RiPPLE: A Crowdsourced Adaptive Platform for Recommendation of Learning Activities

This paper presents a platform called RiPPLE (Recommendation in Personalised Peer-Learning Environments) that recommends personalized learning activities to students based on their knowledge state from a pool of crowdsourced learning activities that are generated by educators and the students themse...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of Learning Analytics Ročník 6; číslo 3; s. 91 - 105
Hlavní autoři: Khosravi, Hassan, Kitto, Kirsty, Williams, Joseph Jay
Médium: Journal Article
Jazyk:angličtina
Vydáno: Society for Learning Analytics Research 01.01.2019
Témata:
ISSN:1929-7750, 1929-7750
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This paper presents a platform called RiPPLE (Recommendation in Personalised Peer-Learning Environments) that recommends personalized learning activities to students based on their knowledge state from a pool of crowdsourced learning activities that are generated by educators and the students themselves. RiPPLE integrates insights from crowdsourcing, learning sciences, and adaptive learning, aiming to narrow the gap between these large bodies of research while providing a practical platform-based implementation that instructors can easily use in their courses. This paper provides a design overview of RiPPLE, which can be employed as a standalone tool or embedded into any learning management system (LMS) or online platform that supports the Learning Tools Interoperability (LTI) standard. The platform has been evaluated based on a pilot in an introductory course with 453 students at The University of Queensland. Initial results suggest that the use of the RiPPLE platform led to measurable learning gains and that students perceived the platform as beneficially supporting their learning.
ISSN:1929-7750
1929-7750
DOI:10.18608/jla.2019.63.12