Longitudinal estimation of stress-related states through bio-sensor data
PurposeThe authors aim to develop a conceptual framework for longitudinal estimation of stress-related states in the wild (IW), based on the machine learning (ML) algorithms that use physiological and non-physiological bio-sensor data.Design/methodology/approachThe authors propose a conceptual frame...
Gespeichert in:
| Veröffentlicht in: | Applied computing & informatics Jg. 21; H. 3-4; S. 186 - 197 |
|---|---|
| 1. Verfasser: | |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Emerald Publishing
29.10.2025
|
| Schlagworte: | |
| ISSN: | 2634-1964, 2210-8327 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | PurposeThe authors aim to develop a conceptual framework for longitudinal estimation of stress-related states in the wild (IW), based on the machine learning (ML) algorithms that use physiological and non-physiological bio-sensor data.Design/methodology/approachThe authors propose a conceptual framework for longitudinal estimation of stress-related states consisting of four blocks: (1) identification; (2) validation; (3) measurement and (4) visualization. The authors implement each step of the proposed conceptual framework, using the example of Gaussian mixture model (GMM) and K-means algorithm. These ML algorithms are trained on the data of 18 workers from the public administration sector who wore biometric devices for about two months.FindingsThe authors confirm the convergent validity of a proposed conceptual framework IW. Empirical data analysis suggests that two-cluster models achieve five-fold cross-validation accuracy exceeding 70% in identifying stress. Coefficient of accuracy decreases for three-cluster models achieving around 45%. The authors conclude that identification models may serve to derive longitudinal stress-related measures.Research limitations/implicationsProposed conceptual framework may guide researchers in creating validated stress-related indicators. At the same time, physiological sensing of stress through identification models is limited because of subject-specific reactions to stressors.Practical implicationsLongitudinal indicators on stress allow estimation of long-term impact coming from external environment on stress-related states. Such stress-related indicators can become an integral part of mobile/web/computer applications supporting stress management programs.Social implicationsTimely identification of excessive stress may improve individual well-being and prevent development stress-related diseases.Originality/valueThe study develops a novel conceptual framework for longitudinal estimation of stress-related states using physiological and non-physiological bio-sensor data, given that scientific knowledge on validated longitudinal indicators of stress is in emergent state. |
|---|---|
| AbstractList | PurposeThe authors aim to develop a conceptual framework for longitudinal estimation of stress-related states in the wild (IW), based on the machine learning (ML) algorithms that use physiological and non-physiological bio-sensor data.Design/methodology/approachThe authors propose a conceptual framework for longitudinal estimation of stress-related states consisting of four blocks: (1) identification; (2) validation; (3) measurement and (4) visualization. The authors implement each step of the proposed conceptual framework, using the example of Gaussian mixture model (GMM) and K-means algorithm. These ML algorithms are trained on the data of 18 workers from the public administration sector who wore biometric devices for about two months.FindingsThe authors confirm the convergent validity of a proposed conceptual framework IW. Empirical data analysis suggests that two-cluster models achieve five-fold cross-validation accuracy exceeding 70% in identifying stress. Coefficient of accuracy decreases for three-cluster models achieving around 45%. The authors conclude that identification models may serve to derive longitudinal stress-related measures.Research limitations/implicationsProposed conceptual framework may guide researchers in creating validated stress-related indicators. At the same time, physiological sensing of stress through identification models is limited because of subject-specific reactions to stressors.Practical implicationsLongitudinal indicators on stress allow estimation of long-term impact coming from external environment on stress-related states. Such stress-related indicators can become an integral part of mobile/web/computer applications supporting stress management programs.Social implicationsTimely identification of excessive stress may improve individual well-being and prevent development stress-related diseases.Originality/valueThe study develops a novel conceptual framework for longitudinal estimation of stress-related states using physiological and non-physiological bio-sensor data, given that scientific knowledge on validated longitudinal indicators of stress is in emergent state. |
| Author | Mozgovoy, Vadym |
| Author_xml | – sequence: 1 givenname: Vadym orcidid: 0000-0001-5322-3740 surname: Mozgovoy fullname: Mozgovoy, Vadym |
| BookMark | eNo9kE1LAzEQhoMoWGvvHvcPRCeZ7GZzLEVtoeBFzyGbj3ZL3UiSHvz3plY8vTMvzMPw3JHrKU6ekAcGj4xB_7RcbSgg5cAZBZBwRWacM6A9cnld5w4FZaoTt2SR8wEAmMSecZyR9TZOu7Gc3DiZY-NzGT9NGePUxNDkknzONPmjKd7VtUZuyj7F027fDGOk2U85psaZYu7JTTDH7Bd_OScfL8_vqzXdvr1uVssttQiiULSqw4630kkzQCuhU6HlIJSwwfcclWNqGFCBa6XwYQhM1Yo5tJ1v6wnOyebCddEc9Feq_6ZvHc2of4uYdtqkMtqj14Ni3AIqZZ0U0vIeBycDWAOiF1y2lQUXlk0x5-TDP4-BPovVVawG1Gex-iwWfwAUB2xt |
| Cites_doi | 10.1111/j.2044-8295.1991.tb02391.x 10.1016/j.bspc.2019.101736 10.1109/TITS.2020.2980555 10.1108/JMP-03-2013-0085 10.1109/ACCESS.2020.2975351 10.1016/j.autcon.2021.103560 10.1016/j.jbi.2019.103139 10.1016/j.physbeh.2021.113365 10.1109/JBHI.2015.2446195 10.1080/0144929X.2019.1673820 10.1016/j.eswa.2021.114693 10.1007/s12668-013-0089-2 10.1016/j.avb.2021.101587 10.3390/s19081849 |
| ContentType | Journal Article |
| DBID | AAYXX CITATION DOA |
| DOI | 10.1108/ACI-03-2021-0070 |
| DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 2210-8327 |
| EndPage | 197 |
| ExternalDocumentID | oai_doaj_org_article_b912c0399cd747c283bd7f0ca0484275 10_1108_ACI_03_2021_0070 |
| GroupedDBID | 0R~ 4.4 457 5VS AAEDT AAIKJ AALRI AAYXX ABGJK ABMAC ACGFS ADBBV ADEZE AEXQZ AFFHD AFKRA AGHFR AKRWK ALMA_UNASSIGNED_HOLDINGS BCNDV BENPR CCPQU CITATION EBS FDB GEI GROUPED_DOAJ H13 IXB KQ8 M~E O-L O9- OK1 PHGZM PHGZT PIMPY SES SSZ XDTOA XH2 |
| ID | FETCH-LOGICAL-c304t-3c9636257d7ab057069f520494cfe8239d19bb390d574efbf199d11d3c6e57ab3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 2 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001603452200014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2634-1964 |
| IngestDate | Mon Nov 03 22:04:14 EST 2025 Wed Oct 29 21:07:12 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3-4 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c304t-3c9636257d7ab057069f520494cfe8239d19bb390d574efbf199d11d3c6e57ab3 |
| ORCID | 0000-0001-5322-3740 |
| OpenAccessLink | https://doaj.org/article/b912c0399cd747c283bd7f0ca0484275 |
| PageCount | 12 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_b912c0399cd747c283bd7f0ca0484275 crossref_primary_10_1108_ACI_03_2021_0070 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-10-29 |
| PublicationDateYYYYMMDD | 2025-10-29 |
| PublicationDate_xml | – month: 10 year: 2025 text: 2025-10-29 day: 29 |
| PublicationDecade | 2020 |
| PublicationTitle | Applied computing & informatics |
| PublicationYear | 2025 |
| Publisher | Emerald Publishing |
| Publisher_xml | – name: Emerald Publishing |
| References | Mou (2025102804365310800_ref017) 2021; 173 Feng (2025102804365310800_ref003) 2021; 40 Zubair (2025102804365310800_ref013) 2020; 57 Finke (2025102804365310800_ref018) 2021; 233 de Santos Sierra (2025102804365310800_ref028) 2010 Zhai (2025102804365310800_ref027) 2005 Jin (2025102804365310800_ref010) 2021 Can (2025102804365310800_ref016) 2020; 8 de Santos (2025102804365310800_ref025) 2011 Wang (2025102804365310800_ref015) 2020; 22 Schmidt (2025102804365310800_ref024) 2018 Corbett (2025102804365310800_ref020) 2015; 30 Mozgovoy (2025102804365310800_ref023) 2019 Bonaccorso (2025102804365310800_ref009) 2018 Angus (2025102804365310800_ref026) 2005 Vadym (2025102804365310800_ref005) 2020 Stepanovic (2025102804365310800_ref004) 2019 Bishop (2025102804365310800_ref007) 2006 Chae (2025102804365310800_ref019) 2021; 124 Can (2025102804365310800_ref001) 2019 Li (2025102804365310800_ref011) 2020; 20 Greco (2025102804365310800_ref012) 2021 Garcia-Ceja (2025102804365310800_ref029) 2015; 20 Muaremi (2025102804365310800_ref006) 2013; 3 Han (2025102804365310800_ref008) 2011 Can (2025102804365310800_ref014) 2019; 19 Kalas (2025102804365310800_ref002) 2016 Hardy (2025102804365310800_ref021) Hardy (2025102804365310800_ref022) 1991; 82 |
| References_xml | – start-page: 37 year: 2019 ident: 2025102804365310800_ref023 article-title: Stress pattern recognition through wearable biosensors in the workplace: experimental longitudinal study on the role of motion intensity – volume: 82 start-page: 163 issue: 2 year: 1991 ident: 2025102804365310800_ref022 article-title: A catastrophe model of anxiety and performance publication-title: Br J Psychol doi: 10.1111/j.2044-8295.1991.tb02391.x – volume-title: Data mining: concepts and techniques year: 2011 ident: 2025102804365310800_ref008 – start-page: 400 year: 2018 ident: 2025102804365310800_ref024 article-title: Introducing wesad, a multimodal dataset for wearable stress and affect detection – volume: 57 year: 2020 ident: 2025102804365310800_ref013 article-title: Multilevel mental stress detection using ultra-short pulse rate variability series publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2019.101736 – volume: 22 start-page: 3303 issue: 6 year: 2020 ident: 2025102804365310800_ref015 article-title: An ensemble classification model with unsupervised representation learning for driving stress recognition using physiological signals publication-title: IEEE Trans Intell Transportation Syst. doi: 10.1109/TITS.2020.2980555 – volume: 30 start-page: 741 issue: 6 year: 2015 ident: 2025102804365310800_ref020 article-title: From law to folklore: work stress and the Yerkes-Dodson Law publication-title: J Managerial Psychol doi: 10.1108/JMP-03-2013-0085 – start-page: 23 year: 2020 ident: 2025102804365310800_ref005 article-title: Exploration of scenario-based simulations for stress benchmarking in Swiss public service – volume: 8 start-page: 38146 year: 2020 ident: 2025102804365310800_ref016 article-title: Personal stress-level clustering and decision-level smoothing to enhance the performance of ambulatory stress detection with smartwatches publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2975351 – volume: 124 year: 2021 ident: 2025102804365310800_ref019 article-title: Relationship between rework of engineering drawing tasks and stress level measured from physiological signals publication-title: Autom ConStruct doi: 10.1016/j.autcon.2021.103560 – year: 2019 ident: 2025102804365310800_ref001 article-title: Stress detection in daily life scenarios using smart phones and wearable sensors: a survey publication-title: J Biomed Inform doi: 10.1016/j.jbi.2019.103139 – volume-title: Machine Learning Algorithms: popular algorithms for data science and machine learning year: 2018 ident: 2025102804365310800_ref009 – volume: 233 year: 2021 ident: 2025102804365310800_ref018 article-title: Combining mental and physical stress: synergy or interference? publication-title: Physiol Behav doi: 10.1016/j.physbeh.2021.113365 – year: 2021 ident: 2025102804365310800_ref012 article-title: Acute stress state classification based on electrodermal activity modeling publication-title: IEEE Transactions on Affective Computing – start-page: 81 ident: 2025102804365310800_ref021 article-title: A catastrophe model of performance in sport – start-page: 471 year: 2016 ident: 2025102804365310800_ref002 article-title: Stress detection and reduction using EEG signals – start-page: 94 year: 2019 ident: 2025102804365310800_ref004 article-title: Designing visualizations for Workplace stress management: results of a pilot study at a Swiss municipality – volume-title: Pattern recognition and machine learning year: 2006 ident: 2025102804365310800_ref007 – start-page: 364 year: 2010 ident: 2025102804365310800_ref028 article-title: Two stress detection schemes based on physiological signals for real-time applications – volume: 20 start-page: 1 issue: 11 year: 2020 ident: 2025102804365310800_ref011 article-title: Stress detection using deep neural networks publication-title: BMC Med Inform Decis Making – volume: 20 start-page: 1053 issue: 4 year: 2015 ident: 2025102804365310800_ref029 article-title: Automatic stress detection in working environments from smartphones' accelerometer data: a first step publication-title: IEEE J Biomed Health Info doi: 10.1109/JBHI.2015.2446195 – volume: 40 start-page: 116 issue: 2 year: 2021 ident: 2025102804365310800_ref003 article-title: Leveraging ECG signals and social media for stress detection publication-title: Behav Inf Technology doi: 10.1080/0144929X.2019.1673820 – volume: 173 year: 2021 ident: 2025102804365310800_ref017 article-title: Driver stress detection via multimodal fusion using attention-based CNN-LSTM publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2021.114693 – volume: 3 start-page: 172 issue: 2 year: 2013 ident: 2025102804365310800_ref006 article-title: Towards measuring stress with smartphones and wearable devices during workday and sleep publication-title: BioNanoScience doi: 10.1007/s12668-013-0089-2 – start-page: 415 volume-title: SoutheastCon year: 2005 ident: 2025102804365310800_ref027 article-title: Realization of stress detection using psychophysiological signals for improvement of human-computer interactions – year: 2021 ident: 2025102804365310800_ref010 article-title: IoT based psychological and physical stress evaluation in sportsmen using heart rate variability publication-title: Aggress Violent Behav doi: 10.1016/j.avb.2021.101587 – volume: 19 start-page: 1849 issue: 8 year: 2019 ident: 2025102804365310800_ref014 article-title: Continuous stress detection using wearable sensors in real life: algorithmic programming contest case study publication-title: Sensors doi: 10.3390/s19081849 – volume-title: Recent application in biometrics: InTech year: 2011 ident: 2025102804365310800_ref025 – start-page: 218 year: 2005 ident: 2025102804365310800_ref026 article-title: Front-end analog pre-processing for real-time psychophysiological stress measurements |
| SSID | ssj0001738123 |
| Score | 2.327711 |
| Snippet | PurposeThe authors aim to develop a conceptual framework for longitudinal estimation of stress-related states in the wild (IW), based on the machine learning... |
| SourceID | doaj crossref |
| SourceType | Open Website Index Database |
| StartPage | 186 |
| SubjectTerms | Bio-sensor Conceptual framework Longitudinal measure Stress identification Validation Well-being |
| Title | Longitudinal estimation of stress-related states through bio-sensor data |
| URI | https://doaj.org/article/b912c0399cd747c283bd7f0ca0484275 |
| Volume | 21 |
| WOSCitedRecordID | wos001603452200014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2210-8327 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001738123 issn: 2634-1964 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2210-8327 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001738123 issn: 2634-1964 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2210-8327 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001738123 issn: 2634-1964 databaseCode: BENPR dateStart: 20200101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2210-8327 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001738123 issn: 2634-1964 databaseCode: PIMPY dateStart: 20200101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07a8MwEBYldOjSd2n6QkOXDiKyJFvWmIaEFNLQoYVswnpBlrjkNfa39yQ7JZ26dDFG2MbcSfru7LvvQ-jR5LAFZrkjMIENEZWQxCg4Y9wCoBWO-ZDY9SdyOi1nM_W2J_UVa8IaeuDGcD2jMmYpwKh1EPlaQEPjZKC2gqknmEzspVSqvWQqfV2RgERJ240VXJDIOrX7R0nLXn_wEsuIWCxPiHw3vzBpj7o_YczoFB23wSHuNy91hg784hyd7IQXcLsOL9B4UkeZoY2LklY48mQ0DYi4Drhp_iCpR8U7nBqGVriV48FmXpMVZK71Esfa0Ev0MRq-D8aklUQgllOxJtzCgoGURTpZGQi1aKFCziLHiw2-ZFy5TBnDFXW5FD6YkCkYyhy3hc_hFn6FOot64a8RVjILwfoqM6UQzPCqpMb4nHrYAQJEFV30tDOK_myYL3TKGGipwYCach0NqKMBu-g5Wu3nushZnQbAk7r1pP7Lkzf_8ZBbdMSiQi-gC1N3qLNebvw9OrTb9Xy1fEiTBI6vX8Nv96m-TQ |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Longitudinal+estimation+of+stress-related+states+through+bio-sensor+data&rft.jtitle=Applied+computing+%26+informatics&rft.au=Mozgovoy%2C+Vadym&rft.date=2025-10-29&rft.issn=2634-1964&rft.eissn=2210-8327&rft.volume=21&rft.issue=3-4&rft.spage=186&rft.epage=197&rft_id=info:doi/10.1108%2FACI-03-2021-0070&rft.externalDBID=n%2Fa&rft.externalDocID=10_1108_ACI_03_2021_0070 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2634-1964&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2634-1964&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2634-1964&client=summon |