A new shifting grid clustering algorithm
A new density- and grid-based type clustering algorithm using the concept of shifting grid is proposed. The proposed algorithm is a non-parametric type, which does not require users inputting parameters. It divides each dimension of the data space into certain intervals to form a grid structure in t...
Uloženo v:
| Vydáno v: | Pattern recognition Ročník 37; číslo 3; s. 503 - 514 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Ltd
01.03.2004
|
| Témata: | |
| ISSN: | 0031-3203, 1873-5142 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | A new density- and grid-based type clustering algorithm using the concept of shifting grid is proposed. The proposed algorithm is a non-parametric type, which does not require users inputting parameters. It divides each dimension of the data space into certain intervals to form a grid structure in the data space. Based on the concept of sliding window, shifting of the whole grid structure is introduced to obtain a more descriptive density profile. As a result, we are able to enhance the accuracy of the results. Compared with many conventional algorithms, this algorithm is computational efficient because it clusters data in a way of cell rather than in points. |
|---|---|
| AbstractList | A new density- and grid-based type clustering algorithm using the concept of shifting grid is proposed. The proposed algorithm is a non-parametric type, which does not require users inputting parameters. It divides each dimension of the data space into certain intervals to form a grid structure in the data space. Based on the concept of sliding window, shifting of the whole grid structure is introduced to obtain a more descriptive density profile. As a result, we are able to enhance the accuracy of the results. Compared with many conventional algorithms, this algorithm is computational efficient because it clusters data in a way of cell rather than in points. |
| Author | W.M. Ma, Eden Chow, Tommy W.S. |
| Author_xml | – sequence: 1 givenname: Eden surname: W.M. Ma fullname: W.M. Ma, Eden – sequence: 2 givenname: Tommy W.S. surname: Chow fullname: Chow, Tommy W.S. email: eetchow@cityu.edu.hk |
| BookMark | eNqFjz1PwzAURS0EEm3hHzBkZEl4L3YShwGpqviSKrHAbNkvTuoqTSrbgPj3pCoTA0xP912dK505Ox3GwTJ2hZAhYHmzzfY60thlOQDPQGaA4oTNUFY8LVDkp2w2FZjyHPg5m4ewBcBqKmbsepkM9jMJG9dGN3RJ512TUP8eovWHrPtu9C5udhfsrNV9sJc_d8HeHu5fV0_p-uXxebVcp8RBxLQyZaHruuZohGgqLg0aaXjBcyyaSk4vtEUpa4ktUE4kBHFNRtqaG16VyBdMHHfJjyF426q9dzvtvxSCOtiqrTraqoOtAqkm2wm7_YWRizq6cYheu_4_-O4I20nsw1mvAjk7kG2ctxRVM7q_B74BQE9zpA |
| CitedBy_id | crossref_primary_10_1016_j_ins_2009_11_005 crossref_primary_10_1016_j_neucom_2019_07_048 crossref_primary_10_1155_2018_5232543 crossref_primary_10_3233_IDA_160835 crossref_primary_10_3390_info13100473 crossref_primary_10_1016_j_is_2006_10_006 crossref_primary_10_1007_s11432_010_3112_z crossref_primary_10_1145_3699511 crossref_primary_10_3390_app10041337 crossref_primary_10_1007_s11069_013_0700_4 crossref_primary_10_1016_j_patrec_2008_02_019 crossref_primary_10_1007_s10994_017_5693_x crossref_primary_10_1016_j_autcon_2013_06_006 crossref_primary_10_1109_TNNLS_2014_2326427 crossref_primary_10_3390_math13061017 crossref_primary_10_3103_S8756699011030071 crossref_primary_10_1111_tgis_12082 crossref_primary_10_1007_s10044_012_0304_8 crossref_primary_10_1016_j_eswa_2020_113735 crossref_primary_10_1016_j_ins_2018_08_018 crossref_primary_10_1109_ACCESS_2020_2987345 crossref_primary_10_3745_KIPSTD_2006_13D_5_633 crossref_primary_10_1007_s10596_009_9150_1 crossref_primary_10_1016_j_cageo_2012_06_021 crossref_primary_10_1007_s11356_023_26780_1 crossref_primary_10_1016_j_neucom_2018_06_058 crossref_primary_10_1007_s40745_015_0040_1 crossref_primary_10_1016_j_patcog_2012_02_003 crossref_primary_10_1016_j_patrec_2004_09_052 crossref_primary_10_1088_1742_6596_1863_1_012071 |
| Cites_doi | 10.1016/S0031-3203(00)00002-9 10.1016/S0893-6080(02)00075-8 10.1109/ICDE.1999.754967 10.1080/01969727308546046 10.1145/304182.304187 10.1109/ICDE.1999.754914 10.1109/34.824819 10.1145/331499.331504 10.1109/2.781637 10.1006/jcom.2001.0633 10.1145/276304.276312 10.1023/A:1009769707641 10.1145/235968.233324 10.1007/s007780050009 10.1145/276304.276314 10.1109/ICII.2001.983048 10.1109/ICPR.1996.546732 |
| ContentType | Journal Article |
| Copyright | 2003 Pattern Recognition Society |
| Copyright_xml | – notice: 2003 Pattern Recognition Society |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.patcog.2003.08.014 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1873-5142 |
| EndPage | 514 |
| ExternalDocumentID | 10_1016_j_patcog_2003_08_014 S0031320303003182 |
| GroupedDBID | --K --M -D8 -DT -~X .DC .~1 0R~ 123 1B1 1RT 1~. 1~5 29O 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABEFU ABFNM ABFRF ABHFT ABJNI ABMAC ABTAH ABXDB ABYKQ ACBEA ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADMXK ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F0J F5P FD6 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q G8K GBLVA GBOLZ HLZ HVGLF HZ~ H~9 IHE J1W JJJVA KOM KZ1 LG9 LMP LY1 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SBC SDF SDG SDP SDS SES SEW SPC SPCBC SST SSV SSZ T5K TN5 UNMZH VOH WUQ XJE XPP ZMT ZY4 ~G- 9DU AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c304t-7b65a99931b44d738b1b8b353215d784d71e568981f0c2cc44c3acb8e93b37613 |
| ISICitedReferencesCount | 50 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000188536200010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0031-3203 |
| IngestDate | Tue Nov 18 21:53:12 EST 2025 Sat Nov 29 03:51:54 EST 2025 Fri Feb 23 02:33:56 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | Clustering Shifting grid |
| Language | English |
| License | https://www.elsevier.com/tdm/userlicense/1.0 |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c304t-7b65a99931b44d738b1b8b353215d784d71e568981f0c2cc44c3acb8e93b37613 |
| PageCount | 12 |
| ParticipantIDs | crossref_primary_10_1016_j_patcog_2003_08_014 crossref_citationtrail_10_1016_j_patcog_2003_08_014 elsevier_sciencedirect_doi_10_1016_j_patcog_2003_08_014 |
| PublicationCentury | 2000 |
| PublicationDate | 2004-03-01 |
| PublicationDateYYYYMMDD | 2004-03-01 |
| PublicationDate_xml | – month: 03 year: 2004 text: 2004-03-01 day: 01 |
| PublicationDecade | 2000 |
| PublicationTitle | Pattern recognition |
| PublicationYear | 2004 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | M. Ester, H.-P. Kriegel, J. Sander, X. Xu, A density-based algorithm for discovering clusters in large spatial data bases with noise, in: Proceedings of the Second International Conference on Knowledge Discovery and Data Mining, 1996. Jain, Murty, Flynn (BIB4) 1999; 31 Yin (BIB26) 2002; 15 R. Agrawal, J. Gehrke, D. Gunopulos, P. Raghavan, Automatic subspace clustering of high dimensional data for data mining applications, Proceedings of the ACM SIGMOD International Conference on Management of data, 1998, pp. 94–105. Jain, Duin, Mao (BIB2) 2000; 22 E. Schikuta, Grid-clustering: an efficient hierarchical clustering method for very large data sets, Proceedings of ICPR, 1996, pp. 101–105. J.B. MacQueen, Some methods for classification and analysis of multivariate observations, Proceedings of the 5th Berkeley Symposium on Mathematics Statistics and Probability, 1967, pp. 281–297. A. Hinneburg, D.A. Keim, An Efficient Approach to Clustering in Large Multimedia Data bases with Noise, American Association for Artificial Intelligence, Proceedings of the 1998 International Conference on Knowledge Discovery and Data Mining (KDD’98), pp. 58–65. S. Guha, R. Rastogi, K. Shim, CURE: an efficient clustering algorithm for large data bases, Proceedings of the 1998 ACM SIGMOD International Conference on Management of Data, Vol. 27, No. 2, 1998, pp. 73–84. M. Ankerst, M.M. Breunig, H.-P. Kriegel, J. Sander, OPTICS: ordering points to identify the clustering structure, in: Proceeding of International Conference on Management of Data, 1999, pp. 49–60. Z. Huang, A fast clustering algorithm to cluster very large categorical data sets in data mining, in: SIGMOD Workshop on Research Issues on Data Mining and Knowledge Discovery, 1997. Y.C. Zhao, J. Song, GDILC: a grid-based density-isoline clustering algorithm, Proceedings of International Conferences on Info-tech and Info-net, Vol. 3, 2001, pp. 140–145. T. Zhang, R. Ramakrishnan, M. Livny, BIRCH: an efficient data clustering method for very large data bases, Proceedings of the ACM SIGMOD International Conference on Management of Data, Vol. 25, No. 2 1996, pp. 103–114. P. Berkhin, Survey of Clustering Data Mining Techniques Vrahatics, Boutsinas, Alevizos, Pavlides (BIB15) 2002; 18 Han, Kamber (BIB1) 2001 Huang (BIB13) 1998; 2 Karypis, Han, Kumar (BIB8) 1999; 32 . Everitt, Landau, Leese (BIB3) 2001 J.C. Dunn, A fuzzy relative of the ISODATA process and its use detecting compact well-separated clusters, Journal of Cybernetics 3 (1974) 32–57. Wong, Chen, Su (BIB14) 2001; 34 S. Guha, R. Rastogi, K. Shim, ROCK: a robust clustering algorithm for categorical attributes, Proceedings of 15th International Conference on Data Engineering, 1999, pp. 512–521. W. Wang, J. Yang, R. Muntz, STING+: an approach to active spatial data mining, Proceedings of 15th International Conference on Data Engineering, 1999, pp. 116–125. W. Wang, J. Yang, R. Muntz, STING: a statistical information grid approach to spatial data mining, Proceedings of the International Conference on Very Large Data Bases, 1997, pp. 186–195. Sheikholeslami, Chatterjee, Zhang (BIB21) 2000; 8 10.1016/j.patcog.2003.08.014_BIB7 10.1016/j.patcog.2003.08.014_BIB20 10.1016/j.patcog.2003.08.014_BIB6 Karypis (10.1016/j.patcog.2003.08.014_BIB8) 1999; 32 10.1016/j.patcog.2003.08.014_BIB5 10.1016/j.patcog.2003.08.014_BIB9 Everitt (10.1016/j.patcog.2003.08.014_BIB3) 2001 Yin (10.1016/j.patcog.2003.08.014_BIB26) 2002; 15 10.1016/j.patcog.2003.08.014_BIB19 10.1016/j.patcog.2003.08.014_BIB11 10.1016/j.patcog.2003.08.014_BIB12 Sheikholeslami (10.1016/j.patcog.2003.08.014_BIB21) 2000; 8 10.1016/j.patcog.2003.08.014_BIB17 10.1016/j.patcog.2003.08.014_BIB18 10.1016/j.patcog.2003.08.014_BIB16 Jain (10.1016/j.patcog.2003.08.014_BIB4) 1999; 31 10.1016/j.patcog.2003.08.014_BIB10 Han (10.1016/j.patcog.2003.08.014_BIB1) 2001 Huang (10.1016/j.patcog.2003.08.014_BIB13) 1998; 2 Wong (10.1016/j.patcog.2003.08.014_BIB14) 2001; 34 Vrahatics (10.1016/j.patcog.2003.08.014_BIB15) 2002; 18 10.1016/j.patcog.2003.08.014_BIB24 10.1016/j.patcog.2003.08.014_BIB25 10.1016/j.patcog.2003.08.014_BIB22 10.1016/j.patcog.2003.08.014_BIB23 Jain (10.1016/j.patcog.2003.08.014_BIB2) 2000; 22 |
| References_xml | – year: 2001 ident: BIB3 publication-title: Cluster Analysis – reference: T. Zhang, R. Ramakrishnan, M. Livny, BIRCH: an efficient data clustering method for very large data bases, Proceedings of the ACM SIGMOD International Conference on Management of Data, Vol. 25, No. 2 1996, pp. 103–114. – volume: 15 start-page: 1005 year: 2002 end-page: 1016 ident: BIB26 article-title: Data visualisation and manifold mappling using the ViSOM publication-title: Neural Networks – volume: 34 start-page: 425 year: 2001 end-page: 442 ident: BIB14 article-title: A novel algorithm for data clustering publication-title: Pattern Recognition – reference: Z. Huang, A fast clustering algorithm to cluster very large categorical data sets in data mining, in: SIGMOD Workshop on Research Issues on Data Mining and Knowledge Discovery, 1997. – reference: R. Agrawal, J. Gehrke, D. Gunopulos, P. Raghavan, Automatic subspace clustering of high dimensional data for data mining applications, Proceedings of the ACM SIGMOD International Conference on Management of data, 1998, pp. 94–105. – reference: J.B. MacQueen, Some methods for classification and analysis of multivariate observations, Proceedings of the 5th Berkeley Symposium on Mathematics Statistics and Probability, 1967, pp. 281–297. – reference: W. Wang, J. Yang, R. Muntz, STING+: an approach to active spatial data mining, Proceedings of 15th International Conference on Data Engineering, 1999, pp. 116–125. – year: 2001 ident: BIB1 publication-title: Data Mining Concepts and Techniques – volume: 2 start-page: 283 year: 1998 end-page: 304 ident: BIB13 article-title: Extensions to the k-means algorithm for clustering large data sets with categorical values publication-title: Data Mining Knowledge Discovery – volume: 8 start-page: 289 year: 2000 end-page: 304 ident: BIB21 article-title: WaveCluster publication-title: VLDB J. – reference: E. Schikuta, Grid-clustering: an efficient hierarchical clustering method for very large data sets, Proceedings of ICPR, 1996, pp. 101–105. – reference: Y.C. Zhao, J. Song, GDILC: a grid-based density-isoline clustering algorithm, Proceedings of International Conferences on Info-tech and Info-net, Vol. 3, 2001, pp. 140–145. – reference: P. Berkhin, Survey of Clustering Data Mining Techniques, – reference: M. Ester, H.-P. Kriegel, J. Sander, X. Xu, A density-based algorithm for discovering clusters in large spatial data bases with noise, in: Proceedings of the Second International Conference on Knowledge Discovery and Data Mining, 1996. – reference: S. Guha, R. Rastogi, K. Shim, ROCK: a robust clustering algorithm for categorical attributes, Proceedings of 15th International Conference on Data Engineering, 1999, pp. 512–521. – reference: M. Ankerst, M.M. Breunig, H.-P. Kriegel, J. Sander, OPTICS: ordering points to identify the clustering structure, in: Proceeding of International Conference on Management of Data, 1999, pp. 49–60. – reference: W. Wang, J. Yang, R. Muntz, STING: a statistical information grid approach to spatial data mining, Proceedings of the International Conference on Very Large Data Bases, 1997, pp. 186–195. – reference: J.C. Dunn, A fuzzy relative of the ISODATA process and its use detecting compact well-separated clusters, Journal of Cybernetics 3 (1974) 32–57. – volume: 31 start-page: 264 year: 1999 end-page: 323 ident: BIB4 article-title: Data Clustering publication-title: ACM Comput. Surveys – volume: 22 start-page: 4 year: 2000 end-page: 37 ident: BIB2 article-title: Statistical pattern recognition publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 32 start-page: 68 year: 1999 end-page: 75 ident: BIB8 article-title: CHAMELEON publication-title: IEEE Comput. – volume: 18 start-page: 375 year: 2002 end-page: 391 ident: BIB15 article-title: The new k-windows algorithm for improving the k-Means clustering algorithm publication-title: J. of Complexity – reference: A. Hinneburg, D.A. Keim, An Efficient Approach to Clustering in Large Multimedia Data bases with Noise, American Association for Artificial Intelligence, Proceedings of the 1998 International Conference on Knowledge Discovery and Data Mining (KDD’98), pp. 58–65. – reference: S. Guha, R. Rastogi, K. Shim, CURE: an efficient clustering algorithm for large data bases, Proceedings of the 1998 ACM SIGMOD International Conference on Management of Data, Vol. 27, No. 2, 1998, pp. 73–84. – reference: . – volume: 34 start-page: 425 year: 2001 ident: 10.1016/j.patcog.2003.08.014_BIB14 article-title: A novel algorithm for data clustering publication-title: Pattern Recognition doi: 10.1016/S0031-3203(00)00002-9 – volume: 15 start-page: 1005 year: 2002 ident: 10.1016/j.patcog.2003.08.014_BIB26 article-title: Data visualisation and manifold mappling using the ViSOM publication-title: Neural Networks doi: 10.1016/S0893-6080(02)00075-8 – ident: 10.1016/j.patcog.2003.08.014_BIB9 doi: 10.1109/ICDE.1999.754967 – ident: 10.1016/j.patcog.2003.08.014_BIB11 doi: 10.1080/01969727308546046 – ident: 10.1016/j.patcog.2003.08.014_BIB18 doi: 10.1145/304182.304187 – ident: 10.1016/j.patcog.2003.08.014_BIB20 doi: 10.1109/ICDE.1999.754914 – volume: 22 start-page: 4 issue: 1 year: 2000 ident: 10.1016/j.patcog.2003.08.014_BIB2 article-title: Statistical pattern recognition publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/34.824819 – year: 2001 ident: 10.1016/j.patcog.2003.08.014_BIB3 – volume: 31 start-page: 264 issue: 3 year: 1999 ident: 10.1016/j.patcog.2003.08.014_BIB4 article-title: Data Clustering publication-title: ACM Comput. Surveys doi: 10.1145/331499.331504 – volume: 32 start-page: 68 issue: 8 year: 1999 ident: 10.1016/j.patcog.2003.08.014_BIB8 article-title: CHAMELEON publication-title: IEEE Comput. doi: 10.1109/2.781637 – ident: 10.1016/j.patcog.2003.08.014_BIB12 – volume: 18 start-page: 375 year: 2002 ident: 10.1016/j.patcog.2003.08.014_BIB15 article-title: The new k-windows algorithm for improving the k-Means clustering algorithm publication-title: J. of Complexity doi: 10.1006/jcom.2001.0633 – ident: 10.1016/j.patcog.2003.08.014_BIB7 doi: 10.1145/276304.276312 – volume: 2 start-page: 283 year: 1998 ident: 10.1016/j.patcog.2003.08.014_BIB13 article-title: Extensions to the k-means algorithm for clustering large data sets with categorical values publication-title: Data Mining Knowledge Discovery doi: 10.1023/A:1009769707641 – ident: 10.1016/j.patcog.2003.08.014_BIB10 – ident: 10.1016/j.patcog.2003.08.014_BIB16 – year: 2001 ident: 10.1016/j.patcog.2003.08.014_BIB1 – ident: 10.1016/j.patcog.2003.08.014_BIB6 doi: 10.1145/235968.233324 – volume: 8 start-page: 289 year: 2000 ident: 10.1016/j.patcog.2003.08.014_BIB21 article-title: WaveCluster publication-title: VLDB J. doi: 10.1007/s007780050009 – ident: 10.1016/j.patcog.2003.08.014_BIB5 – ident: 10.1016/j.patcog.2003.08.014_BIB24 – ident: 10.1016/j.patcog.2003.08.014_BIB17 – ident: 10.1016/j.patcog.2003.08.014_BIB22 doi: 10.1145/276304.276314 – ident: 10.1016/j.patcog.2003.08.014_BIB23 doi: 10.1109/ICII.2001.983048 – ident: 10.1016/j.patcog.2003.08.014_BIB25 doi: 10.1109/ICPR.1996.546732 – ident: 10.1016/j.patcog.2003.08.014_BIB19 |
| SSID | ssj0017142 |
| Score | 2.0319126 |
| Snippet | A new density- and grid-based type clustering algorithm using the concept of shifting grid is proposed. The proposed algorithm is a non-parametric type, which... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 503 |
| SubjectTerms | Clustering Shifting grid |
| Title | A new shifting grid clustering algorithm |
| URI | https://dx.doi.org/10.1016/j.patcog.2003.08.014 |
| Volume | 37 |
| WOSCitedRecordID | wos000188536200010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-5142 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017142 issn: 0031-3203 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ba9swFBYj3cNetnUX1u6CH_YwCDKWj2zJj6FkbKUthWZr3kwsy0lK4oQkHd2_39HFcbqW3WAvJhaWg_2Jo8_SOd9HyHuRyULjdxetsiiiyIg1lSVomlZZrARwHVnTvq8n4uxMDofZuXcqXFs7AVHX8uYmW_5XqLENwTals38B9_am2IC_EXQ8Iux4_CPge8YlvLueTCub0TxeTcuuml0bQQRbkDgbL1bTzWS-S0vPrcqmqWzx6UTt5vxleBp2Ty3F7Jdt3djRxG0KDRbz-ffuZXgR3lo_4G0ClVvUagpb2iwiGyiBUYgjF3u0i41SAEV-dSt4OsUWP0hgJxImTV935ipF78Rrt3RwFS5x3lmMrTyrVVR1l_-khH3hhCYxLIGNRTjz7sUiyWSH7PU-94fH2-0jwbiTifdP0dRM2sS-u_91PyfZ4RmDp-Sx_0AIeg7YffJA18_Ik8Z8I_Cx-Dn50AsQ56DBOTA4By3OwRbnF-TLx_7g6BP1thdUQcQ3VBRpMkLeDqzgvBQgC1bIAhJAdlYKiU1MJ6nMJKsiFSvFuYKRKqTOoMDpgsFL0qkXtX5FAmMlrwsM0cwUXItoVCkmR9g7TqGSaXlAoHnwXHlNeGNNMsub5L-r3L0uY1cKuXEsZfyA0G2vpdNE-c31onmnued1jq_lOAx-2fPwn3u-Jo_awf6GdDara_2WPFTfNtP16p0fLz8ANm9uJw |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+new+shifting+grid+clustering+algorithm&rft.jtitle=Pattern+recognition&rft.au=W.M.+Ma%2C+Eden&rft.au=Chow%2C+Tommy+W.S.&rft.date=2004-03-01&rft.pub=Elsevier+Ltd&rft.issn=0031-3203&rft.eissn=1873-5142&rft.volume=37&rft.issue=3&rft.spage=503&rft.epage=514&rft_id=info:doi/10.1016%2Fj.patcog.2003.08.014&rft.externalDocID=S0031320303003182 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-3203&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-3203&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-3203&client=summon |