Occupancy map-based low complexity motion prediction for video-based point cloud compression

This paper proposes an occupancy map-based low complexity motion prediction method for video-based point cloud compression (V-PCC). We propose to utilize the occupancy map, direction gradient, and regional dispersion to divide the attribute maps into static, complex, and common blocks. Then, we prop...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of visual communication and image representation Jg. 100; S. 104110
Hauptverfasser: Wang, Yihan, Wang, Yongfang, Cui, Tengyao, Fang, Zhijun
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Inc 01.04.2024
Schlagworte:
ISSN:1047-3203, 1095-9076
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract This paper proposes an occupancy map-based low complexity motion prediction method for video-based point cloud compression (V-PCC). We propose to utilize the occupancy map, direction gradient, and regional dispersion to divide the attribute maps into static, complex, and common blocks. Then, we propose an early termination method for static blocks, an adaptive motion search range method for complex blocks, and an early inter prediction mode decision algorithm for affine motion region in common blocks. [Display omitted] •The attribute maps are divided into static, complex, and common blocks.•An early termination algorithm is proposed for static blocks.•An adaptive motion search range method is proposed for complex blocks.•An early inter prediction mode decision algorithm is proposed for common block. This paper proposes an occupancy map-based low complexity motion prediction method for video-based point cloud compression (V-PCC). Firstly, we propose to utilize the occupancy map, direction gradient, and regional dispersion to divide the attribute maps into static, complex, and common blocks. Then, we propose an early termination method for static blocks, an adaptive motion search range method for complex blocks, and an early inter prediction mode decision algorithm for affine motion regions in common blocks. Experiment results show that, in comparison to the test model category2 (TMC2) v15.0, called the anchor method, the average bitrate savings of Y, U, and V components of the proposed method achieve 24.27%, 32.64%, and 31.23% on 8i voxelized full bodies version 2 (8iVFBv2) dataset, respectively. Further, the time savings is 41.97% for attribute maps. Similarly, the proposed method also achieves consistent performance on Microsoft voxelized upper bodies (MVUB) dataset.
AbstractList This paper proposes an occupancy map-based low complexity motion prediction method for video-based point cloud compression (V-PCC). We propose to utilize the occupancy map, direction gradient, and regional dispersion to divide the attribute maps into static, complex, and common blocks. Then, we propose an early termination method for static blocks, an adaptive motion search range method for complex blocks, and an early inter prediction mode decision algorithm for affine motion region in common blocks. [Display omitted] •The attribute maps are divided into static, complex, and common blocks.•An early termination algorithm is proposed for static blocks.•An adaptive motion search range method is proposed for complex blocks.•An early inter prediction mode decision algorithm is proposed for common block. This paper proposes an occupancy map-based low complexity motion prediction method for video-based point cloud compression (V-PCC). Firstly, we propose to utilize the occupancy map, direction gradient, and regional dispersion to divide the attribute maps into static, complex, and common blocks. Then, we propose an early termination method for static blocks, an adaptive motion search range method for complex blocks, and an early inter prediction mode decision algorithm for affine motion regions in common blocks. Experiment results show that, in comparison to the test model category2 (TMC2) v15.0, called the anchor method, the average bitrate savings of Y, U, and V components of the proposed method achieve 24.27%, 32.64%, and 31.23% on 8i voxelized full bodies version 2 (8iVFBv2) dataset, respectively. Further, the time savings is 41.97% for attribute maps. Similarly, the proposed method also achieves consistent performance on Microsoft voxelized upper bodies (MVUB) dataset.
ArticleNumber 104110
Author Wang, Yihan
Fang, Zhijun
Wang, Yongfang
Cui, Tengyao
Author_xml – sequence: 1
  givenname: Yihan
  orcidid: 0000-0002-3381-3142
  surname: Wang
  fullname: Wang, Yihan
  email: wangyihan@shu.edu.cn
  organization: Shanghai Institute for Advanced Communication and Data Science, School of Communication and Information Engineering, Shanghai University, China
– sequence: 2
  givenname: Yongfang
  surname: Wang
  fullname: Wang, Yongfang
  email: yfw@shu.edu.cn
  organization: Shanghai Institute for Advanced Communication and Data Science, School of Communication and Information Engineering, Shanghai University, China
– sequence: 3
  givenname: Tengyao
  orcidid: 0000-0002-8075-4181
  surname: Cui
  fullname: Cui, Tengyao
  email: tyaocui@shu.edu.cn
  organization: Shanghai Institute for Advanced Communication and Data Science, School of Communication and Information Engineering, Shanghai University, China
– sequence: 4
  givenname: Zhijun
  surname: Fang
  fullname: Fang, Zhijun
  email: zjfang@dhu.edu.cn
  organization: School of Computer Science and Technology, Donghua University, China
BookMark eNqFkM9OwzAMhyM0JLbBE3DpC3TETdcuBw5o4p-EtAvckKLUcaRUXVMl3WBvT7vtxAFOtmx_ln7fjE1a3xJjt8AXwKG4qxf1Hl1YZDzLh0kOwC_YFLhcppKXxWTs8zIVGRdXbBZjzTkXUuRT9rlB3HW6xUOy1V1a6UgmafxXgn7bNfTt-mHhe-fbpAtkHB5b60Oyd4b8Gei8a_sEG78zRzBQjMPdNbu0uol0c65z9vH0-L5-Sd82z6_rh7cUBRd9anWRgyg0IelCkFmRXcIKSJS6qmxZVksETjIzUoK2Bgq-yq0FENIYKAWIOROnvxh8jIGs6oLb6nBQwNUoSNXqKEiNgtRJ0EDJXxS6Xo_5-qBd8w97f2JpiLV3FFRERy0OhgJhr4x3f_I_4siHDQ
CitedBy_id crossref_primary_10_1111_cgf_15278
crossref_primary_10_1016_j_jvcir_2025_104481
Cites_doi 10.3390/sym12071143
10.1109/JETCAS.2018.2885981
10.1017/ATSIP.2020.12
10.1109/ACCESS.2021.3077116
10.1109/TIP.2016.2529506
10.1109/TIP.2017.2707807
10.1109/ACCESS.2020.2991478
10.1109/TCSVT.2017.2699919
10.1145/3382506
10.1109/TCSVT.2016.2543039
10.1109/OJSP.2022.3160392
10.1016/j.cag.2018.09.012
10.1109/TIP.2019.2931621
10.1016/j.jvcir.2022.103683
10.1145/3607546.3616803
10.1145/3159170
10.1109/TCSVT.2021.3063501
ContentType Journal Article
Copyright 2024
Copyright_xml – notice: 2024
DBID AAYXX
CITATION
DOI 10.1016/j.jvcir.2024.104110
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Journalism & Communications
Engineering
EISSN 1095-9076
ExternalDocumentID 10_1016_j_jvcir_2024_104110
S1047320324000658
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
29L
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABJNI
ABMAC
ABXDB
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADFGL
ADJOM
ADMHC
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CAG
COF
CS3
DM4
DU5
EBS
EFBJH
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG5
LX9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
WH7
WUQ
XPP
YQT
ZMT
ZU3
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
CITATION
EFKBS
EFLBG
~HD
ID FETCH-LOGICAL-c303t-fa64136aecea63ed8ef5181e37abbf77b5c10e92d991afd16084ff1139dd17313
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001202545900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1047-3203
IngestDate Sat Nov 29 04:56:38 EST 2025
Tue Nov 18 21:54:27 EST 2025
Tue Jun 18 08:51:45 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Low complexity
Motion prediction
Dynamic point cloud compression
Occupancy map
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c303t-fa64136aecea63ed8ef5181e37abbf77b5c10e92d991afd16084ff1139dd17313
ORCID 0000-0002-3381-3142
0000-0002-8075-4181
ParticipantIDs crossref_primary_10_1016_j_jvcir_2024_104110
crossref_citationtrail_10_1016_j_jvcir_2024_104110
elsevier_sciencedirect_doi_10_1016_j_jvcir_2024_104110
PublicationCentury 2000
PublicationDate April 2024
2024-04-00
PublicationDateYYYYMMDD 2024-04-01
PublicationDate_xml – month: 04
  year: 2024
  text: April 2024
PublicationDecade 2020
PublicationTitle Journal of visual communication and image representation
PublicationYear 2024
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Li, Li, Liu, Li, Yang, Lin, Chen, Wu (b0145) 2018; 28
Lee, Chan, Siu (b0130) 2017
Mekuria, Blom, Cesar (b0020) 2016; 27
A.J. Hussain, L. Knight, D. Al-Jumeily, P. Fergus, H. Hamdan, Block matching algorithms for motion estimation-A comparison study.
Zhou, Ma, Liao, Shi, Yao, Chang, Kuijper (b0160) 2018; 77
Association for Computing Machinery, New York, NY, USA, 2023, 21-28.
A.L. Souto, R.L. de Queiroz, C. Dorea, A 3D motion vector database for dynamic point clouds. (2020). arXiv:2008.08438 10.48550/arXiv.2008.08438.
He, Zhu, Xu (b0110) 2017
Pan, Lei, Zhang, Wang (b0125) 2018; 14
Liu, Yao, Tu, Cheng (b0045) 2019
Shi, Li (b0050) 2022; 3
Dorina, Chou, Frossard (b0080) 2016; 25
Springer, Cham, 264(2), 356-369 10.1007/978-3-319-04960-1_32.
Li, Li, Zakharchenko, Chen, Li (b0090) 2019; 29
Kammerl, Blodow, Rusu, Gedikli, Beetz, Steinbach (b0005) 2012
Anis, Chou, Ortega (b0015) 2016
PCC Test Model Category 2 v0. In ISO/IEC JTC1/SC29 WG11 Doc N17248, Oct. 2017.
Thanou, Chou, Frossard (b0010) 2016; 25
Thanou, Chou, Frossard (b0075) 2015
de Queiroz, Chou (b0070) 2017; 26
Schwarz, Hannuksela, Fakour-Sevom, Sheikhi-Pour (b0025) 2018
Shang, Li, Zhao, Zuo (b0150) 2023; 90
S. Schwarz, G. Martin-Cocher, D. Flynn, and M. Budagavi, Common test conditions for point cloud compression. Document ISO/IEC JTC1/SC29/WG11 w17766, Ljubljana, Slovenia, (2018).
Li, Li, Zakharchenko, Chen (b0085) 2019
Ren, He, Cui (b0165) 2020; 12
C. Loop, Q. Cai, S.O. Escolano, P.A. Chou, Microsoft Voxelized Upper Bodies—A Voxelized Point Cloud Dataset, document ISO/IEC JTC1/SC29 Joint WG11/WG1 (MPEG/JPEG), (2016) 2016.
Mercat, Mäkinen, Sainio, Lemmetti, Viitanen, Vanne (b0140) 2021; 9
E. d’Eon, B. Harrison, T. Myers, P.A. Chou, 8i Voxelized Full Bodies – A voxelized point cloud dataset. Document ISO/IEC JTC1/SC29/WG11 m40059, Geneva, Switzerland, 7 (8) (2017) 11.
Costa, Dricot, Brites, Ascenso, Pereira (b0055) 2019
Chien, Liao, Yang (b0135) 2014
Bjontegaard (b0185) 2001
Hong, Pavez, Ortega, Watanabe, Nonaka (b0195) 2022
Kim, Im, Rhyu, Kim (b0095) 2020; 8
Zupancic, Bross, Hinz, Marpe (b0155) 2021
A. Singla, S. Wang, S. Göring, R. R. R. Rao, I. Viola, P. Cesar, A. Raake, Subjective quality evaluation of point clouds using remote testing. in: Proceedings of
Point Cloud Compression Category 2 Reference Software, TMC2-15.0. [Online]. Available: https://github.com/MPEGGroup/mpeg-pcc-tmc2.git.
Xiong, Gao, Wang, Li (b0115) 2022; 32
S. Schwarz, et al. 2017. Nokia’s response to cfp for point cloud compression (category 2). Document ISO/IEC JTC1/SC29/WG11 m41779, Macau, China (2017).
He, Yang, Liu, Ding (b0190) 2020; 16
Huang, An, Zhang (b0210) 2017; 2017
Cui, Zhang, Gu, Zhang, Ma (b0120) 2020
D. Graziosi, O. Nakagami, S. Kuma, A. Zaghetto, T. Suzuki, A. Tabatabai, An overview of ongoing point cloud compression standardization activities: Video-based (V-PCC) and geometry-based (G-PCC).
Schwarz (b0040) 2018; 9
9, e13. 10.1017/ATSIP.2019.20.
Hoppe, DeRose, Duchamp, McDonald, Stuetzle (b0035) 1922
10.1016/j.jvcir.2024.104110_b0105
Anis (10.1016/j.jvcir.2024.104110_b0015) 2016
Costa (10.1016/j.jvcir.2024.104110_b0055) 2019
10.1016/j.jvcir.2024.104110_b0205
Schwarz (10.1016/j.jvcir.2024.104110_b0040) 2018; 9
Kim (10.1016/j.jvcir.2024.104110_b0095) 2020; 8
10.1016/j.jvcir.2024.104110_b0200
Kammerl (10.1016/j.jvcir.2024.104110_b0005) 2012
Dorina (10.1016/j.jvcir.2024.104110_b0080) 2016; 25
Huang (10.1016/j.jvcir.2024.104110_b0210) 2017; 2017
Liu (10.1016/j.jvcir.2024.104110_b0045) 2019
Thanou (10.1016/j.jvcir.2024.104110_b0075) 2015
He (10.1016/j.jvcir.2024.104110_b0190) 2020; 16
Li (10.1016/j.jvcir.2024.104110_b0085) 2019
Thanou (10.1016/j.jvcir.2024.104110_b0010) 2016; 25
Zhou (10.1016/j.jvcir.2024.104110_b0160) 2018; 77
10.1016/j.jvcir.2024.104110_b0175
de Queiroz (10.1016/j.jvcir.2024.104110_b0070) 2017; 26
Li (10.1016/j.jvcir.2024.104110_b0145) 2018; 28
10.1016/j.jvcir.2024.104110_b0170
Lee (10.1016/j.jvcir.2024.104110_b0130) 2017
Mekuria (10.1016/j.jvcir.2024.104110_b0020) 2016; 27
10.1016/j.jvcir.2024.104110_b0030
Shang (10.1016/j.jvcir.2024.104110_b0150) 2023; 90
Hoppe (10.1016/j.jvcir.2024.104110_b0035) 1922
Mercat (10.1016/j.jvcir.2024.104110_b0140) 2021; 9
Ren (10.1016/j.jvcir.2024.104110_b0165) 2020; 12
Cui (10.1016/j.jvcir.2024.104110_b0120) 2020
Pan (10.1016/j.jvcir.2024.104110_b0125) 2018; 14
Chien (10.1016/j.jvcir.2024.104110_b0135) 2014
Hong (10.1016/j.jvcir.2024.104110_b0195) 2022
Xiong (10.1016/j.jvcir.2024.104110_b0115) 2022; 32
Li (10.1016/j.jvcir.2024.104110_b0090) 2019; 29
Shi (10.1016/j.jvcir.2024.104110_b0050) 2022; 3
10.1016/j.jvcir.2024.104110_b0180
Zupancic (10.1016/j.jvcir.2024.104110_b0155) 2021
Bjontegaard (10.1016/j.jvcir.2024.104110_b0185) 2001
He (10.1016/j.jvcir.2024.104110_b0110) 2017
10.1016/j.jvcir.2024.104110_b0065
10.1016/j.jvcir.2024.104110_b0100
Schwarz (10.1016/j.jvcir.2024.104110_b0025) 2018
10.1016/j.jvcir.2024.104110_b0060
References_xml – start-page: 498
  year: 2019
  end-page: 507
  ident: b0085
  publication-title: Advanced 3D motion prediction for video based point cloud attributes compression
– reference: 9, e13. 10.1017/ATSIP.2019.20.
– start-page: 1
  year: 2017
  end-page: 6
  ident: b0110
  publication-title: Best-effort projection based attribute compression for 3D point cloud
– volume: 9
  start-page: 67813
  year: 2021
  end-page: 67828
  ident: b0140
  article-title: Comparative rate-distortion-complexity analysis of VVC and HEVC video codecs.
  publication-title: Access
– start-page: 1
  year: 2021
  end-page: 5
  ident: b0155
  publication-title: Encoding complexity analysis and reduction for a practically-oriented VVC encoder implementation
– reference: S. Schwarz, G. Martin-Cocher, D. Flynn, and M. Budagavi, Common test conditions for point cloud compression. Document ISO/IEC JTC1/SC29/WG11 w17766, Ljubljana, Slovenia, (2018).
– volume: 25
  start-page: 1765
  year: 2016
  end-page: 1778
  ident: b0010
  article-title: Graph-based compression of dynamic 3D point cloud sequences
  publication-title: IEEE Trans. Image Process.
– reference: A.L. Souto, R.L. de Queiroz, C. Dorea, A 3D motion vector database for dynamic point clouds. (2020). arXiv:2008.08438 10.48550/arXiv.2008.08438.
– start-page: 3696
  year: 2014
  end-page: 3699
  ident: b0135
  publication-title: Enhanced AMVP mechanism based adaptive motion search range decision algorithm for fast HEVC coding
– volume: 27
  start-page: 828
  year: 2016
  end-page: 842
  ident: b0020
  article-title: Design, implementation, and evaluation of a point cloud codec for tele-immersive video
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
– year: 2001
  ident: b0185
  article-title: Calculation of average PSNR differences between RD curves, document ITU-T SG16 Q6, VCEG-M33
– volume: 12
  start-page: 1143
  year: 2020
  ident: b0165
  article-title: An improved fast affine motion estimation based on edge detection algorithm for VVC
  publication-title: Symmetry
– volume: 8
  start-page: 83538
  year: 2020
  end-page: 83547
  ident: b0095
  article-title: 3D motion estimation and compensation method for video-based point cloud compression
  publication-title: IEEE Access
– volume: 3
  start-page: 155
  year: 2022
  end-page: 168
  ident: b0050
  article-title: Patch re-segmentation and packing for dynamic point cloud compression via back-and-forth structure
  publication-title: IEEE Open J. Signal Process.
– reference: Springer, Cham, 264(2), 356-369 10.1007/978-3-319-04960-1_32.
– reference: Point Cloud Compression Category 2 Reference Software, TMC2-15.0. [Online]. Available: https://github.com/MPEGGroup/mpeg-pcc-tmc2.git.
– reference: C. Loop, Q. Cai, S.O. Escolano, P.A. Chou, Microsoft Voxelized Upper Bodies—A Voxelized Point Cloud Dataset, document ISO/IEC JTC1/SC29 Joint WG11/WG1 (MPEG/JPEG), (2016) 2016.
– reference: Association for Computing Machinery, New York, NY, USA, 2023, 21-28.
– start-page: 1
  year: 2019
  end-page: 6
  ident: b0055
  publication-title: Improved patch packing for the MPEG V-PCC standard
– volume: 28
  start-page: 1934
  year: 2018
  end-page: 1948
  ident: b0145
  article-title: An efficient four-parameter affine motion model for video coding
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
– volume: 90
  year: 2023
  ident: b0150
  article-title: Low complexity inter coding scheme for versatile video coding (VVC)
  publication-title: J. vis. Commun. Image Represent.
– volume: 25
  start-page: 1765
  year: 2016
  end-page: 1778
  ident: b0080
  article-title: Graph-based compression of dynamic 3D point cloud sequences
  publication-title: IEEE Trans. Image Process.
– volume: 29
  start-page: 289
  year: 2019
  end-page: 302
  ident: b0090
  article-title: Advanced 3D motion prediction for video-based dynamic point cloud compression
  publication-title: IEEE Trans. Image Process.
– start-page: 904
  year: 2019
  end-page: 909
  ident: b0045
  publication-title: Data-adaptive packing method for compression of dynamic point cloud sequences
– volume: 16
  start-page: 1
  year: 2020
  end-page: 18
  ident: b0190
  article-title: Spatio-temporal saliency-based motion vector refinement for frame rate up-conversion
  publication-title: ACM Trans. Multimedia Comput. Commun. Appl.
– start-page: 6360
  year: 2016
  end-page: 6364
  ident: b0015
  publication-title: Compression of dynamic 3D point clouds using subdivisional meshes and graph wavelet transforms
– start-page: 778
  year: 2012
  end-page: 785
  ident: b0005
  publication-title: Real-time compression of point cloud streams
– start-page: 61
  year: 2018
  end-page: 65
  ident: b0025
  publication-title: 2D video coding of volumetric video data
– volume: 77
  start-page: 50
  year: 2018
  end-page: 64
  ident: b0160
  article-title: Feature fusion information statistics for feature matching in cluttered scenes
  publication-title: Comput. Graph.
– volume: 2017
  start-page: 1
  year: 2017
  end-page: 15
  ident: b0210
  article-title: Efficient AMP decision and search range adjustment algorithm for HEVC
  publication-title: J Image Video Process
– reference: A.J. Hussain, L. Knight, D. Al-Jumeily, P. Fergus, H. Hamdan, Block matching algorithms for motion estimation-A comparison study.
– reference: E. d’Eon, B. Harrison, T. Myers, P.A. Chou, 8i Voxelized Full Bodies – A voxelized point cloud dataset. Document ISO/IEC JTC1/SC29/WG11 m40059, Geneva, Switzerland, 7 (8) (2017) 11.
– start-page: 71
  year: 1922
  end-page: 78
  ident: b0035
  publication-title: Surface reconstruction from unorganized points
– volume: 26
  start-page: 3886
  year: 2017
  end-page: 3895
  ident: b0070
  article-title: Motion-compensated compression of dynamic voxelized point clouds
  publication-title: IEEE Trans. Image Process.
– start-page: 3235
  year: 2015
  end-page: 3239
  ident: b0075
  publication-title: Graph-based motion estimation and compensation for dynamic 3D point cloud compression
– volume: 32
  start-page: 813
  year: 2022
  end-page: 825
  ident: b0115
  article-title: Occupancy map guided fast video-based dynamic point cloud coding
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
– start-page: 369
  year: 2022
  end-page: 378
  ident: b0195
  publication-title: Fractional motion estimation for point cloud compression
– volume: 9
  start-page: 133
  year: 2018
  end-page: 148
  ident: b0040
  article-title: Emerging MPEG standards for point cloud compression,
  publication-title: J. Emerg. Sel. Topics Circuits Syst.
– reference: A. Singla, S. Wang, S. Göring, R. R. R. Rao, I. Viola, P. Cesar, A. Raake, Subjective quality evaluation of point clouds using remote testing. in: Proceedings of
– reference: D. Graziosi, O. Nakagami, S. Kuma, A. Zaghetto, T. Suzuki, A. Tabatabai, An overview of ongoing point cloud compression standardization activities: Video-based (V-PCC) and geometry-based (G-PCC).
– reference: PCC Test Model Category 2 v0. In ISO/IEC JTC1/SC29 WG11 Doc N17248, Oct. 2017.
– reference: S. Schwarz, et al. 2017. Nokia’s response to cfp for point cloud compression (category 2). Document ISO/IEC JTC1/SC29/WG11 m41779, Macau, China (2017).
– start-page: 1249
  year: 2017
  end-page: 1254
  ident: b0130
  publication-title: Adaptive search range by depth variant decaying weights for HEVC inter texture coding
– start-page: 103
  year: 2020
  end-page: 112
  ident: b0120
  publication-title: Gradient-based early termination of CU partition in VVC intra coding
– volume: 14
  start-page: 1
  year: 2018
  end-page: 19
  ident: b0125
  article-title: Adaptive fractional-pixel motion estimation skipped algorithm for efficient HEVC motion estimation
  publication-title: ACM Trans. Multimedia Comput. Commun. Appl.
– start-page: 61
  year: 2018
  ident: 10.1016/j.jvcir.2024.104110_b0025
– volume: 12
  start-page: 1143
  issue: 7
  year: 2020
  ident: 10.1016/j.jvcir.2024.104110_b0165
  article-title: An improved fast affine motion estimation based on edge detection algorithm for VVC
  publication-title: Symmetry
  doi: 10.3390/sym12071143
– volume: 9
  start-page: 133
  issue: 1
  year: 2018
  ident: 10.1016/j.jvcir.2024.104110_b0040
  article-title: Emerging MPEG standards for point cloud compression, IEEE
  publication-title: J. Emerg. Sel. Topics Circuits Syst.
  doi: 10.1109/JETCAS.2018.2885981
– start-page: 904
  year: 2019
  ident: 10.1016/j.jvcir.2024.104110_b0045
– ident: 10.1016/j.jvcir.2024.104110_b0205
  doi: 10.1017/ATSIP.2020.12
– ident: 10.1016/j.jvcir.2024.104110_b0175
– year: 2001
  ident: 10.1016/j.jvcir.2024.104110_b0185
– volume: 2017
  start-page: 1
  issue: 2017
  year: 2017
  ident: 10.1016/j.jvcir.2024.104110_b0210
  article-title: Efficient AMP decision and search range adjustment algorithm for HEVC
  publication-title: J Image Video Process
– volume: 9
  start-page: 67813
  year: 2021
  ident: 10.1016/j.jvcir.2024.104110_b0140
  article-title: Comparative rate-distortion-complexity analysis of VVC and HEVC video codecs. IEEE
  publication-title: Access
  doi: 10.1109/ACCESS.2021.3077116
– start-page: 778
  year: 2012
  ident: 10.1016/j.jvcir.2024.104110_b0005
– volume: 25
  start-page: 1765
  issue: 4
  year: 2016
  ident: 10.1016/j.jvcir.2024.104110_b0010
  article-title: Graph-based compression of dynamic 3D point cloud sequences
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2016.2529506
– ident: 10.1016/j.jvcir.2024.104110_b0060
– volume: 26
  start-page: 3886
  issue: 8
  year: 2017
  ident: 10.1016/j.jvcir.2024.104110_b0070
  article-title: Motion-compensated compression of dynamic voxelized point clouds
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2017.2707807
– start-page: 6360
  year: 2016
  ident: 10.1016/j.jvcir.2024.104110_b0015
– ident: 10.1016/j.jvcir.2024.104110_b0100
– volume: 8
  start-page: 83538
  year: 2020
  ident: 10.1016/j.jvcir.2024.104110_b0095
  article-title: 3D motion estimation and compensation method for video-based point cloud compression
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2991478
– volume: 28
  start-page: 1934
  issue: 8
  year: 2018
  ident: 10.1016/j.jvcir.2024.104110_b0145
  article-title: An efficient four-parameter affine motion model for video coding
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
  doi: 10.1109/TCSVT.2017.2699919
– volume: 16
  start-page: 1
  issue: 2
  year: 2020
  ident: 10.1016/j.jvcir.2024.104110_b0190
  article-title: Spatio-temporal saliency-based motion vector refinement for frame rate up-conversion
  publication-title: ACM Trans. Multimedia Comput. Commun. Appl.
  doi: 10.1145/3382506
– volume: 27
  start-page: 828
  issue: 4
  year: 2016
  ident: 10.1016/j.jvcir.2024.104110_b0020
  article-title: Design, implementation, and evaluation of a point cloud codec for tele-immersive video
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
  doi: 10.1109/TCSVT.2016.2543039
– start-page: 1
  year: 2017
  ident: 10.1016/j.jvcir.2024.104110_b0110
– ident: 10.1016/j.jvcir.2024.104110_b0180
– ident: 10.1016/j.jvcir.2024.104110_b0105
– volume: 3
  start-page: 155
  year: 2022
  ident: 10.1016/j.jvcir.2024.104110_b0050
  article-title: Patch re-segmentation and packing for dynamic point cloud compression via back-and-forth structure
  publication-title: IEEE Open J. Signal Process.
  doi: 10.1109/OJSP.2022.3160392
– start-page: 498
  year: 2019
  ident: 10.1016/j.jvcir.2024.104110_b0085
– start-page: 3696
  year: 2014
  ident: 10.1016/j.jvcir.2024.104110_b0135
– volume: 25
  start-page: 1765
  issue: 4
  year: 2016
  ident: 10.1016/j.jvcir.2024.104110_b0080
  article-title: Graph-based compression of dynamic 3D point cloud sequences
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2016.2529506
– start-page: 1
  year: 2021
  ident: 10.1016/j.jvcir.2024.104110_b0155
– start-page: 71
  year: 1922
  ident: 10.1016/j.jvcir.2024.104110_b0035
– ident: 10.1016/j.jvcir.2024.104110_b0170
– start-page: 3235
  year: 2015
  ident: 10.1016/j.jvcir.2024.104110_b0075
– start-page: 1249
  year: 2017
  ident: 10.1016/j.jvcir.2024.104110_b0130
– volume: 77
  start-page: 50
  year: 2018
  ident: 10.1016/j.jvcir.2024.104110_b0160
  article-title: Feature fusion information statistics for feature matching in cluttered scenes
  publication-title: Comput. Graph.
  doi: 10.1016/j.cag.2018.09.012
– volume: 29
  start-page: 289
  year: 2019
  ident: 10.1016/j.jvcir.2024.104110_b0090
  article-title: Advanced 3D motion prediction for video-based dynamic point cloud compression
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2019.2931621
– start-page: 103
  year: 2020
  ident: 10.1016/j.jvcir.2024.104110_b0120
– volume: 90
  year: 2023
  ident: 10.1016/j.jvcir.2024.104110_b0150
  article-title: Low complexity inter coding scheme for versatile video coding (VVC)
  publication-title: J. vis. Commun. Image Represent.
  doi: 10.1016/j.jvcir.2022.103683
– ident: 10.1016/j.jvcir.2024.104110_b0065
– ident: 10.1016/j.jvcir.2024.104110_b0030
– ident: 10.1016/j.jvcir.2024.104110_b0200
  doi: 10.1145/3607546.3616803
– start-page: 1
  year: 2019
  ident: 10.1016/j.jvcir.2024.104110_b0055
– start-page: 369
  year: 2022
  ident: 10.1016/j.jvcir.2024.104110_b0195
– volume: 14
  start-page: 1
  issue: 1
  year: 2018
  ident: 10.1016/j.jvcir.2024.104110_b0125
  article-title: Adaptive fractional-pixel motion estimation skipped algorithm for efficient HEVC motion estimation
  publication-title: ACM Trans. Multimedia Comput. Commun. Appl.
  doi: 10.1145/3159170
– volume: 32
  start-page: 813
  issue: 2
  year: 2022
  ident: 10.1016/j.jvcir.2024.104110_b0115
  article-title: Occupancy map guided fast video-based dynamic point cloud coding
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
  doi: 10.1109/TCSVT.2021.3063501
SSID ssj0003934
Score 2.4015558
Snippet This paper proposes an occupancy map-based low complexity motion prediction method for video-based point cloud compression (V-PCC). We propose to utilize the...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 104110
SubjectTerms Dynamic point cloud compression
Low complexity
Motion prediction
Occupancy map
Title Occupancy map-based low complexity motion prediction for video-based point cloud compression
URI https://dx.doi.org/10.1016/j.jvcir.2024.104110
Volume 100
WOSCitedRecordID wos001202545900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1095-9076
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003934
  issn: 1047-3203
  databaseCode: AIEXJ
  dateStart: 19950301
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9MwGLbKxgEO0xggxhjyAXEZmfLt5DihTYPDxKGIgpAixx9bqtap1g-6X8Lf5fVH0pRCxQ5cosqynajvE_ux87yPEXoDc2pCY156jDHhxUDZPUpgsUIzkVEGHCKhpTlsglxdZYNB_qnX-9nkwixGRKlsucwn_zXUUAbB1qmz9wh32ykUwG8IOlwh7HD9p8Bb32CdUDmmE0_PUvxkVP-w4nGx1KzbHt2j_QF4xVqxoc7Iq12DSV2p2Qkb1XOT9ebUsuovVHZRTefGZ6STbGK_Soy1JMgYZzZJTi0Yv7id6q_VDd0srNW1pG5WNQpuozroC3V9R-sWdK72t5tqOFfdDYywq3uxY642i4hCP1oblH2_M6xClcCqXzdGfLv5MDwdLlil_V3D-HRVe91f-7d5r1UjNkK3YWE6KXQnhe3kAdoNSZLDiL979uF88LGd5KPcChaaZ28MrYx0cONZ_kx6OkSmv4_2XNjwmUXOE9QT6gA97vhSHqAjV6majvFbvJZDNH2KvrcIwy3CMCAMrxCGLcLwCmEYEIY7CMMGYdggDHcQ9gx9vjjvv7_03CEdHgP2M_MkTYEHpVQwQdNI8EzIBFijiAgtS0lImbDAF3nIYSFCJQ9SP4ulDGDhwXlAoiB6jnZUrcQLhBOWCwmEUZZcxoSnFJbLETCoKMl4zKk8RGHzLxbMOdjrg1RGxZYIHqJ3baOJNXDZXj1twlM4Dmq5ZQGA29bw5f3uc4Qerd6FV2hndjsXx-ghW8yq6e1rh7Zfbl2vFw
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Occupancy+map-based+low+complexity+motion+prediction+for+video-based+point+cloud+compression&rft.jtitle=Journal+of+visual+communication+and+image+representation&rft.au=Wang%2C+Yihan&rft.au=Wang%2C+Yongfang&rft.au=Cui%2C+Tengyao&rft.au=Fang%2C+Zhijun&rft.date=2024-04-01&rft.issn=1047-3203&rft.volume=100&rft.spage=104110&rft_id=info:doi/10.1016%2Fj.jvcir.2024.104110&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jvcir_2024_104110
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1047-3203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1047-3203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1047-3203&client=summon