Exploration and generalization in deep learning with SwitchPath activations

This work provides a comprehensive theoretical and empirical analysis of SwitchPath, a stochastic activation function that improves learning dynamics by probabilistically toggling between a neuron standard activation and its negation. We develop theoretical foundations and demonstrate its impact in...

Full description

Saved in:
Bibliographic Details
Published in:Machine learning Vol. 114; no. 9; p. 200
Main Authors: Di Cecco, Antonio, Papini, Andrea, Metta, Carlo, Fantozzi, Marco, Galfrè, Silvia Giulia, Morandin, Francesco, Parton, Maurizio
Format: Journal Article
Language:English
Published: Dordrecht Springer Nature B.V 01.09.2025
Subjects:
ISSN:0885-6125, 1573-0565, 1573-0565
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract This work provides a comprehensive theoretical and empirical analysis of SwitchPath, a stochastic activation function that improves learning dynamics by probabilistically toggling between a neuron standard activation and its negation. We develop theoretical foundations and demonstrate its impact in multiple scenarios. By maintaining gradient flow and injecting controlled stochasticity, the method improves generalization, uncertainty estimation, and training efficiency. Experiments in classification show consistent gains over ReLU and Leaky ReLU across CNNs and Vision Transformers, with reduced overfitting and better test accuracy. In generative modeling, a novel two-phase training scheme significantly mitigates mode collapse and accelerates convergence. Our theoretical analysis reveals that SwitchPath introduces a form of multiplicative noise that acts as a structural regularizer. Additional empirical investigations show improved information propagation and reduced model complexity. These results establish this activation mechanism as a simple yet effective way to enhance exploration, regularization, and reliability in modern neural networks.
AbstractList This work provides a comprehensive theoretical and empirical analysis of SwitchPath, a stochastic activation function that improves learning dynamics by probabilistically toggling between a neuron standard activation and its negation. We develop theoretical foundations and demonstrate its impact in multiple scenarios. By maintaining gradient flow and injecting controlled stochasticity, the method improves generalization, uncertainty estimation, and training efficiency. Experiments in classification show consistent gains over ReLU and Leaky ReLU across CNNs and Vision Transformers, with reduced overfitting and better test accuracy. In generative modeling, a novel two-phase training scheme significantly mitigates mode collapse and accelerates convergence. Our theoretical analysis reveals that SwitchPath introduces a form of multiplicative noise that acts as a structural regularizer. Additional empirical investigations show improved information propagation and reduced model complexity. These results establish this activation mechanism as a simple yet effective way to enhance exploration, regularization, and reliability in modern neural networks.
ArticleNumber 200
Author Morandin, Francesco
Parton, Maurizio
Di Cecco, Antonio
Fantozzi, Marco
Metta, Carlo
Papini, Andrea
Galfrè, Silvia Giulia
Author_xml – sequence: 1
  givenname: Antonio
  surname: Di Cecco
  fullname: Di Cecco, Antonio
– sequence: 2
  givenname: Andrea
  surname: Papini
  fullname: Papini, Andrea
– sequence: 3
  givenname: Carlo
  surname: Metta
  fullname: Metta, Carlo
– sequence: 4
  givenname: Marco
  surname: Fantozzi
  fullname: Fantozzi, Marco
– sequence: 5
  givenname: Silvia Giulia
  surname: Galfrè
  fullname: Galfrè, Silvia Giulia
– sequence: 6
  givenname: Francesco
  surname: Morandin
  fullname: Morandin, Francesco
– sequence: 7
  givenname: Maurizio
  surname: Parton
  fullname: Parton, Maurizio
BackLink https://research.chalmers.se/publication/547849$$DView record from Swedish Publication Index (Chalmers tekniska högskola)
BookMark eNo9kUtLxTAQhYMoeH38AVcF19VJ0yTtUsQXCgrqeojJxFupaU161euvN1pxMzMMhzNn-HbYZhgCMXbA4YgD6OPEoW3rEipZgmpqKNcbbMGlFiVIJTfZAppGlopXcpvtpPQCAJVq1IJdn32O_RDN1A2hMMEVzxQomr77mlddKBzRWPRkYujCc_HRTcviPle7vDN5NHbq3n-1aY9tedMn2v_ru-zx_Ozh9LK8ub24Oj25Ka2AeiprQW1rrCLTGidrK4lU40nLHMl6r6GqW-dsJZTwqiElK8-5kEaT97JxVuyy-9k3fdC4esIxdq8mrnEwHUZKOaldol2a_pViwkQIwjnBpUAveYO1B4UmX0SwlRbWSq1dm10PZ9cxDm8rShO-DKsY8iMochbdgoIfVTWrbBxSiuT_r3PAHxQ4o8CMAn9R4Fp8A4CYf5Q
Cites_doi 10.1007/978-3-030-03243-2_860-1
10.1007/978-3-031-58547-0_5
10.1109/TSP49548.2020.9163446
10.1038/nature16961
10.1109/ICCV.2015.123
10.1023/A:1022621522141
10.1007/978-3-642-16111-7_23
10.1007/978-3-031-78977-9_18
10.1109/ICMLA55696.2022.00099
10.1038/nature14236
10.1109/IJCNN.2019.8852266
10.1016/j.neuron.2016.06.033
10.1134/S0006297924603915
10.1109/WACV57701.2024.00279
10.1038/nn.4243
10.1016/j.isci.2023.107963
10.1007/s10994-006-6226-1
10.1007/978-3-319-46493-0_38
10.1093/oso/9780195121049.001.0001
10.1023/A:1010933404324
10.1038/sdata.2018.161
10.1109/ISCC53001.2021.9631485
10.1145/279943.279989
10.3233/FAIA200119
10.1523/JNEUROSCI.0410-21.2021
10.1109/ICCV.2015.172
10.1145/3422622
10.1007/978-3-319-46493-0_39
10.1038/s41467-022-30305-8
10.1126/science.1211095
10.1016/j.cviu.2018.10.009
10.1145/2939672.2939778
10.1109/CVPR42600.2020.00813
10.1038/nrn2258
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media LLC, part of Springer Nature 2025.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media LLC, part of Springer Nature 2025.
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
ADTPV
AOWAS
F1S
DOI 10.1007/s10994-025-06840-y
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
SwePub
SwePub Articles
SWEPUB Chalmers tekniska högskola
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1573-0565
ExternalDocumentID oai_research_chalmers_se_03dd3153_f518_4f06_a8fe_0c273cc577d9
10_1007_s10994_025_06840_y
GroupedDBID -Y2
-~C
-~X
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29M
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
6TJ
78A
88I
8AO
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAEWM
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYXX
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDZT
ABECU
ABFSG
ABFTV
ABHLI
ABHQN
ABIVO
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABRTQ
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACNCT
ACOKC
ACOMO
ACPIV
ACSTC
ACZOJ
ADHHG
ADHIR
ADHKG
ADIMF
ADKFA
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AETLH
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFEXP
AFFHD
AFGCZ
AFHIU
AFKRA
AFLOW
AFOHR
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGQPQ
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHSBF
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMVHM
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
CITATION
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITG
ITH
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Y
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K6V
K7-
KDC
KOV
KOW
LAK
LLZTM
M2P
M4Y
MA-
MVM
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF-
PHGZM
PHGZT
PQGLB
PQQKQ
PROAC
PT4
Q2X
QF4
QM1
QN7
QO4
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TAE
TEORI
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WIP
WK8
YLTOR
Z45
Z8Z
ZMTXR
7SC
8FD
AESKC
JQ2
L7M
L~C
L~D
ADTPV
AOWAS
F1S
ID FETCH-LOGICAL-c304t-43e99ac6ea9ad54c5ee68fe75026cff70249ddc2363f68e652f1135a7eff58dc3
IEDL.DBID RSV
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001544702500002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0885-6125
1573-0565
IngestDate Wed Nov 05 04:21:09 EST 2025
Wed Nov 05 09:04:37 EST 2025
Sat Nov 29 07:36:42 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c304t-43e99ac6ea9ad54c5ee68fe75026cff70249ddc2363f68e652f1135a7eff58dc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3236790609
PQPubID 54194
ParticipantIDs swepub_primary_oai_research_chalmers_se_03dd3153_f518_4f06_a8fe_0c273cc577d9
proquest_journals_3236790609
crossref_primary_10_1007_s10994_025_06840_y
PublicationCentury 2000
PublicationDate 2025-09-01
PublicationDateYYYYMMDD 2025-09-01
PublicationDate_xml – month: 09
  year: 2025
  text: 2025-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
PublicationTitle Machine learning
PublicationYear 2025
Publisher Springer Nature B.V
Publisher_xml – name: Springer Nature B.V
References 6840_CR19
6840_CR11
6840_CR55
6840_CR57
6840_CR14
6840_CR58
6840_CR15
AA Faisal (6840_CR18) 2008; 9
6840_CR59
6840_CR16
PL Bartlett (6840_CR5) 2002; 3
6840_CR50
6840_CR51
6840_CR53
RS Sutton (6840_CR64) 2018
6840_CR10
6840_CR54
D Silver (6840_CR60) 2016; 529
C Gao (6840_CR21) 2016; 59
MI Ajibola (6840_CR1) 2021; 41
S Dutta (6840_CR17) 2022; 13
P Smyth (6840_CR62) 1994; 15
N Srivastava (6840_CR63) 2014; 15
V Mnih (6840_CR52) 2015; 518
6840_CR44
G Amato (6840_CR100) 2024; 3762
6840_CR45
6840_CR46
6840_CR48
6840_CR49
JR Quinlan (6840_CR56) 1993; 10
6840_CR41
6840_CR42
6840_CR43
ER Kandel (6840_CR36) 2000
R Tremblay (6840_CR66) 2016; 91
B Yang (6840_CR72) 2023; 26
A Borji (6840_CR8) 2019; 179
6840_CR33
6840_CR34
6840_CR3
6840_CR35
6840_CR2
6840_CR37
6840_CR4
6840_CR7
6840_CR39
6840_CR6
SA Kauffman (6840_CR38) 2000
6840_CR70
6840_CR71
6840_CR73
6840_CR31
VF Kitchigina (6840_CR40) 2025; 90
6840_CR32
P Tschandl (6840_CR67) 2018; 5
P Geurts (6840_CR23) 2006; 63
L Breiman (6840_CR9) 2001; 45
I Goodfellow (6840_CR25) 2020; 63
6840_CR22
6840_CR24
C Metta (6840_CR47) 2023; 16
6840_CR69
6840_CR26
TP Vogels (6840_CR68) 2011; 334
6840_CR27
6840_CR28
6840_CR29
S Deneve (6840_CR12) 2016; 19
6840_CR61
6840_CR20
6840_CR65
G Hennequin (6840_CR30) 2017; 94
A Destexhe (6840_CR13) 2012; 106
References_xml – volume: 94
  start-page: 816
  issue: 4
  year: 2017
  ident: 6840_CR30
  publication-title: Neuron
– ident: 6840_CR51
  doi: 10.1007/978-3-030-03243-2_860-1
– ident: 6840_CR57
– volume: 59
  issue: 3
  year: 2016
  ident: 6840_CR21
  publication-title: Science China Information Sciences
– ident: 6840_CR11
– ident: 6840_CR14
  doi: 10.1007/978-3-031-58547-0_5
– volume: 106
  start-page: 5
  issue: 1–2
  year: 2012
  ident: 6840_CR13
  publication-title: Journal of Physiology-Paris
– ident: 6840_CR4
– ident: 6840_CR39
  doi: 10.1109/TSP49548.2020.9163446
– volume: 529
  start-page: 484
  issue: 7587
  year: 2016
  ident: 6840_CR60
  publication-title: Nature
  doi: 10.1038/nature16961
– volume: 3
  start-page: 463
  year: 2002
  ident: 6840_CR5
  publication-title: Journal of Machine Learning Research
– ident: 6840_CR28
  doi: 10.1109/ICCV.2015.123
– ident: 6840_CR44
– volume: 15
  start-page: 169
  issue: 2
  year: 1994
  ident: 6840_CR62
  publication-title: Machine Learning
  doi: 10.1023/A:1022621522141
– ident: 6840_CR65
  doi: 10.1007/978-3-642-16111-7_23
– ident: 6840_CR15
  doi: 10.1007/978-3-031-78977-9_18
– ident: 6840_CR35
– ident: 6840_CR55
  doi: 10.1109/ICMLA55696.2022.00099
– ident: 6840_CR10
– volume: 518
  start-page: 529
  issue: 7540
  year: 2015
  ident: 6840_CR52
  publication-title: Nature
  doi: 10.1038/nature14236
– ident: 6840_CR73
– ident: 6840_CR54
  doi: 10.1109/IJCNN.2019.8852266
– volume: 91
  start-page: 260
  issue: 2
  year: 2016
  ident: 6840_CR66
  publication-title: Neuron
  doi: 10.1016/j.neuron.2016.06.033
– volume: 3762
  start-page: 494
  year: 2024
  ident: 6840_CR100
  publication-title: CEUR Workshop Proceedings
– ident: 6840_CR31
– volume: 90
  start-page: 61
  issue: 1
  year: 2025
  ident: 6840_CR40
  publication-title: Biochemistry (Moscow)
  doi: 10.1134/S0006297924603915
– ident: 6840_CR48
  doi: 10.1109/WACV57701.2024.00279
– volume: 16
  start-page: 243
  issue: 3
  year: 2023
  ident: 6840_CR47
  publication-title: International Journal of Data Science and Analytics
– volume: 19
  start-page: 375
  issue: 3
  year: 2016
  ident: 6840_CR12
  publication-title: Nature Neuroscience
  doi: 10.1038/nn.4243
– ident: 6840_CR45
– ident: 6840_CR3
– ident: 6840_CR20
– volume: 10
  start-page: 271
  issue: 3
  year: 1993
  ident: 6840_CR56
  publication-title: Machine Learning
– ident: 6840_CR41
– ident: 6840_CR7
– ident: 6840_CR24
– volume: 26
  start-page: 107963
  issue: 10
  year: 2023
  ident: 6840_CR72
  publication-title: Iscience
  doi: 10.1016/j.isci.2023.107963
– volume: 63
  start-page: 3
  issue: 1
  year: 2006
  ident: 6840_CR23
  publication-title: Machine Learning
  doi: 10.1007/s10994-006-6226-1
– ident: 6840_CR29
  doi: 10.1007/978-3-319-46493-0_38
– volume-title: Investigations
  year: 2000
  ident: 6840_CR38
  doi: 10.1093/oso/9780195121049.001.0001
– volume: 45
  start-page: 5
  issue: 1
  year: 2001
  ident: 6840_CR9
  publication-title: Machine Learning
  doi: 10.1023/A:1010933404324
– volume: 5
  start-page: 180161
  year: 2018
  ident: 6840_CR67
  publication-title: Scientific Data
  doi: 10.1038/sdata.2018.161
– ident: 6840_CR49
  doi: 10.1109/ISCC53001.2021.9631485
– ident: 6840_CR59
– volume-title: Reinforcement learning: An introduction
  year: 2018
  ident: 6840_CR64
– ident: 6840_CR70
– ident: 6840_CR46
  doi: 10.1145/279943.279989
– ident: 6840_CR32
– ident: 6840_CR53
  doi: 10.3233/FAIA200119
– ident: 6840_CR69
– volume: 41
  start-page: 8181
  issue: 39
  year: 2021
  ident: 6840_CR1
  publication-title: Journal of Neuroscience
  doi: 10.1523/JNEUROSCI.0410-21.2021
– ident: 6840_CR61
– ident: 6840_CR2
– ident: 6840_CR27
– ident: 6840_CR6
– volume-title: Principles of neural science
  year: 2000
  ident: 6840_CR36
– ident: 6840_CR42
  doi: 10.1109/ICCV.2015.172
– volume: 63
  start-page: 139
  issue: 11
  year: 2020
  ident: 6840_CR25
  publication-title: ACM
  doi: 10.1145/3422622
– ident: 6840_CR34
  doi: 10.1007/978-3-319-46493-0_39
– ident: 6840_CR71
– volume: 13
  start-page: 1899
  issue: 1
  year: 2022
  ident: 6840_CR17
  publication-title: Nature Communications
  doi: 10.1038/s41467-022-30305-8
– ident: 6840_CR33
– ident: 6840_CR19
– ident: 6840_CR16
– ident: 6840_CR50
– volume: 334
  start-page: 1569
  issue: 6062
  year: 2011
  ident: 6840_CR68
  publication-title: Science
  doi: 10.1126/science.1211095
– ident: 6840_CR43
– volume: 179
  start-page: 41
  year: 2019
  ident: 6840_CR8
  publication-title: Computer Vision and Image Understanding
  doi: 10.1016/j.cviu.2018.10.009
– ident: 6840_CR58
  doi: 10.1145/2939672.2939778
– ident: 6840_CR37
  doi: 10.1109/CVPR42600.2020.00813
– volume: 9
  start-page: 292
  issue: 4
  year: 2008
  ident: 6840_CR18
  publication-title: Nature Reviews Neuroscience
  doi: 10.1038/nrn2258
– ident: 6840_CR26
– volume: 15
  start-page: 1929
  issue: 56
  year: 2014
  ident: 6840_CR63
  publication-title: Journal of Machine Learning Research
– ident: 6840_CR22
SSID ssj0002686
Score 2.4745138
Snippet This work provides a comprehensive theoretical and empirical analysis of SwitchPath, a stochastic activation function that improves learning dynamics by...
SourceID swepub
proquest
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
StartPage 200
SubjectTerms Adaptability
Algorithms
Back propagation
Decision making
Decision trees
Deep learning
Empirical analysis
Generative networks
Gradient flow
Machine learning
Neural network algorithms
Neural networks
Neurons
Regularization
Title Exploration and generalization in deep learning with SwitchPath activations
URI https://www.proquest.com/docview/3236790609
https://research.chalmers.se/publication/547849
Volume 114
WOSCitedRecordID wos001544702500002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1573-0565
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002686
  issn: 1573-0565
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwUhFJaIFm16R7cXLtqV4PgaXUYUQRFBD9qJo8dumymaW3D_ferM7QG1aDNL0e94jgfH7_sQOuAamGI1kLSBGyKYV0Q7J4kIlTMhiLop_Ir7y_rqSj88mOs5dPTnH_xMcivytUxmgxRByTQV3Er1ZK2b-8-yy1SxdUxZI0k-tgeGzO9D_DyFvrWW3-VCyxFztvy_ya2gpaGVxMd97FfRHLRraHlm04CHrF1HF_07uxIC7NqAH3up6YGBiZ9aHABe8GAg8Yjz3Sy-SV8_vk4NIs7ch_7mtttAd2entyfnZPBQIJ5TMSGCgzHOK3DGBSm8BFA6QuoTmPIx1lkxMATPuOJRaVCSxari0tUQo9TB80003z63sIVwrZvYUCFCE7kADQYUa6iOnDYJe0lH6HCGqX3ppTLslyhyxskmnGzByU5HaHcGux3SprM868kZqqgZocs-FJ9DZR3sQQBpbP24uMt0tgNLeQg8FW4bZaWtiFRZl5ZoqU-tmfeyroPZ_tfcdtAiKyHNT8l20fzk9Q320IJ_nzx1r_tl230AFRXRHw
linkProvider Springer Nature
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exploration+and+generalization+in+deep+learning+with+SwitchPath+activations&rft.jtitle=Machine+learning&rft.au=Di+Cecco%2C+Antonio&rft.au=Papini%2C+Andrea&rft.au=Metta%2C+Carlo&rft.au=Fantozzi%2C+Marco&rft.date=2025-09-01&rft.pub=Springer+Nature+B.V&rft.issn=0885-6125&rft.eissn=1573-0565&rft.volume=114&rft.issue=9&rft.spage=200&rft_id=info:doi/10.1007%2Fs10994-025-06840-y&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-6125&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-6125&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-6125&client=summon