FCM-Based Model Selection Algorithms for Determining the Number of Clusters

Clustering is an important research topic that has practical applications in many fields. It has been demonstrated that fuzzy clustering, using algorithms such as the fuzzy C-means (FCM), has clear advantages over crisp and probabilistic clustering methods. Like most clustering algorithms, however,...

Full description

Saved in:
Bibliographic Details
Published in:Pattern recognition Vol. 37; no. 10; pp. 2027 - 2037
Main Authors: Sun, Haojun, Wang, Shengrui, Jiang, Qingshan
Format: Journal Article
Language:English
Published: Elsevier Ltd 01.10.2004
Subjects:
ISSN:0031-3203, 1873-5142
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Clustering is an important research topic that has practical applications in many fields. It has been demonstrated that fuzzy clustering, using algorithms such as the fuzzy C-means (FCM), has clear advantages over crisp and probabilistic clustering methods. Like most clustering algorithms, however, FCM and its derivatives need the number of clusters in the given data set as one of their initializing parameters. The main goal of this paper is to develop an effective fuzzy algorithm for automatically determining the number of clusters. After a brief review of the relevant literature, we present a new algorithm for determining the number of clusters in a given data set and a new validity index for measuring the “goodness” of clustering. Experimental results and comparisons are given to illustrate the performance of the new algorithm.
AbstractList Clustering is an important research topic that has practical applications in many fields. It has been demonstrated that fuzzy clustering, using algorithms such as the fuzzy C-means (FCM), has clear advantages over crisp and probabilistic clustering methods. Like most clustering algorithms, however, FCM and its derivatives need the number of clusters in the given data set as one of their initializing parameters. The main goal of this paper is to develop an effective fuzzy algorithm for automatically determining the number of clusters. After a brief review of the relevant literature, we present a new algorithm for determining the number of clusters in a given data set and a new validity index for measuring the “goodness” of clustering. Experimental results and comparisons are given to illustrate the performance of the new algorithm.
Author Sun, Haojun
Wang, Shengrui
Jiang, Qingshan
Author_xml – sequence: 1
  givenname: Haojun
  surname: Sun
  fullname: Sun, Haojun
  email: sun@dmi.usherb.ca
  organization: Department of Computer Science, Faculty of Sciences, University of Sherbrooke, Sherbrooke, QC, Canada, J1K 2R1
– sequence: 2
  givenname: Shengrui
  surname: Wang
  fullname: Wang, Shengrui
  email: wang@dmi.usherb.ca
  organization: Department of Computer Science, Faculty of Sciences, University of Sherbrooke, Sherbrooke, QC, Canada, J1K 2R1
– sequence: 3
  givenname: Qingshan
  surname: Jiang
  fullname: Jiang, Qingshan
  email: qjiang@xmu.edu.cn
  organization: Department of Computer Science, Xiamen University, Fujian 361005, China
BookMark eNqFkL1OwzAUhS1UJNrCGzD4BRL8k8QJA1IJFBAtDMBsufZN6yqJK9tF4u1JVSYGmO5w9B2d-03QqHc9IHRJSUoJLa626U5F7dYpIyRLCU8JZSdoTEvBk5xmbITGhHCacEb4GZqEsCWEiiEYo-d5vUxuVQCDl85Ai9-gBR2t6_GsXTtv46YLuHEe30EE39ne9mscN4Bf9t0KPHYNrtt9GLJwjk4b1Qa4-LlT9DG_f68fk8Xrw1M9WySakywmBc2Blyuuy1wbsTJckCJjugKjGyaIEKLhpqKmKrVSJS1UUWZ5bpiqRGG0YnyKro-92rsQPDRS26gOm6NXtpWUyIMWuZVHLfKgRRIuBy0DnP2Cd952yn_9h90cMRge-7TgZdAWeg3G-sGXNM7-XfANfIyAhg
CitedBy_id crossref_primary_10_1109_TASLP_2020_3003855
crossref_primary_10_3390_rs14236167
crossref_primary_10_1186_1687_6180_2013_162
crossref_primary_10_1016_j_engstruct_2025_121076
crossref_primary_10_1016_j_eswa_2017_08_033
crossref_primary_10_1007_s12145_021_00757_5
crossref_primary_10_1016_j_fss_2017_01_010
crossref_primary_10_1109_TFUZZ_2012_2226890
crossref_primary_10_1109_TKDE_2019_2911582
crossref_primary_10_1007_s42979_020_00183_2
crossref_primary_10_1007_s11042_024_19121_y
crossref_primary_10_1109_TNNLS_2016_2608354
crossref_primary_10_1016_j_gexplo_2019_01_017
crossref_primary_10_1016_j_patcog_2011_12_017
crossref_primary_10_1016_j_neuroimage_2008_12_017
crossref_primary_10_1109_TKDE_2008_88
crossref_primary_10_1016_j_ins_2012_12_033
crossref_primary_10_1016_j_bdr_2021_100301
crossref_primary_10_1016_j_fss_2007_03_004
crossref_primary_10_1259_bjr_20150059
crossref_primary_10_3390_mca28030066
crossref_primary_10_1007_s10926_019_09863_0
crossref_primary_10_1088_1755_1315_167_1_012005
crossref_primary_10_1016_j_neucom_2012_07_014
crossref_primary_10_1016_j_eswa_2022_116637
crossref_primary_10_5094_APR_2014_075
crossref_primary_10_1155_2022_5280154
crossref_primary_10_1016_j_apenergy_2017_04_017
crossref_primary_10_1007_s10115_015_0822_y
crossref_primary_10_1109_TGRS_2022_3222799
crossref_primary_10_1109_ACCESS_2025_3535417
crossref_primary_10_1007_s00170_024_14601_9
crossref_primary_10_1109_TSMCC_2008_2007252
crossref_primary_10_1007_s11704_018_7186_x
crossref_primary_10_1109_ACCESS_2019_2962536
crossref_primary_10_1016_j_epsr_2021_107604
crossref_primary_10_1016_j_fss_2017_11_003
crossref_primary_10_1016_j_ins_2010_11_031
crossref_primary_10_1007_s10921_021_00780_y
crossref_primary_10_1007_s11554_016_0585_z
crossref_primary_10_1016_j_renene_2020_11_038
crossref_primary_10_1016_j_neucom_2014_01_025
crossref_primary_10_1016_j_patrec_2006_01_015
crossref_primary_10_1186_s40100_024_00340_8
crossref_primary_10_1007_s10853_021_05848_8
crossref_primary_10_1016_j_segan_2025_101742
crossref_primary_10_1007_s00170_006_0780_3
crossref_primary_10_1109_TFUZZ_2008_928601
crossref_primary_10_1155_2016_2647389
crossref_primary_10_1016_j_ins_2021_09_006
crossref_primary_10_3390_s25082351
crossref_primary_10_1159_000501481
crossref_primary_10_1007_s10115_018_1266_y
crossref_primary_10_1007_s10489_009_0161_3
crossref_primary_10_1016_j_patcog_2017_03_009
crossref_primary_10_1016_j_engappai_2023_107776
crossref_primary_10_1016_j_ijar_2013_03_018
crossref_primary_10_1007_s10489_008_0117_z
crossref_primary_10_1049_iet_ipr_2013_0195
crossref_primary_10_3233_IDA_200511
crossref_primary_10_1007_s10618_011_0212_3
crossref_primary_10_1007_s13755_019_0080_6
crossref_primary_10_1016_j_physa_2011_04_015
crossref_primary_10_1007_s12530_012_9046_5
crossref_primary_10_3390_a6030565
crossref_primary_10_1016_j_fss_2009_04_013
crossref_primary_10_1016_j_sigpro_2018_08_010
crossref_primary_10_4028_www_scientific_net_AMR_588_589_920
crossref_primary_10_1007_s12543_009_0001_5
crossref_primary_10_1016_j_datak_2021_101876
crossref_primary_10_1109_TITS_2025_3554691
crossref_primary_10_1186_1471_2202_13_96
crossref_primary_10_1109_TSMC_2016_2630668
crossref_primary_10_1007_s11760_014_0742_4
crossref_primary_10_1155_2013_827274
crossref_primary_10_3390_rs8040295
crossref_primary_10_1016_j_patcog_2009_04_013
crossref_primary_10_1016_j_patcog_2009_10_009
crossref_primary_10_1016_j_scitotenv_2023_167891
crossref_primary_10_1016_S1005_8885_13_60042_4
crossref_primary_10_1016_j_patcog_2010_03_020
crossref_primary_10_1002_cpe_6077
crossref_primary_10_1002_widm_3
crossref_primary_10_1007_s10044_015_0505_z
crossref_primary_10_1109_ACCESS_2019_2937375
crossref_primary_10_1186_s10033_019_0356_4
crossref_primary_10_1007_s12652_020_02743_z
crossref_primary_10_1016_j_ins_2012_07_021
crossref_primary_10_1007_s40815_025_02076_z
crossref_primary_10_1109_TASL_2009_2024380
crossref_primary_10_1016_j_engappai_2011_06_003
crossref_primary_10_1007_s12046_018_0802_5
crossref_primary_10_1109_TNNLS_2015_2498625
crossref_primary_10_1007_s10489_007_0065_z
crossref_primary_10_1109_TKDE_2010_256
crossref_primary_10_1109_JPHOT_2024_3361433
crossref_primary_10_1007_s00500_022_07227_0
crossref_primary_10_1049_iet_cvi_2012_0187
crossref_primary_10_1109_TGRS_2011_2152847
crossref_primary_10_1016_j_compositesa_2021_106597
crossref_primary_10_1016_j_patcog_2015_09_027
crossref_primary_10_1016_j_knosys_2011_06_012
crossref_primary_10_1186_1687_5281_2014_21
crossref_primary_10_1007_s10618_011_0221_2
crossref_primary_10_7717_peerj_5416
crossref_primary_10_1155_2022_6159650
Cites_doi 10.1142/9789814343138_0001
10.1016/0304-3975(85)90224-5
10.1016/S0167-8655(98)00142-1
10.1016/S0167-8655(99)00069-0
10.1109/72.159056
10.1016/S0167-8655(97)00168-2
10.1016/0165-0114(94)90242-9
10.1109/3477.809032
10.1109/91.413225
10.1109/34.85677
10.1109/83.541421
ContentType Journal Article
Copyright 2004 Pattern Recognition Society
Copyright_xml – notice: 2004 Pattern Recognition Society
DBID AAYXX
CITATION
DOI 10.1016/j.patcog.2004.03.012
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1873-5142
EndPage 2037
ExternalDocumentID 10_1016_j_patcog_2004_03_012
S0031320304001335
GroupedDBID --K
--M
-D8
-DT
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
29O
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABEFU
ABFNM
ABFRF
ABHFT
ABJNI
ABMAC
ABTAH
ABXDB
ABYKQ
ACBEA
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADMXK
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FD6
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
G8K
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
KZ1
LG9
LMP
LY1
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SBC
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TN5
UNMZH
VOH
WUQ
XJE
XPP
ZMT
ZY4
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c304t-615e38b3c85cd7bd370642c9edcf270777f3d91d98caa816a68455d2a976dca23
ISICitedReferencesCount 168
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000223004500006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0031-3203
IngestDate Tue Nov 18 22:43:09 EST 2025
Sat Nov 29 03:51:56 EST 2025
Fri Feb 23 02:33:57 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords Overlapping clusters
Fuzzy C-means
Clustering
Validity index
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c304t-615e38b3c85cd7bd370642c9edcf270777f3d91d98caa816a68455d2a976dca23
PageCount 11
ParticipantIDs crossref_citationtrail_10_1016_j_patcog_2004_03_012
crossref_primary_10_1016_j_patcog_2004_03_012
elsevier_sciencedirect_doi_10_1016_j_patcog_2004_03_012
PublicationCentury 2000
PublicationDate 2004-10-01
PublicationDateYYYYMMDD 2004-10-01
PublicationDate_xml – month: 10
  year: 2004
  text: 2004-10-01
  day: 01
PublicationDecade 2000
PublicationTitle Pattern recognition
PublicationYear 2004
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Aitnouri, Dubeau, Wang, Ziou (BIB20) 2002; 12
Han, Kamber (BIB1) 2001
Everitt (BIB4) 1993
Y. Fukuyama, M. Sugeno, A new method of choosing the number of clusters for the fuzzy C-means method, in: Proceedings of Fifth Fuzzy Systems Symposium, 1989, pp. 247–250.
Pena, Lozano, Larranaga (BIB13) 1999; 20
Gonzalez (BIB14) 1985; 38
Rezae, Letlieveldt, Reiber (BIB10) 1998; 19
Halgamuge, Glesner (BIB18) 1994; 65
F. Hoppner et al., Fuzzy Cluster Analysis: Methods for Classification, Data Analysis and Image Recognition, Wiley, New York, 1999.
Aitnouri, Wang, Ziou (BIB19) 2000; 10
Jain, Dubes (BIB5) 1988
Abeantes, Marques (BIB6) 1996; 5
Krishnapuram, Nasraouui, Keller (BIB7) 1992; 3
H. Rhee, K. Oh, A validity measure for fuzzy clustering and its use in selecting optimal number of clusters, in: Proc. IEEE, 1996, pp. 1020–1025.
J.C. Bezdek, Pattern Recognition in Handbook of Fuzzy Computation. IOP Publishing Ltd., Boston, Ny, 1998 (Chapter F6).
Xie, Beni (BIB8) 1991; 13
R. Dubes, Cluster analysis and related issues, Handbook of Pattern Recognition and Computer Vision, World Scientific Publishing Co., Inc., River Edger, NJ, USA, 1993, pp. 3–32.
Pal, Bezdek (BIB17) 1995; 3
Baraldi, Blonda (BIB12) 1999; SMC-29
Zahid, Abouelala (BIB16) 1999; 20
Aitnouri (10.1016/j.patcog.2004.03.012_BIB19) 2000; 10
Gonzalez (10.1016/j.patcog.2004.03.012_BIB14) 1985; 38
Halgamuge (10.1016/j.patcog.2004.03.012_BIB18) 1994; 65
10.1016/j.patcog.2004.03.012_BIB3
10.1016/j.patcog.2004.03.012_BIB2
Zahid (10.1016/j.patcog.2004.03.012_BIB16) 1999; 20
Han (10.1016/j.patcog.2004.03.012_BIB1) 2001
10.1016/j.patcog.2004.03.012_BIB11
Everitt (10.1016/j.patcog.2004.03.012_BIB4) 1993
10.1016/j.patcog.2004.03.012_BIB15
Jain (10.1016/j.patcog.2004.03.012_BIB5) 1988
Rezae (10.1016/j.patcog.2004.03.012_BIB10) 1998; 19
Krishnapuram (10.1016/j.patcog.2004.03.012_BIB7) 1992; 3
Pena (10.1016/j.patcog.2004.03.012_BIB13) 1999; 20
Baraldi (10.1016/j.patcog.2004.03.012_BIB12) 1999; SMC-29
10.1016/j.patcog.2004.03.012_BIB9
Abeantes (10.1016/j.patcog.2004.03.012_BIB6) 1996; 5
Pal (10.1016/j.patcog.2004.03.012_BIB17) 1995; 3
Aitnouri (10.1016/j.patcog.2004.03.012_BIB20) 2002; 12
Xie (10.1016/j.patcog.2004.03.012_BIB8) 1991; 13
References_xml – volume: 5
  start-page: 1507
  year: 1996
  end-page: 1521
  ident: BIB6
  article-title: A class of constrained clustering for object boundary extraction
  publication-title: IEEE Trans. Image Process.
– volume: 19
  start-page: 237
  year: 1998
  end-page: 246
  ident: BIB10
  article-title: A new cluster validity index for the fuzzy c-means
  publication-title: Pattern Recogn. Lett.
– volume: 20
  start-page: 1027
  year: 1999
  end-page: 1040
  ident: BIB13
  article-title: An empirical comparison of four initialization methods for the
  publication-title: Pattern Recogn. Lett.
– reference: J.C. Bezdek, Pattern Recognition in Handbook of Fuzzy Computation. IOP Publishing Ltd., Boston, Ny, 1998 (Chapter F6).
– volume: 20
  start-page: 123
  year: 1999
  end-page: 129
  ident: BIB16
  article-title: Unsupervised fuzzy clustering
  publication-title: Pattern Recognition Lett.
– reference: Y. Fukuyama, M. Sugeno, A new method of choosing the number of clusters for the fuzzy C-means method, in: Proceedings of Fifth Fuzzy Systems Symposium, 1989, pp. 247–250.
– reference: H. Rhee, K. Oh, A validity measure for fuzzy clustering and its use in selecting optimal number of clusters, in: Proc. IEEE, 1996, pp. 1020–1025.
– volume: 13
  start-page: 841
  year: 1991
  end-page: 847
  ident: BIB8
  article-title: A validity measure for fuzzy clustering
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell. (PAMI)
– volume: SMC-29
  start-page: 778
  year: 1999
  end-page: 785
  ident: BIB12
  article-title: A survey of fuzzy clustering algorithms for pattern recognition—part I
  publication-title: IEEE Trans. Syst. Man, Cybern.
– volume: 3
  start-page: 370
  year: 1995
  end-page: 390
  ident: BIB17
  article-title: On cluster validity for the fuzzy C-means model
  publication-title: IEEE Trans. Fuzzy Systems
– year: 2001
  ident: BIB1
  publication-title: Datamining: Concepts and Techniques
– volume: 12
  start-page: 331
  year: 2002
  end-page: 346
  ident: BIB20
  article-title: Controlling mixture component overlap for clustering algorithms evaluation
  publication-title: Pattern Recognition and Image Analysis
– year: 1993
  ident: BIB4
  publication-title: Cluster Analysis
– volume: 3
  start-page: 663
  year: 1992
  end-page: 671
  ident: BIB7
  article-title: The fuzzy C-spherical shells algorithm: a new approach
  publication-title: IEEE Trans. Neural Networks
– volume: 38
  start-page: 293
  year: 1985
  end-page: 306
  ident: BIB14
  article-title: Clustering to minimize and maximum intercluster distance
  publication-title: Theor. Comput. Sci.
– year: 1988
  ident: BIB5
  publication-title: Algorithms for Clustering Data
– volume: 65
  start-page: 1
  year: 1994
  end-page: 12
  ident: BIB18
  article-title: Neural networks in designing fuzzy systems for real world applications
  publication-title: Fuzzy Sets Systems
– reference: R. Dubes, Cluster analysis and related issues, Handbook of Pattern Recognition and Computer Vision, World Scientific Publishing Co., Inc., River Edger, NJ, USA, 1993, pp. 3–32.
– reference: F. Hoppner et al., Fuzzy Cluster Analysis: Methods for Classification, Data Analysis and Image Recognition, Wiley, New York, 1999.
– volume: 10
  start-page: 206
  year: 2000
  end-page: 217
  ident: BIB19
  article-title: On clustering techniques comparison for histogram pdf estimation
  publication-title: J. Pattern Recognition Image Anal.
– ident: 10.1016/j.patcog.2004.03.012_BIB3
  doi: 10.1142/9789814343138_0001
– volume: 38
  start-page: 293
  year: 1985
  ident: 10.1016/j.patcog.2004.03.012_BIB14
  article-title: Clustering to minimize and maximum intercluster distance
  publication-title: Theor. Comput. Sci.
  doi: 10.1016/0304-3975(85)90224-5
– volume: 20
  start-page: 123
  year: 1999
  ident: 10.1016/j.patcog.2004.03.012_BIB16
  article-title: Unsupervised fuzzy clustering
  publication-title: Pattern Recognition Lett.
  doi: 10.1016/S0167-8655(98)00142-1
– ident: 10.1016/j.patcog.2004.03.012_BIB11
– ident: 10.1016/j.patcog.2004.03.012_BIB2
– year: 2001
  ident: 10.1016/j.patcog.2004.03.012_BIB1
– volume: 20
  start-page: 1027
  year: 1999
  ident: 10.1016/j.patcog.2004.03.012_BIB13
  article-title: An empirical comparison of four initialization methods for the k-means algorithm
  publication-title: Pattern Recogn. Lett.
  doi: 10.1016/S0167-8655(99)00069-0
– ident: 10.1016/j.patcog.2004.03.012_BIB15
– volume: 12
  start-page: 331
  issue: 4
  year: 2002
  ident: 10.1016/j.patcog.2004.03.012_BIB20
  article-title: Controlling mixture component overlap for clustering algorithms evaluation
  publication-title: Pattern Recognition and Image Analysis
– volume: 3
  start-page: 663
  issue: 5
  year: 1992
  ident: 10.1016/j.patcog.2004.03.012_BIB7
  article-title: The fuzzy C-spherical shells algorithm: a new approach
  publication-title: IEEE Trans. Neural Networks
  doi: 10.1109/72.159056
– volume: 19
  start-page: 237
  year: 1998
  ident: 10.1016/j.patcog.2004.03.012_BIB10
  article-title: A new cluster validity index for the fuzzy c-means
  publication-title: Pattern Recogn. Lett.
  doi: 10.1016/S0167-8655(97)00168-2
– volume: 65
  start-page: 1
  issue: 1
  year: 1994
  ident: 10.1016/j.patcog.2004.03.012_BIB18
  article-title: Neural networks in designing fuzzy systems for real world applications
  publication-title: Fuzzy Sets Systems
  doi: 10.1016/0165-0114(94)90242-9
– volume: SMC-29
  start-page: 778
  year: 1999
  ident: 10.1016/j.patcog.2004.03.012_BIB12
  article-title: A survey of fuzzy clustering algorithms for pattern recognition—part I
  publication-title: IEEE Trans. Syst. Man, Cybern.
  doi: 10.1109/3477.809032
– year: 1993
  ident: 10.1016/j.patcog.2004.03.012_BIB4
– year: 1988
  ident: 10.1016/j.patcog.2004.03.012_BIB5
– ident: 10.1016/j.patcog.2004.03.012_BIB9
– volume: 3
  start-page: 370
  issue: 3
  year: 1995
  ident: 10.1016/j.patcog.2004.03.012_BIB17
  article-title: On cluster validity for the fuzzy C-means model
  publication-title: IEEE Trans. Fuzzy Systems
  doi: 10.1109/91.413225
– volume: 13
  start-page: 841
  issue: 8
  year: 1991
  ident: 10.1016/j.patcog.2004.03.012_BIB8
  article-title: A validity measure for fuzzy clustering
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell. (PAMI)
  doi: 10.1109/34.85677
– volume: 5
  start-page: 1507
  year: 1996
  ident: 10.1016/j.patcog.2004.03.012_BIB6
  article-title: A class of constrained clustering for object boundary extraction
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/83.541421
– volume: 10
  start-page: 206
  issue: 2
  year: 2000
  ident: 10.1016/j.patcog.2004.03.012_BIB19
  article-title: On clustering techniques comparison for histogram pdf estimation
  publication-title: J. Pattern Recognition Image Anal.
SSID ssj0017142
Score 2.2545
Snippet Clustering is an important research topic that has practical applications in many fields. It has been demonstrated that fuzzy clustering, using algorithms such...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 2027
SubjectTerms Clustering
Fuzzy C-means
Overlapping clusters
Validity index
Title FCM-Based Model Selection Algorithms for Determining the Number of Clusters
URI https://dx.doi.org/10.1016/j.patcog.2004.03.012
Volume 37
WOSCitedRecordID wos000223004500006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-5142
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017142
  issn: 0031-3203
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JbtswECVcp4deuhdJN_DQqwpJlETy6AYJ0hY1UiRFfRMokvICQTIcK8jnd7jJDhp0A3oRDNqUIM7z45CceYPQO13lPKU5sF9GeZQxriImYc1TpJqRQog8jStbbIJOp2w24-ej0Trkwlw3tG3ZzQ1f_1dTQxsY26TO_oW5h5tCA3wGo8MVzA7XPzL86fGX6APMTcrWOWuADRrt6oFPmnm3WW4XToMBqMZFwoSEqaktDmLjM5re6Cdc7Xuu51aI0yS_-Iij3fn9RW-p60x0q35o_B42ohe6nW_65RCqs_RffDV79AsPzrDvkA0RbH4zLCTE7KKPLMGSJCJp7DhLO05llETgl90iXaf0EsAV71No7MQC_HQM96J3Ur3bdVi9X8OU1c3tSt_K1fqo7Nsi2hdOo9KcAxunl-T30AFAlLMxOph8PJl9Gk6eaJI5hXn_IiHd0sYE_vysu92ZPRfl8jF66NcWeOIw8QSNdPsUPQp1O7Cn8Wfo8wARbCGCB4jgHUQwQATvQQQDRLCDCO5qHCDyHH07Pbk8Pot8UY1IwstvI_BgNWEVkSyXilaKULMElVwrWac0ppTWRPFEcSaFYEkhCpbluUoF-K1KipS8QOO2a_UhwjA11aTgVQI-dMYSLdKa5ElVxIxXFcmKI0TC2JTSK86bwidNGUILV6UbUVMMNStjUsKIHqFo6LV2iiu_-T0Nw156r9F5gyUg5Zc9X_5zz1fowe4v8RqNt5tev0H35fV2ebV56yH1A9EIkHE
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=FCM-Based+Model+Selection+Algorithms+for+Determining+the+Number+of+Clusters&rft.jtitle=Pattern+recognition&rft.au=Sun%2C+Haojun&rft.au=Wang%2C+Shengrui&rft.au=Jiang%2C+Qingshan&rft.date=2004-10-01&rft.pub=Elsevier+Ltd&rft.issn=0031-3203&rft.eissn=1873-5142&rft.volume=37&rft.issue=10&rft.spage=2027&rft.epage=2037&rft_id=info:doi/10.1016%2Fj.patcog.2004.03.012&rft.externalDocID=S0031320304001335
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-3203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-3203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-3203&client=summon