1007%2Fs00037-023-00240-1&rft.externalDocID=10_1007_s00037_023_00240_1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1016-3328&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1016-3328&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1016-3328&client=summon