Frequency enhanced vector quantized variational autoencoder for structural vibration response compression

•The frequency enhanced vector quantized variational autoencoder (FEVQVAE) is proposed for structural vibration response compression.•The proposed dual-branch block in both time and frequency domains enhances feature extraction, to some extent mitigating the challenge for neural networks to extract...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Mechanical systems and signal processing Ročník 224; s. 112136
Hlavní autoři: Xue, Zhilin, An, Yonghui, Ou, Jinping
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Ltd 01.02.2025
Témata:
ISSN:0888-3270
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract •The frequency enhanced vector quantized variational autoencoder (FEVQVAE) is proposed for structural vibration response compression.•The proposed dual-branch block in both time and frequency domains enhances feature extraction, to some extent mitigating the challenge for neural networks to extract high-frequency features.•The proposed frequency block separates the extraction of features for a single resonant band and multiple resonant bands, enabling the FEVQVAE to more effectively extract frequency-domain features of vibration responses. The structural health monitoring system has been widely installed on large civil structures, generating a significant amount of structural vibration response data over their long-term service life, which poses challenges for data transmission and storage. The compression method for structural vibration responses based on the traditional deep autoencoder (AE) can only compress the original data into low-dimensional floating-point features and not into low-dimensional integer features, which limits its compression capability. To address this issue, this paper proposes a frequency enhanced vector quantized variational autoencoder (FEVQVAE) method for compressing structural vibration responses with higher compression ratios. The proposed method has three key innovations. Firstly, the proposed time-domain and frequency-domain dual-branch block enhances the feature extraction capability of both the encoder and decoder, to some extent mitigating the challenge for neural networks to extract high-frequency features. Secondly, the proposed frequency block separates the extraction of features for a single resonant band and multiple resonant bands, enabling the encoder and decoder to more effectively extract frequency-domain features of the vibration responses. Thirdly, by introducing sensor position encoding, compression of multiple sensor data can be achieved with only one model. The effectiveness of the proposed method is validated using acceleration responses from a Dowling Hall Footbridge under normal operating conditions and a long-span suspension bridge subjected to non-stationary excitations such as wind and vehicle loads. Experimental results demonstrate that the compression performance of the proposed FEVQVAE method is significantly improved compared to the AE method and the vector quantized variational autoencoder method. Modal parameter identification results of the original and reconstructed responses show excellent consistency at a compression ratio of 19.2, with a maximum relative frequency error of only 0.952% for the first six mode frequencies and a minimum modal confidence criterion of 0.9614 for the first six mode shapes. Overall, the proposed method exhibits high precision in the compression of structural vibration response, effectively alleviating the storage and transmission challenges of monitoring big data.
AbstractList •The frequency enhanced vector quantized variational autoencoder (FEVQVAE) is proposed for structural vibration response compression.•The proposed dual-branch block in both time and frequency domains enhances feature extraction, to some extent mitigating the challenge for neural networks to extract high-frequency features.•The proposed frequency block separates the extraction of features for a single resonant band and multiple resonant bands, enabling the FEVQVAE to more effectively extract frequency-domain features of vibration responses. The structural health monitoring system has been widely installed on large civil structures, generating a significant amount of structural vibration response data over their long-term service life, which poses challenges for data transmission and storage. The compression method for structural vibration responses based on the traditional deep autoencoder (AE) can only compress the original data into low-dimensional floating-point features and not into low-dimensional integer features, which limits its compression capability. To address this issue, this paper proposes a frequency enhanced vector quantized variational autoencoder (FEVQVAE) method for compressing structural vibration responses with higher compression ratios. The proposed method has three key innovations. Firstly, the proposed time-domain and frequency-domain dual-branch block enhances the feature extraction capability of both the encoder and decoder, to some extent mitigating the challenge for neural networks to extract high-frequency features. Secondly, the proposed frequency block separates the extraction of features for a single resonant band and multiple resonant bands, enabling the encoder and decoder to more effectively extract frequency-domain features of the vibration responses. Thirdly, by introducing sensor position encoding, compression of multiple sensor data can be achieved with only one model. The effectiveness of the proposed method is validated using acceleration responses from a Dowling Hall Footbridge under normal operating conditions and a long-span suspension bridge subjected to non-stationary excitations such as wind and vehicle loads. Experimental results demonstrate that the compression performance of the proposed FEVQVAE method is significantly improved compared to the AE method and the vector quantized variational autoencoder method. Modal parameter identification results of the original and reconstructed responses show excellent consistency at a compression ratio of 19.2, with a maximum relative frequency error of only 0.952% for the first six mode frequencies and a minimum modal confidence criterion of 0.9614 for the first six mode shapes. Overall, the proposed method exhibits high precision in the compression of structural vibration response, effectively alleviating the storage and transmission challenges of monitoring big data.
ArticleNumber 112136
Author Xue, Zhilin
Ou, Jinping
An, Yonghui
Author_xml – sequence: 1
  givenname: Zhilin
  surname: Xue
  fullname: Xue, Zhilin
  organization: Department of Civil Engineering, Dalian University of Technology, Dalian 116023, PR China
– sequence: 2
  givenname: Yonghui
  surname: An
  fullname: An, Yonghui
  email: anyh@dlut.edu.cn
  organization: Department of Civil Engineering, Dalian University of Technology, Dalian 116023, PR China
– sequence: 3
  givenname: Jinping
  surname: Ou
  fullname: Ou, Jinping
  organization: Department of Civil Engineering, Dalian University of Technology, Dalian 116023, PR China
BookMark eNqFkM9OwzAMh3MYEtvgCbj0BVqcdv134IAmBkiTuMA5clNHZNqSLUknjacn3ThxgJNl-_dZ8jdjE2MNMXbHIePAq_tNdtp5v89yyBcZ5zkvqgmbQtM0aZHXcM1m3m8AoF1ANWV65egwkJGnhMwnGkl9ciQZrEsOA5qgv8YBOo1BW4PbBIdgY9z25BIVUz64QYbBxdVRd-4cSxz5vTWeEml3-9j4OLxhVwq3nm5_6px9rJ7ely_p-u35dfm4TmUBRUiVRN5RzZWS1MoeSPWqa2qoco5lSxyrppCtrFugFktSCyg5NgRYdw2WORZzVlzuSme9d6TE3ukdupPgIEZDYiPOhsRoSFwMRar9RUkdzs8Eh3r7D_twYSm-ddTkhJeaRpXaRZWit_pP_htFIIzB
CitedBy_id crossref_primary_10_1016_j_jisa_2025_104204
crossref_primary_10_3390_electronics14132602
Cites_doi 10.1111/j.1747-1567.2011.00751.x
10.1109/TIT.2006.871582
10.1061/(ASCE)CP.1943-5487.0001027
10.1016/j.ymssp.2019.06.036
10.1061/(ASCE)ST.1943-541X.0000946
10.1177/1475921719844039
10.1061/(ASCE)CP.1943-5487.0000855
10.1016/j.ymssp.2022.109937
10.1109/TBME.2012.2226175
10.1111/mice.12528
10.1061/(ASCE)ST.1943-541X.0002997
10.1061/(ASCE)ST.1943-541X.0002535
10.1109/TIT.2016.2556683
10.1109/TPAMI.2023.3322904
10.1061/(ASCE)CP.1943-5487.0001051
10.1002/stc.1737
10.1061/(ASCE)0887-3801(2006)20:6(390)
10.1002/stc.2979
10.1177/1475921718757405
10.1007/s11831-012-9069-x
10.1002/eqe.3960
10.1061/(ASCE)BE.1943-5592.0001668
10.1177/1475921720935585
10.12989/sss.2015.15.3.555
10.1016/j.ymssp.2023.110790
10.1016/j.ymssp.2022.109585
10.1002/stc.1681
10.1061/(ASCE)CF.1943-5509.0001694
10.1061/(ASCE)CP.1943-5487.0001023
10.1109/ICASSP.2019.8683277
10.1016/j.ymssp.2024.111168
10.1109/MSP.2018.2880837
ContentType Journal Article
Copyright 2024
Copyright_xml – notice: 2024
DBID AAYXX
CITATION
DOI 10.1016/j.ymssp.2024.112136
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_ymssp_2024_112136
S0888327024010343
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXUO
AAYFN
ABBOA
ABJNI
ABMAC
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AFJKZ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DM4
DU5
EBS
EFBJH
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
JJJVA
KOM
LG5
LG9
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SPD
SST
SSV
SSZ
T5K
XPP
ZMT
ZU3
~G-
29M
9DU
AAQXK
AAYWO
AAYXX
ABDPE
ABEFU
ABFNM
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADFGL
ADJOM
ADMUD
ADNMO
AEUPX
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
APXCP
ASPBG
AVWKF
AZFZN
CAG
CITATION
COF
EFKBS
EFLBG
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
WUQ
~HD
ID FETCH-LOGICAL-c303t-fca1be71ffce9cd0efdfb870621a59e1a683c9c790e9a5ef4051a8e0a7b8a52a3
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001367741500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0888-3270
IngestDate Sat Nov 29 08:08:41 EST 2025
Tue Nov 18 21:09:43 EST 2025
Sat Mar 29 16:09:30 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Vector quantized variational autoencoder
Vibration response compression
Structural health monitoring
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c303t-fca1be71ffce9cd0efdfb870621a59e1a683c9c790e9a5ef4051a8e0a7b8a52a3
ParticipantIDs crossref_primary_10_1016_j_ymssp_2024_112136
crossref_citationtrail_10_1016_j_ymssp_2024_112136
elsevier_sciencedirect_doi_10_1016_j_ymssp_2024_112136
PublicationCentury 2000
PublicationDate 2025-02-01
2025-02-00
PublicationDateYYYYMMDD 2025-02-01
PublicationDate_xml – month: 02
  year: 2025
  text: 2025-02-01
  day: 01
PublicationDecade 2020
PublicationTitle Mechanical systems and signal processing
PublicationYear 2025
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Chen, Ni, Zhou (b0115) 2022; 29
Barker, Puckett (b0005) 2021
Metzler, Maleki, Baraniuk (b0090) 2016; 62
Zheng, Li, Li, Hao (b0245) 2023; 52
Ni, Zhang, Noori (b0150) 2020; 35
Almasri, Sadhu, Chaudhuri (b0080) 2020; 34
A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Köpf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, S. Chintala, PyTorch: an imperative style, high-performance deep learning library, Proceedings of the 33rd International Conference on Neural Information Processing Systems, Curran Associates Inc., 2019, pp. Article 721.
Łańcucki, Chorowski, Sanchez, Marxer, Chen, Dolfing, Khurana, Alumäe, Laurent (b0210) 2020
Hosny, Nik-Bakht, Moselhi (b0010) 2022; 36
Hagedorn, Liu, König, Hajdin, Blumenfeld, Stöckner, Billmaier, Grossauer, Gavin (b0015) 2023; 37
Sun, Shang, Xia, Bhowmick, Nagarajaiah (b0035) 2020; 146
Donoho (b0085) 2006; 52
Yazicigil, Haque, Kinget, Wright (b0110) 2019; 36
Prechelt (b0230) 2002
Ma, Dai, Bai, Wang, Fu (b0205) 2024
Reynders (b0260) 2012; 19
J.-P. Xiang, K. Tian, J. Zhang, MIMT: Masked Image Modeling Transformer for Video Compression, International Conference on Learning Representations, 2023.
Bao, Yu, Li, Mao, Jiao, Zou, Ou (b0105) 2015; 22
An, Xue, Ou (b0120) 2024; 211
Kang, Qiu, Zhang, Li, Xia (b0170) 2022
Duan, Lu, Ma, Huang, Ma, Zhu (b0160) 2024; 46
Oord, Vinyals (b0155) 2017; 30
I. Loshchilov, F. Hutter, Decoupled Weight Decay Regularization, International Conference on Learning Representations, 2018.
Y. Takida, T. Shibuya, W. Liao, C.-H. Lai, J. Ohmura, T. Uesaka, N. Murata, S. Takahashi, T. Kumakura, Y. Mitsufuji, SQ-VAE: Variational Bayes on Discrete Representation with Self-annealed Stochastic Quantization, International Conference on Machine Learning, PMLR, 2022, pp. 20987-21012.
Kingma (b0185) 2013
Fenerci, Kvåle, Petersen, Rønnquist, Øiseth (b0060) 2021; 147
Moser, Moaveni (b0240) 2013; 37
Bao, Tang, Li, Zhang (b0190) 2019; 18
Maes, Lombaert (b0055) 2021; 26
Zhang, Li (b0075) 2006; 20
Dong, Wan, Luo, Todd (b0125) 2023; 188
Li, Au (b0045) 2019; 132
Yang, Nagarajaiah (b0135) 2014; 140
Huh, Cheung, Agrawal, Isola (b0220) 2023
Kang, Ren, Xie, Zhao, Wang (b0065) 2023; 183
Ho, Jain, Abbeel (b0200) 2020; 33
Zhang, Yi, Qu, Li (b0050) 2022; 36
Duan, Lu, Ma, Zhu (b0165) 2023
Vaswani, Shazeer, Parmar, Uszkoreit, Jones, Gomez, Kaiser (b0195) 2017; 30
Li, Ou, Zhang, Pei, Li (b0070) 2015; 15
D'efossez, Copet, Synnaeve, Adi (b0145) 2022; abs/2210.13438
Zhang, Jung, Makeig, Rao (b0095) 2013; 60
Balageas, Fritzen, Güemes (b0040) 2010
Bao, Tang, Li (b0100) 2020; 19
Dong, Catbas (b0030) 2021; 20
Yang, Nagarajaiah, Ni (b0130) 2015; 22
Hu, Chen, Zhang, Yin, Yu, Liu, Ding (b0020) 2023; 204
Quqa, Antolini, Scarselli, Gnudi, Lico, Carissimi, Pasotti, Canegallo, Landi, Diotallevi (b0025) 2022; 36
C. Gârbacea, A.v.d. Oord, Y. Li, F.S.C. Lim, A. Luebs, O. Vinyals, T.C. Walters, Low Bit-rate Speech Coding with VQ-VAE and a WaveNet Decoder, ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2019, pp. 735-739.
F. Yu, V. Koltun, Multi-scale context aggregation by dilated convolutions, ArXiv, 1511.07122 (2015).
Dong (10.1016/j.ymssp.2024.112136_b0030) 2021; 20
10.1016/j.ymssp.2024.112136_b0140
Chen (10.1016/j.ymssp.2024.112136_b0115) 2022; 29
Bao (10.1016/j.ymssp.2024.112136_b0105) 2015; 22
Zheng (10.1016/j.ymssp.2024.112136_b0245) 2023; 52
Hu (10.1016/j.ymssp.2024.112136_b0020) 2023; 204
Bao (10.1016/j.ymssp.2024.112136_b0190) 2019; 18
10.1016/j.ymssp.2024.112136_b0180
Vaswani (10.1016/j.ymssp.2024.112136_b0195) 2017; 30
Yang (10.1016/j.ymssp.2024.112136_b0130) 2015; 22
Łańcucki (10.1016/j.ymssp.2024.112136_b0210) 2020
Yang (10.1016/j.ymssp.2024.112136_b0135) 2014; 140
Prechelt (10.1016/j.ymssp.2024.112136_b0230) 2002
10.1016/j.ymssp.2024.112136_b0215
10.1016/j.ymssp.2024.112136_b0175
Reynders (10.1016/j.ymssp.2024.112136_b0260) 2012; 19
Zhang (10.1016/j.ymssp.2024.112136_b0050) 2022; 36
Li (10.1016/j.ymssp.2024.112136_b0045) 2019; 132
Duan (10.1016/j.ymssp.2024.112136_b0160) 2024; 46
Fenerci (10.1016/j.ymssp.2024.112136_b0060) 2021; 147
Oord (10.1016/j.ymssp.2024.112136_b0155) 2017; 30
Moser (10.1016/j.ymssp.2024.112136_b0240) 2013; 37
Ni (10.1016/j.ymssp.2024.112136_b0150) 2020; 35
D'efossez (10.1016/j.ymssp.2024.112136_b0145) 2022; abs/2210.13438
Metzler (10.1016/j.ymssp.2024.112136_b0090) 2016; 62
Barker (10.1016/j.ymssp.2024.112136_b0005) 2021
Zhang (10.1016/j.ymssp.2024.112136_b0095) 2013; 60
Kingma (10.1016/j.ymssp.2024.112136_b0185) 2013
Balageas (10.1016/j.ymssp.2024.112136_b0040) 2010
Hagedorn (10.1016/j.ymssp.2024.112136_b0015) 2023; 37
An (10.1016/j.ymssp.2024.112136_b0120) 2024; 211
Bao (10.1016/j.ymssp.2024.112136_b0100) 2020; 19
Huh (10.1016/j.ymssp.2024.112136_b0220) 2023
Sun (10.1016/j.ymssp.2024.112136_b0035) 2020; 146
10.1016/j.ymssp.2024.112136_b0235
Quqa (10.1016/j.ymssp.2024.112136_b0025) 2022; 36
Maes (10.1016/j.ymssp.2024.112136_b0055) 2021; 26
Duan (10.1016/j.ymssp.2024.112136_b0165) 2023
Yazicigil (10.1016/j.ymssp.2024.112136_b0110) 2019; 36
Zhang (10.1016/j.ymssp.2024.112136_b0075) 2006; 20
Hosny (10.1016/j.ymssp.2024.112136_b0010) 2022; 36
Li (10.1016/j.ymssp.2024.112136_b0070) 2015; 15
Almasri (10.1016/j.ymssp.2024.112136_b0080) 2020; 34
Donoho (10.1016/j.ymssp.2024.112136_b0085) 2006; 52
Ma (10.1016/j.ymssp.2024.112136_b0205) 2024
Ho (10.1016/j.ymssp.2024.112136_b0200) 2020; 33
Dong (10.1016/j.ymssp.2024.112136_b0125) 2023; 188
Kang (10.1016/j.ymssp.2024.112136_b0170) 2022
10.1016/j.ymssp.2024.112136_b0225
Kang (10.1016/j.ymssp.2024.112136_b0065) 2023; 183
References_xml – volume: 36
  start-page: 04022013
  year: 2022
  ident: b0025
  article-title: Phase Change Memories in Smart Sensing Solutions for Structural Health Monitoring
  publication-title: J. Comput. Civ. Eng.
– volume: 26
  start-page: 04721001
  year: 2021
  ident: b0055
  article-title: Monitoring Railway Bridge KW51 Before, During, and After Retrofitting
  publication-title: J. Bridg. Eng.
– volume: 204
  year: 2023
  ident: b0020
  article-title: Vision-based multi-point real-time monitoring of dynamic displacement of large-span cable-stayed bridges
  publication-title: Mech. Syst. Sig. Process.
– volume: abs/2210.13438
  year: 2022
  ident: b0145
  publication-title: High Fidelity Neural Audio Compression, ArXiv
– volume: 211
  year: 2024
  ident: b0120
  article-title: Deep learning-based sparsity-free compressive sensing method for high accuracy structural vibration response reconstruction
  publication-title: Mech. Syst. Sig. Process.
– start-page: 14096
  year: 2023
  end-page: 14113
  ident: b0220
  article-title: Straightening out the straight-through estimator: Overcoming optimization challenges in vector quantized networks
  publication-title: International Conference on Machine Learning, PMLR
– volume: 52
  start-page: 1289
  year: 2006
  end-page: 1306
  ident: b0085
  article-title: Compressed sensing
  publication-title: IEEE Trans. Inf. Theory
– volume: 188
  year: 2023
  ident: b0125
  article-title: A fast sparsity-free compressive sensing approach for vibration data reconstruction using deep convolutional GAN
  publication-title: Mech. Syst. Sig. Process.
– volume: 36
  start-page: 04021109
  year: 2022
  ident: b0050
  article-title: Detecting Hinge Joint Damage in Hollow Slab Bridges Using Mode Shapes Extracted from Vehicle Response
  publication-title: J. Perform. Constr. Facil
– start-page: 3739
  year: 2022
  end-page: 3748
  ident: b0170
  article-title: Pilc: Practical image lossless compression with an end-to-end gpu oriented neural framework
  publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
– volume: 33
  start-page: 6840
  year: 2020
  end-page: 6851
  ident: b0200
  article-title: Denoising diffusion probabilistic models
  publication-title: Advances in Neural Information Processing Systems
– start-page: 1
  year: 2020
  end-page: 7
  ident: b0210
  article-title: Robust training of vector quantized bottleneck models
  publication-title: 2020 International Joint Conference on Neural Networks (IJCNN)
– volume: 37
  start-page: 15
  year: 2013
  end-page: 26
  ident: b0240
  article-title: Design and deployment of a continuous monitoring system for the dowling hall footbridges
  publication-title: Exp. Tech.
– volume: 30
  year: 2017
  ident: b0195
  article-title: I.J.A.i.n.i.p.s. Polosukhin, Attention is all you need
  publication-title: Adv. Neural Inf. Proces. Syst.
– volume: 34
  start-page: 04019041
  year: 2020
  ident: b0080
  article-title: Toward Compressed Sensing of Structural Monitoring Data Using Discrete Cosine Transform
  publication-title: J. Comput. Civ. Eng.
– reference: A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Köpf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, S. Chintala, PyTorch: an imperative style, high-performance deep learning library, Proceedings of the 33rd International Conference on Neural Information Processing Systems, Curran Associates Inc., 2019, pp. Article 721.
– reference: Y. Takida, T. Shibuya, W. Liao, C.-H. Lai, J. Ohmura, T. Uesaka, N. Murata, S. Takahashi, T. Kumakura, Y. Mitsufuji, SQ-VAE: Variational Bayes on Discrete Representation with Self-annealed Stochastic Quantization, International Conference on Machine Learning, PMLR, 2022, pp. 20987-21012.
– year: 2010
  ident: b0040
  article-title: Structural health monitoring
– volume: 29
  start-page: e2979
  year: 2022
  ident: b0115
  article-title: A deep learning framework for adaptive compressive sensing of high-speed train vibration responses
  publication-title: Struct. Control Health Monit.
– volume: 60
  start-page: 300
  year: 2013
  end-page: 309
  ident: b0095
  article-title: Compressed Sensing for Energy-Efficient Wireless Telemonitoring of Noninvasive Fetal ECG Via Block Sparse Bayesian Learning
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 22
  start-page: 433
  year: 2015
  end-page: 448
  ident: b0105
  article-title: Compressive sensing-based lost data recovery of fast-moving wireless sensing for structural health monitoring
  publication-title: Struct. Control Health Monit.
– volume: 37
  start-page: 04022041
  year: 2023
  ident: b0015
  article-title: BIM-Enabled Infrastructure Asset Management Using Information Containers and Semantic Web
  publication-title: J. Comput. Civ. Eng.
– volume: 20
  start-page: 692
  year: 2021
  end-page: 743
  ident: b0030
  article-title: A review of computer vision–based structural health monitoring at local and global levels
  publication-title: Struct. Health Monit.
– volume: 140
  start-page: 04014032
  year: 2014
  ident: b0135
  article-title: Data Compression of Structural Seismic Responses via Principled Independent Component Analysis
  publication-title: J. Struct. Eng.
– start-page: 5694
  year: 2024
  end-page: 5703
  ident: b0205
  article-title: Rewrite the Stars
  publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
– reference: C. Gârbacea, A.v.d. Oord, Y. Li, F.S.C. Lim, A. Luebs, O. Vinyals, T.C. Walters, Low Bit-rate Speech Coding with VQ-VAE and a WaveNet Decoder, ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2019, pp. 735-739.
– volume: 62
  start-page: 5117
  year: 2016
  end-page: 5144
  ident: b0090
  article-title: From Denoising to Compressed Sensing
  publication-title: IEEE Trans. Inf. Theory
– volume: 15
  start-page: 555
  year: 2015
  end-page: 576
  ident: b0070
  article-title: Research and practice of health monitoring for long-span bridges in the mainland of China
  publication-title: Smart Struct. Syst.
– volume: 147
  start-page: 04721003
  year: 2021
  ident: b0060
  article-title: Data Set from Long-Term Wind and Acceleration Monitoring of the Hardanger Bridge
  publication-title: J. Struct. Eng.
– volume: 183
  year: 2023
  ident: b0065
  article-title: An enhanced method to reduce reconstruction error of compressed sensing for structure vibration signals
  publication-title: Mech. Syst. Sig. Process.
– volume: 20
  start-page: 390
  year: 2006
  end-page: 399
  ident: b0075
  article-title: Wavelet-Based Vibration Sensor Data Compression Technique for Civil Infrastructure Condition Monitoring
  publication-title: J. Comput. Civ. Eng.
– volume: 19
  start-page: 293
  year: 2020
  end-page: 304
  ident: b0100
  article-title: Compressive-sensing data reconstruction for structural health monitoring: a machine-learning approach
  publication-title: Struct. Health Monit.
– volume: 19
  start-page: 51
  year: 2012
  end-page: 124
  ident: b0260
  article-title: System Identification Methods for (Operational) Modal Analysis: Review and Comparison
  publication-title: Arch. Comput. Meth. Eng.
– volume: 132
  start-page: 490
  year: 2019
  end-page: 511
  ident: b0045
  article-title: An expectation-maximization algorithm for Bayesian operational modal analysis with multiple (possibly close) modes
  publication-title: Mech. Syst. Sig. Process.
– volume: 46
  start-page: 436
  year: 2024
  end-page: 450
  ident: b0160
  article-title: QARV: Quantization-Aware ResNet VAE for Lossy Image Compression
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– start-page: 1312.6114
  year: 2013
  ident: b0185
  publication-title: Auto-encoding variational bayes, ArXiv
– reference: I. Loshchilov, F. Hutter, Decoupled Weight Decay Regularization, International Conference on Learning Representations, 2018.
– volume: 35
  start-page: 685
  year: 2020
  end-page: 700
  ident: b0150
  article-title: Deep learning for data anomaly detection and data compression of a long-span suspension bridge
  publication-title: Comput. Aided Civ. Inf. Eng.
– start-page: 198
  year: 2023
  end-page: 207
  ident: b0165
  article-title: Lossy image compression with quantized hierarchical vaes
  publication-title: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision
– volume: 22
  start-page: 1119
  year: 2015
  end-page: 1131
  ident: b0130
  article-title: Data compression of very large-scale structural seismic and typhoon responses by low-rank representation with matrix reshape
  publication-title: Struct. Control Health Monit.
– volume: 30
  start-page: 6306
  year: 2017
  end-page: 6315
  ident: b0155
  article-title: Neural discrete representation learning
  publication-title: Advances in neural information processing systems
– volume: 52
  start-page: 3369
  year: 2023
  end-page: 3391
  ident: b0245
  article-title: Multi-channel response reconstruction using transformer based generative adversarial network
  publication-title: Earthq. Eng. Struct. Dyn.
– volume: 18
  start-page: 401
  year: 2019
  end-page: 421
  ident: b0190
  article-title: Computer vision and deep learning–based data anomaly detection method for structural health monitoring
  publication-title: Struct. Health Monit.
– volume: 36
  start-page: 04022012
  year: 2022
  ident: b0010
  article-title: Physical Distancing Analytics for Construction Planning Using 4D BIM
  publication-title: J. Comput. Civ. Eng.
– reference: F. Yu, V. Koltun, Multi-scale context aggregation by dilated convolutions, ArXiv, 1511.07122 (2015).
– start-page: 55
  year: 2002
  end-page: 69
  ident: b0230
  article-title: Early stopping-but when?, Neural Networks: Tricks of the trade
  publication-title: Springer
– reference: J.-P. Xiang, K. Tian, J. Zhang, MIMT: Masked Image Modeling Transformer for Video Compression, International Conference on Learning Representations, 2023.
– volume: 36
  start-page: 81
  year: 2019
  end-page: 100
  ident: b0110
  article-title: Taking Compressive Sensing to the Hardware Level: Breaking Fundamental Radio-Frequency Hardware Performance Tradeoffs
  publication-title: IEEE Signal Process Mag.
– year: 2021
  ident: b0005
  article-title: Design of highway bridges: An LRFD approach
  publication-title: John Wiley & Sons
– volume: 146
  start-page: 04020073
  year: 2020
  ident: b0035
  article-title: Review of Bridge Structural Health Monitoring Aided by Big Data and Artificial Intelligence: From Condition Assessment to Damage Detection
  publication-title: J. Struct. Eng.
– volume: abs/2210.13438
  year: 2022
  ident: 10.1016/j.ymssp.2024.112136_b0145
  publication-title: High Fidelity Neural Audio Compression, ArXiv
– volume: 37
  start-page: 15
  year: 2013
  ident: 10.1016/j.ymssp.2024.112136_b0240
  article-title: Design and deployment of a continuous monitoring system for the dowling hall footbridges
  publication-title: Exp. Tech.
  doi: 10.1111/j.1747-1567.2011.00751.x
– volume: 52
  start-page: 1289
  year: 2006
  ident: 10.1016/j.ymssp.2024.112136_b0085
  article-title: Compressed sensing
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.2006.871582
– volume: 36
  start-page: 04022013
  year: 2022
  ident: 10.1016/j.ymssp.2024.112136_b0025
  article-title: Phase Change Memories in Smart Sensing Solutions for Structural Health Monitoring
  publication-title: J. Comput. Civ. Eng.
  doi: 10.1061/(ASCE)CP.1943-5487.0001027
– volume: 132
  start-page: 490
  year: 2019
  ident: 10.1016/j.ymssp.2024.112136_b0045
  article-title: An expectation-maximization algorithm for Bayesian operational modal analysis with multiple (possibly close) modes
  publication-title: Mech. Syst. Sig. Process.
  doi: 10.1016/j.ymssp.2019.06.036
– volume: 140
  start-page: 04014032
  year: 2014
  ident: 10.1016/j.ymssp.2024.112136_b0135
  article-title: Data Compression of Structural Seismic Responses via Principled Independent Component Analysis
  publication-title: J. Struct. Eng.
  doi: 10.1061/(ASCE)ST.1943-541X.0000946
– volume: 19
  start-page: 293
  year: 2020
  ident: 10.1016/j.ymssp.2024.112136_b0100
  article-title: Compressive-sensing data reconstruction for structural health monitoring: a machine-learning approach
  publication-title: Struct. Health Monit.
  doi: 10.1177/1475921719844039
– volume: 30
  start-page: 6306
  year: 2017
  ident: 10.1016/j.ymssp.2024.112136_b0155
  article-title: Neural discrete representation learning
  publication-title: Advances in neural information processing systems
– volume: 34
  start-page: 04019041
  year: 2020
  ident: 10.1016/j.ymssp.2024.112136_b0080
  article-title: Toward Compressed Sensing of Structural Monitoring Data Using Discrete Cosine Transform
  publication-title: J. Comput. Civ. Eng.
  doi: 10.1061/(ASCE)CP.1943-5487.0000855
– volume: 188
  year: 2023
  ident: 10.1016/j.ymssp.2024.112136_b0125
  article-title: A fast sparsity-free compressive sensing approach for vibration data reconstruction using deep convolutional GAN
  publication-title: Mech. Syst. Sig. Process.
  doi: 10.1016/j.ymssp.2022.109937
– volume: 60
  start-page: 300
  year: 2013
  ident: 10.1016/j.ymssp.2024.112136_b0095
  article-title: Compressed Sensing for Energy-Efficient Wireless Telemonitoring of Noninvasive Fetal ECG Via Block Sparse Bayesian Learning
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2012.2226175
– volume: 33
  start-page: 6840
  year: 2020
  ident: 10.1016/j.ymssp.2024.112136_b0200
  article-title: Denoising diffusion probabilistic models
  publication-title: Advances in Neural Information Processing Systems
– volume: 35
  start-page: 685
  year: 2020
  ident: 10.1016/j.ymssp.2024.112136_b0150
  article-title: Deep learning for data anomaly detection and data compression of a long-span suspension bridge
  publication-title: Comput. Aided Civ. Inf. Eng.
  doi: 10.1111/mice.12528
– volume: 147
  start-page: 04721003
  year: 2021
  ident: 10.1016/j.ymssp.2024.112136_b0060
  article-title: Data Set from Long-Term Wind and Acceleration Monitoring of the Hardanger Bridge
  publication-title: J. Struct. Eng.
  doi: 10.1061/(ASCE)ST.1943-541X.0002997
– ident: 10.1016/j.ymssp.2024.112136_b0180
– volume: 146
  start-page: 04020073
  year: 2020
  ident: 10.1016/j.ymssp.2024.112136_b0035
  article-title: Review of Bridge Structural Health Monitoring Aided by Big Data and Artificial Intelligence: From Condition Assessment to Damage Detection
  publication-title: J. Struct. Eng.
  doi: 10.1061/(ASCE)ST.1943-541X.0002535
– year: 2010
  ident: 10.1016/j.ymssp.2024.112136_b0040
– volume: 30
  year: 2017
  ident: 10.1016/j.ymssp.2024.112136_b0195
  article-title: I.J.A.i.n.i.p.s. Polosukhin, Attention is all you need
  publication-title: Adv. Neural Inf. Proces. Syst.
– volume: 62
  start-page: 5117
  year: 2016
  ident: 10.1016/j.ymssp.2024.112136_b0090
  article-title: From Denoising to Compressed Sensing
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.2016.2556683
– volume: 46
  start-page: 436
  year: 2024
  ident: 10.1016/j.ymssp.2024.112136_b0160
  article-title: QARV: Quantization-Aware ResNet VAE for Lossy Image Compression
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2023.3322904
– ident: 10.1016/j.ymssp.2024.112136_b0225
– volume: 37
  start-page: 04022041
  year: 2023
  ident: 10.1016/j.ymssp.2024.112136_b0015
  article-title: BIM-Enabled Infrastructure Asset Management Using Information Containers and Semantic Web
  publication-title: J. Comput. Civ. Eng.
  doi: 10.1061/(ASCE)CP.1943-5487.0001051
– volume: 22
  start-page: 1119
  year: 2015
  ident: 10.1016/j.ymssp.2024.112136_b0130
  article-title: Data compression of very large-scale structural seismic and typhoon responses by low-rank representation with matrix reshape
  publication-title: Struct. Control Health Monit.
  doi: 10.1002/stc.1737
– volume: 20
  start-page: 390
  year: 2006
  ident: 10.1016/j.ymssp.2024.112136_b0075
  article-title: Wavelet-Based Vibration Sensor Data Compression Technique for Civil Infrastructure Condition Monitoring
  publication-title: J. Comput. Civ. Eng.
  doi: 10.1061/(ASCE)0887-3801(2006)20:6(390)
– volume: 29
  start-page: e2979
  year: 2022
  ident: 10.1016/j.ymssp.2024.112136_b0115
  article-title: A deep learning framework for adaptive compressive sensing of high-speed train vibration responses
  publication-title: Struct. Control Health Monit.
  doi: 10.1002/stc.2979
– volume: 18
  start-page: 401
  year: 2019
  ident: 10.1016/j.ymssp.2024.112136_b0190
  article-title: Computer vision and deep learning–based data anomaly detection method for structural health monitoring
  publication-title: Struct. Health Monit.
  doi: 10.1177/1475921718757405
– ident: 10.1016/j.ymssp.2024.112136_b0235
– volume: 19
  start-page: 51
  year: 2012
  ident: 10.1016/j.ymssp.2024.112136_b0260
  article-title: System Identification Methods for (Operational) Modal Analysis: Review and Comparison
  publication-title: Arch. Comput. Meth. Eng.
  doi: 10.1007/s11831-012-9069-x
– year: 2021
  ident: 10.1016/j.ymssp.2024.112136_b0005
  article-title: Design of highway bridges: An LRFD approach
  publication-title: John Wiley & Sons
– volume: 52
  start-page: 3369
  year: 2023
  ident: 10.1016/j.ymssp.2024.112136_b0245
  article-title: Multi-channel response reconstruction using transformer based generative adversarial network
  publication-title: Earthq. Eng. Struct. Dyn.
  doi: 10.1002/eqe.3960
– start-page: 5694
  year: 2024
  ident: 10.1016/j.ymssp.2024.112136_b0205
  article-title: Rewrite the Stars
  publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
– volume: 26
  start-page: 04721001
  year: 2021
  ident: 10.1016/j.ymssp.2024.112136_b0055
  article-title: Monitoring Railway Bridge KW51 Before, During, and After Retrofitting
  publication-title: J. Bridg. Eng.
  doi: 10.1061/(ASCE)BE.1943-5592.0001668
– volume: 20
  start-page: 692
  year: 2021
  ident: 10.1016/j.ymssp.2024.112136_b0030
  article-title: A review of computer vision–based structural health monitoring at local and global levels
  publication-title: Struct. Health Monit.
  doi: 10.1177/1475921720935585
– ident: 10.1016/j.ymssp.2024.112136_b0140
– start-page: 1
  year: 2020
  ident: 10.1016/j.ymssp.2024.112136_b0210
  article-title: Robust training of vector quantized bottleneck models
– volume: 15
  start-page: 555
  year: 2015
  ident: 10.1016/j.ymssp.2024.112136_b0070
  article-title: Research and practice of health monitoring for long-span bridges in the mainland of China
  publication-title: Smart Struct. Syst.
  doi: 10.12989/sss.2015.15.3.555
– volume: 204
  year: 2023
  ident: 10.1016/j.ymssp.2024.112136_b0020
  article-title: Vision-based multi-point real-time monitoring of dynamic displacement of large-span cable-stayed bridges
  publication-title: Mech. Syst. Sig. Process.
  doi: 10.1016/j.ymssp.2023.110790
– volume: 183
  year: 2023
  ident: 10.1016/j.ymssp.2024.112136_b0065
  article-title: An enhanced method to reduce reconstruction error of compressed sensing for structure vibration signals
  publication-title: Mech. Syst. Sig. Process.
  doi: 10.1016/j.ymssp.2022.109585
– start-page: 55
  year: 2002
  ident: 10.1016/j.ymssp.2024.112136_b0230
  article-title: Early stopping-but when?, Neural Networks: Tricks of the trade
  publication-title: Springer
– ident: 10.1016/j.ymssp.2024.112136_b0215
– start-page: 3739
  year: 2022
  ident: 10.1016/j.ymssp.2024.112136_b0170
  article-title: Pilc: Practical image lossless compression with an end-to-end gpu oriented neural framework
– volume: 22
  start-page: 433
  year: 2015
  ident: 10.1016/j.ymssp.2024.112136_b0105
  article-title: Compressive sensing-based lost data recovery of fast-moving wireless sensing for structural health monitoring
  publication-title: Struct. Control Health Monit.
  doi: 10.1002/stc.1681
– volume: 36
  start-page: 04021109
  year: 2022
  ident: 10.1016/j.ymssp.2024.112136_b0050
  article-title: Detecting Hinge Joint Damage in Hollow Slab Bridges Using Mode Shapes Extracted from Vehicle Response
  publication-title: J. Perform. Constr. Facil
  doi: 10.1061/(ASCE)CF.1943-5509.0001694
– start-page: 1312.6114
  year: 2013
  ident: 10.1016/j.ymssp.2024.112136_b0185
– volume: 36
  start-page: 04022012
  year: 2022
  ident: 10.1016/j.ymssp.2024.112136_b0010
  article-title: Physical Distancing Analytics for Construction Planning Using 4D BIM
  publication-title: J. Comput. Civ. Eng.
  doi: 10.1061/(ASCE)CP.1943-5487.0001023
– ident: 10.1016/j.ymssp.2024.112136_b0175
  doi: 10.1109/ICASSP.2019.8683277
– volume: 211
  year: 2024
  ident: 10.1016/j.ymssp.2024.112136_b0120
  article-title: Deep learning-based sparsity-free compressive sensing method for high accuracy structural vibration response reconstruction
  publication-title: Mech. Syst. Sig. Process.
  doi: 10.1016/j.ymssp.2024.111168
– volume: 36
  start-page: 81
  year: 2019
  ident: 10.1016/j.ymssp.2024.112136_b0110
  article-title: Taking Compressive Sensing to the Hardware Level: Breaking Fundamental Radio-Frequency Hardware Performance Tradeoffs
  publication-title: IEEE Signal Process Mag.
  doi: 10.1109/MSP.2018.2880837
– start-page: 198
  year: 2023
  ident: 10.1016/j.ymssp.2024.112136_b0165
  article-title: Lossy image compression with quantized hierarchical vaes
– start-page: 14096
  year: 2023
  ident: 10.1016/j.ymssp.2024.112136_b0220
  article-title: Straightening out the straight-through estimator: Overcoming optimization challenges in vector quantized networks
  publication-title: International Conference on Machine Learning, PMLR
SSID ssj0009406
Score 2.459187
Snippet •The frequency enhanced vector quantized variational autoencoder (FEVQVAE) is proposed for structural vibration response compression.•The proposed dual-branch...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 112136
SubjectTerms Deep learning
Structural health monitoring
Vector quantized variational autoencoder
Vibration response compression
Title Frequency enhanced vector quantized variational autoencoder for structural vibration response compression
URI https://dx.doi.org/10.1016/j.ymssp.2024.112136
Volume 224
WOSCitedRecordID wos001367741500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0888-3270
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0009406
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT-MwELa6wGE5IGBZLU_5wI0NatzmdawQCJBAHEAqp8h17CWIdau-BPx6ZuzYDQ9VcOASRVbsRpmv45nxzDeE7IccFH-hiiBmqhW0EybhL6VkAJubiJhS4DJw02wiubxMu93sqtF4drUw04dE6_TxMRt8q6hhDISNpbNfELdfFAbgHoQOVxA7XD8l-JOhzY5-OpD6zp7vT01oHgso9bh8xgHwkF0UkE_GfWSzRFIJzDm0jLKGjWOKvrQByNCm0kqTgm5TZ3Xdrr2QWEFsSywtB7o5lcDsECz1stUIbpcE-XYn9lgEwzkenh2jAW_7-t_dpPTR34kBWqkHbnoVo2CRS2uuqbI0aDHbIsTpXcbaNc0ZIrdc_KFSt_GF-8On_6MRUoyy9uHs6dcU2m-2Np9w6HLZ7nOzSI6L5HaRH2SRJVEGSn2xc3bcPZ9RNrdNZ1b_7o6zymQHvnuXj-2amq1yvUpWKieDdiw41khD6nWyXKOe_EVKDxPqYEItTKiHCa3BhNZgQgEmdAYT6mFCHUxoDSYb5Obk-ProNKjabgQC7JlxoAQPezIJlRIyE0VTqkL18DichTzKZMjjtCUykWRNmfFIKjD5Q57KJk96KY8Yb_0mC7qv5R9CJVhIsNvCt8SSbcXSXjPhMXgUKTjCTBWbhLmPlouKkx5bozzkcwS2Sf76SQNLyTL_8dhJI6-sSmst5oCveRO3vvY72-TnDPo7ZAGkIHfJkpiOy9FwrwLXC-rZobU
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Frequency+enhanced+vector+quantized+variational+autoencoder+for+structural+vibration+response+compression&rft.jtitle=Mechanical+systems+and+signal+processing&rft.au=Xue%2C+Zhilin&rft.au=An%2C+Yonghui&rft.au=Ou%2C+Jinping&rft.date=2025-02-01&rft.issn=0888-3270&rft.volume=224&rft.spage=112136&rft_id=info:doi/10.1016%2Fj.ymssp.2024.112136&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ymssp_2024_112136
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0888-3270&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0888-3270&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0888-3270&client=summon