Driver drowsiness detection system using hybrid approach of convolutional neural network and bidirectional long short term memory (CNN_BILSTM)

In today’s world driver drowsiness is a major reason for fatal accidents of on road vehicles. Developing an automated, real-time drowsiness detection system is essential to provide accurate and timely alerts to the driver. In the proposed system, hybrid approach of CNN (Convolutional Neural Network)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials today : proceedings Jg. 45; S. 2897 - 2901
Hauptverfasser: Rajamohana, S.P., Radhika, E.G., Priya, S., Sangeetha, S.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Ltd 2021
Schlagworte:
ISSN:2214-7853, 2214-7853
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract In today’s world driver drowsiness is a major reason for fatal accidents of on road vehicles. Developing an automated, real-time drowsiness detection system is essential to provide accurate and timely alerts to the driver. In the proposed system, hybrid approach of CNN (Convolutional Neural Network) and BiLSTM (Bidirectional Long Term Dependencies) is used to detect the driver’s drowsiness. Video camera is used to track the facial image and eye blinks of the driver. The proposed system works in three main phases: In the First phase, driver's face image is Identified and observed using a web camera. In the Second phase, the eye image features are extracted using the Euclidean algorithm. During the third phase, the eye blinks are continually monitored. The final stage decides whether the measure in eye square is closed state or open state. When a driver falls asleep, there will be a warning message to alert the driver to prevent road accidents.
AbstractList In today’s world driver drowsiness is a major reason for fatal accidents of on road vehicles. Developing an automated, real-time drowsiness detection system is essential to provide accurate and timely alerts to the driver. In the proposed system, hybrid approach of CNN (Convolutional Neural Network) and BiLSTM (Bidirectional Long Term Dependencies) is used to detect the driver’s drowsiness. Video camera is used to track the facial image and eye blinks of the driver. The proposed system works in three main phases: In the First phase, driver's face image is Identified and observed using a web camera. In the Second phase, the eye image features are extracted using the Euclidean algorithm. During the third phase, the eye blinks are continually monitored. The final stage decides whether the measure in eye square is closed state or open state. When a driver falls asleep, there will be a warning message to alert the driver to prevent road accidents.
Author Priya, S.
Rajamohana, S.P.
Sangeetha, S.
Radhika, E.G.
Author_xml – sequence: 1
  givenname: S.P.
  surname: Rajamohana
  fullname: Rajamohana, S.P.
  email: spr.it@psgtech.ac.in
– sequence: 2
  givenname: E.G.
  surname: Radhika
  fullname: Radhika, E.G.
  email: egr.it@psgtech.ac.in
– sequence: 3
  givenname: S.
  surname: Priya
  fullname: Priya, S.
– sequence: 4
  givenname: S.
  surname: Sangeetha
  fullname: Sangeetha, S.
  email: spa.it@psgtech.ac.in
BookMark eNqFkM9OAjEQhxuDiYg-gZce9QC2u7BdDh4U_5EgHsRz022nUtzdkmmB8BI-s4t4MB70NJOZfr90vmPSqn0NhJxx1uOMZ5eLXqXiEnsJS5oJ7-XD_IC0k4T3uyIfpK0f_RE5DWHBGOODjOU8a5OPW3RrQGrQb4KrIQRqIIKOztc0bEOEiq6axRudbwt0hqrlEr3Sc-ot1b5e-3K1e6tKWsMKv0rceHynqja0cMbhPqzZlL6JCXOPkUbAilZQedzS89F0Km_Gk5fZ08UJObSqDHD6XTvk9f5uNnrsTp4fxqPrSVenLI1dK3ghCjB9nQmecWsNM7w_zAeJ0pplIjN6YAFYoa0VBQOhlcmt6guRNHfbYdohw32uRh8CgpXaRbX7Z0TlSsmZ3LmVC_nlVu7cSs5l47Zh01_sEl2lcPsPdbWnoDlr7QBl0A5qDXtD0nj3J_8JLombcQ
CitedBy_id crossref_primary_10_1007_s11042_024_19738_z
crossref_primary_10_1007_s13177_025_00537_1
crossref_primary_10_1016_j_measurement_2022_112266
crossref_primary_10_3390_s24175683
crossref_primary_10_3390_info16040294
crossref_primary_10_7717_peerj_cs_2594
crossref_primary_10_1007_s41870_023_01722_9
crossref_primary_10_1109_ACCESS_2024_3424654
crossref_primary_10_1109_ACCESS_2023_3288008
Cites_doi 10.1007/s12008-016-0349-9
10.1016/j.eswa.2013.07.108
10.1109/ICIP.2014.7026203
10.1007/s10015-014-0191-8
10.1016/j.biopsycho.2011.03.003
10.1016/j.medengphy.2013.07.011
10.1016/j.procs.2014.07.045
10.1109/INNOVATIONS.2016.7880030
10.1007/978-3-319-73450-7_53
10.1049/iet-its.2012.0032
10.1109/TITS.2013.2275192
10.1109/TBME.2018.2879346
10.3390/s18040957
10.1016/j.aap.2017.11.038
ContentType Journal Article
Copyright 2020
Copyright_xml – notice: 2020
DBID AAYXX
CITATION
DOI 10.1016/j.matpr.2020.11.898
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
EISSN 2214-7853
EndPage 2901
ExternalDocumentID 10_1016_j_matpr_2020_11_898
S2214785320395742
GroupedDBID --M
.~1
0R~
1~.
4.4
457
4G.
5VS
7-5
8P~
AABXZ
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
AEBSH
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
EBS
EFJIC
EFLBG
EJD
FDB
FIRID
FYGXN
GBLVA
HZ~
KOM
M41
NCXOZ
O9-
OAUVE
P-8
P-9
PC.
ROL
SPC
SPCBC
SSM
SSZ
T5K
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ACLOT
ACVFH
ADCNI
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
ID FETCH-LOGICAL-c303t-f71b7bed4c67161ffd0d149852acc0676dc5fee0bcff7b0e7cad8fa4772608f93
ISICitedReferencesCount 17
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000659386000004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2214-7853
IngestDate Tue Nov 18 22:20:41 EST 2025
Sat Nov 29 06:53:05 EST 2025
Fri Feb 23 02:43:48 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Euclidean algorithm
Eye dataset
CNN and BiLSTM
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c303t-f71b7bed4c67161ffd0d149852acc0676dc5fee0bcff7b0e7cad8fa4772608f93
PageCount 5
ParticipantIDs crossref_citationtrail_10_1016_j_matpr_2020_11_898
crossref_primary_10_1016_j_matpr_2020_11_898
elsevier_sciencedirect_doi_10_1016_j_matpr_2020_11_898
PublicationCentury 2000
PublicationDate 2021
2021-00-00
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – year: 2021
  text: 2021
PublicationDecade 2020
PublicationTitle Materials today : proceedings
PublicationYear 2021
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Gurudath, Riley (b0010) 2014; 34
B.N. Manu (2016, November). Facial features monitoring for real time drowsiness detection. In 2016 12th International Conference on Innovations in Information Technology (IIT) (pp. 1-4). IEEE.
Zhang, Wang, Fu (b0005) 2014; 15
Fujiwara, Abe, Kamata, Nakayama, Suzuki, Yamakawa, Hiraoka, Kano, Sumi, Masuda, Matsuo, Kadotani (b0020) 2019; 66
Zhang (10.1016/j.matpr.2020.11.898_b0005) 2014; 15
Garcés Correa (10.1016/j.matpr.2020.11.898_b0045) 2014; 36
Jacobé de Naurois (10.1016/j.matpr.2020.11.898_b0025) 2019; 126
Izquierdo-Reyes (10.1016/j.matpr.2020.11.898_b0035) 2018; 12
Bharambe (10.1016/j.matpr.2020.11.898_b0065) 2015; 4
Gurudath (10.1016/j.matpr.2020.11.898_b0010) 2014; 34
10.1016/j.matpr.2020.11.898_b0030
10.1016/j.matpr.2020.11.898_b0040
10.1016/j.matpr.2020.11.898_b0070
10.1016/j.matpr.2020.11.898_b0015
10.1016/j.matpr.2020.11.898_b0055
Fujiwara (10.1016/j.matpr.2020.11.898_b0020) 2019; 66
Bando (10.1016/j.matpr.2020.11.898_b0060) 2015; 20
Jo (10.1016/j.matpr.2020.11.898_b0050) 2014; 41
Johnson (10.1016/j.matpr.2020.11.898_b0075) 2011; 87
References_xml – volume: 34
  start-page: 400
  year: 2014
  end-page: 409
  ident: b0010
  article-title: Drowsy driving detection by EEG analysis using wavelet transform and K-means clustering
  publication-title: Procedia Computer Science
– reference: B.N. Manu (2016, November). Facial features monitoring for real time drowsiness detection. In 2016 12th International Conference on Innovations in Information Technology (IIT) (pp. 1-4). IEEE.
– volume: 15
  start-page: 168
  year: 2014
  end-page: 177
  ident: b0005
  article-title: Automated detection of driver fatigue based on entropy and complexity measures
  publication-title: IEEE Trans. Intell. Transport. Syst.
– volume: 66
  start-page: 1769
  year: 2019
  end-page: 1778
  ident: b0020
  article-title: Heart rate variability-based driver drowsiness detection and its validation With EEG
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 12
  start-page: 187
  issue: 1
  year: 2018
  ident: 10.1016/j.matpr.2020.11.898_b0035
  article-title: Advanced driver monitoring for assistance system (ADMAS): Based on emotions
  publication-title: Int. J. Interact. Des. Manuf.
  doi: 10.1007/s12008-016-0349-9
– volume: 41
  start-page: 1139
  issue: 4
  year: 2014
  ident: 10.1016/j.matpr.2020.11.898_b0050
  article-title: Detecting driver drowsiness using feature-level fusion and user-specific classification
  publication-title: Exp. Syst. Appl.
  doi: 10.1016/j.eswa.2013.07.108
– ident: 10.1016/j.matpr.2020.11.898_b0055
  doi: 10.1109/ICIP.2014.7026203
– volume: 20
  start-page: 28
  issue: 1
  year: 2015
  ident: 10.1016/j.matpr.2020.11.898_b0060
  article-title: Detection of driver inattention from fluctuations in vehicle operating data
  publication-title: Artif. Life Robotics
  doi: 10.1007/s10015-014-0191-8
– volume: 4
  start-page: 2202
  issue: 1
  year: 2015
  ident: 10.1016/j.matpr.2020.11.898_b0065
  article-title: Implementation of real time driver drowsiness detection system
  publication-title: Int. J. Sci. Res. (IJSR)
– volume: 87
  start-page: 241
  issue: 2
  year: 2011
  ident: 10.1016/j.matpr.2020.11.898_b0075
  article-title: Drowsiness/alertness algorithm development and validation using synchronized EEG and cognitive performance to individualize a generalized model
  publication-title: Biol. Psychol.
  doi: 10.1016/j.biopsycho.2011.03.003
– volume: 36
  start-page: 244
  issue: 2
  year: 2014
  ident: 10.1016/j.matpr.2020.11.898_b0045
  article-title: Automatic detection of drowsiness in EEG records based on multimodal analysis
  publication-title: Med. Eng. Phys.
  doi: 10.1016/j.medengphy.2013.07.011
– volume: 34
  start-page: 400
  year: 2014
  ident: 10.1016/j.matpr.2020.11.898_b0010
  article-title: Drowsy driving detection by EEG analysis using wavelet transform and K-means clustering
  publication-title: Procedia Computer Science
  doi: 10.1016/j.procs.2014.07.045
– ident: 10.1016/j.matpr.2020.11.898_b0015
  doi: 10.1109/INNOVATIONS.2016.7880030
– ident: 10.1016/j.matpr.2020.11.898_b0040
  doi: 10.1007/978-3-319-73450-7_53
– ident: 10.1016/j.matpr.2020.11.898_b0070
  doi: 10.1049/iet-its.2012.0032
– volume: 15
  start-page: 168
  issue: 1
  year: 2014
  ident: 10.1016/j.matpr.2020.11.898_b0005
  article-title: Automated detection of driver fatigue based on entropy and complexity measures
  publication-title: IEEE Trans. Intell. Transport. Syst.
  doi: 10.1109/TITS.2013.2275192
– volume: 66
  start-page: 1769
  issue: 6
  year: 2019
  ident: 10.1016/j.matpr.2020.11.898_b0020
  article-title: Heart rate variability-based driver drowsiness detection and its validation With EEG
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2018.2879346
– ident: 10.1016/j.matpr.2020.11.898_b0030
  doi: 10.3390/s18040957
– volume: 126
  start-page: 95
  year: 2019
  ident: 10.1016/j.matpr.2020.11.898_b0025
  article-title: Detection and prediction of driver drowsiness using artificial neural network models
  publication-title: Accid. Anal. Prevent.
  doi: 10.1016/j.aap.2017.11.038
SSID ssj0001560816
Score 2.3447194
Snippet In today’s world driver drowsiness is a major reason for fatal accidents of on road vehicles. Developing an automated, real-time drowsiness detection system is...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 2897
SubjectTerms CNN and BiLSTM
Euclidean algorithm
Eye dataset
Title Driver drowsiness detection system using hybrid approach of convolutional neural network and bidirectional long short term memory (CNN_BILSTM)
URI https://dx.doi.org/10.1016/j.matpr.2020.11.898
Volume 45
WOSCitedRecordID wos000659386000004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 2214-7853
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001560816
  issn: 2214-7853
  databaseCode: AIEXJ
  dateStart: 20180101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9MwELeqjQdeEAgQ45_8wAOoJEpSN3YexygwBFWlFqlvUeLYarsurbqs2r4En4oPxp3tJB1UEyDxklbXJI58v9p3l9_dEfJKxIXQURZ6eY8xj3Hd9_Jcxp5MdE_EYcaCnJlmE3w4FNNpMup0ftS5MNslL0txdZWs_6uqQQbKxtTZv1B3c1MQwHdQOhxB7XD8I8W_3yDVoluAf-047YWqlO0Ibus2dy9NgGB2jdlaTVVxSzAvt-7hQHVY69J8GKa4ec2Qz-0eaE9YYqOiixlY8F1c4bvnSNs19IGT4TB9d_plPPlahxrqrlFZZScBjF5MQcGIRLuJtsT7bJGdr2aZzVgb-yO__aWYzc-MeOB_bMSjzfzandsEjTBvQlWzXbGLb0RtZKNJuWn5TbAqRlHIPC5shWFf7ZG5ZZ31d9dlYVnAbo_Hl8d79w8bylj44C2ssVpshHuKL2yj7F8Kc49xWBw1CvBlJwND4DDi4KAdkMPj08H0cxvrA7NSmC68zZPWBbAM1fC30fYbSTuGz-Q-uec8FnpskfaAdFT5kHy3KKMtymiDMmpRRg3KqEUZrVFGV5reQBm1KKMOZRRQRm-gjCLKqEEZRZRRizL6usXYm0fk24fB5OST51p7eBJspsrTPMx5rgomY3DYQ62LoABfXfSjTEowoOICWZAqyKXWPA8UlxmsKRkDXxCmUie9x-SgXJXqCaGhDqVQKk4KxlkgFTjwIAqSHCwtHkT6iET1XKbS1b3H9ivLtCY4LlKjgBQVAB5xCgo4Im-bi9a27Mvtp8e1klJnudp5SgFYt1349F8vfEbu4p_FBgOfk4Nqc6lekDtyW80vNi8dAH8ClxPEoQ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Driver+drowsiness+detection+system+using+hybrid+approach+of+convolutional+neural+network+and+bidirectional+long+short+term+memory+%28CNN_BILSTM%29&rft.jtitle=Materials+today+%3A+proceedings&rft.au=Rajamohana%2C+S.P.&rft.au=Radhika%2C+E.G.&rft.au=Priya%2C+S.&rft.au=Sangeetha%2C+S.&rft.date=2021&rft.pub=Elsevier+Ltd&rft.issn=2214-7853&rft.eissn=2214-7853&rft.volume=45&rft.spage=2897&rft.epage=2901&rft_id=info:doi/10.1016%2Fj.matpr.2020.11.898&rft.externalDocID=S2214785320395742
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2214-7853&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2214-7853&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2214-7853&client=summon