Stability of a frame-based maximal weight matching algorithm with transfer speedup

It has been shown that maximal size matching algorithms for input-queued switches are stable under any admissible traffic conditions with a scheduling speedup of 2. However, as link speeds increase, the computational complexity of these algorithms limits their applicability in high port-density swit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE communications letters Jg. 9; H. 10; S. 942 - 944
Hauptverfasser: Xike Li, Elhanany, I.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York, NY IEEE 01.10.2005
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:1089-7798, 1558-2558
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:It has been shown that maximal size matching algorithms for input-queued switches are stable under any admissible traffic conditions with a scheduling speedup of 2. However, as link speeds increase, the computational complexity of these algorithms limits their applicability in high port-density switches and routers. In this letter we describe a Frame-Based Maximal Weight Matching (FMWM) algorithm in which a new scheduling decision is issued once every several cell times. Between scheduling decisions, the configuration of the crossbar switch remains unchanged. We prove that the FMWM algorithm is stable with an internal buffer transfer speedup of 2, thereby significantly relaxing the timing constraints on the scheduling process. Simulation results illustrate the impact of the algorithm on the average cell delay for different traffic scenarios.
Bibliographie:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
content type line 23
ISSN:1089-7798
1558-2558
DOI:10.1109/LCOMM.2005.10032