Numerical solution of the nonlinear Schrödinger equation with wave operator on unbounded domains

In this paper, we generalize the unified approach proposed in Zhang et al. [J. Zhang, Z. Xu, and X. Wu, Phys. Rev. E 78, 026709 (2008)] to design the nonlinear local absorbing boundary conditions (LABCs) for the nonlinear Schrödinger equation with wave operator on unbounded domains. In fact, based o...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Physical review. E, Statistical, nonlinear, and soft matter physics Ročník 90; číslo 3; s. 033309
Hlavní autoři: Li, Hongwei, Wu, Xiaonan, Zhang, Jiwei
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States 01.09.2014
Témata:
ISSN:1539-3755, 1550-2376, 1550-2376
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this paper, we generalize the unified approach proposed in Zhang et al. [J. Zhang, Z. Xu, and X. Wu, Phys. Rev. E 78, 026709 (2008)] to design the nonlinear local absorbing boundary conditions (LABCs) for the nonlinear Schrödinger equation with wave operator on unbounded domains. In fact, based on the methodology underlying the unified approach, we first split the original equation into two parts-the linear equation and the nonlinear equation-then achieve a one-way operator to approximate the linear equation to make the wave outgoing, and finally combine the one-way operator with the nonlinear equation to achieve the nonlinear LABCs. The stability of the equation with the nonlinear LABCs is also analyzed by introducing some auxiliary variables, and some numerical examples are presented to verify the accuracy and effectiveness of our proposed method.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1539-3755
1550-2376
1550-2376
DOI:10.1103/PhysRevE.90.033309