A fully integrated system for hardware-accelerated TSDF SLAM with LiDAR sensors (HATSDF SLAM)

Simultaneous Localization and Mapping (SLAM) is one of the fundamental problems in autonomous robotics. Over the years, many approaches to solve this problem for 6D poses and 3D maps based on LiDAR sensors or depth cameras have been proposed. One of the main drawbacks of the solutions found in the l...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Robotics and autonomous systems Jg. 156; S. 104205
Hauptverfasser: Eisoldt, Marc, Gaal, Julian, Wiemann, Thomas, Flottmann, Marcel, Rothmann, Marc, Tassemeier, Marco, Porrmann, Mario
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier B.V 01.10.2022
Schlagworte:
ISSN:0921-8890, 1872-793X
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Simultaneous Localization and Mapping (SLAM) is one of the fundamental problems in autonomous robotics. Over the years, many approaches to solve this problem for 6D poses and 3D maps based on LiDAR sensors or depth cameras have been proposed. One of the main drawbacks of the solutions found in the literature is the required computational power and corresponding energy consumption. In this paper, we present an approach for LiDAR-based SLAM that maintains a global truncated signed distance function (TSDF) to represent the map. It is implemented on a System-On-Chip (SoC) with an integrated FPGA accelerator. The proposed system is able to track the position of state-of-the-art LiDARs in real time, while maintaining a global TSDF map that can be used to create a polygonal map of the environment. We show that our implementation delivers competitive results compared to state-of-the-art algorithms while drastically reducing the power consumption compared to classical CPU or GPU-based methods. •TSDF-based real time capable 6D SLAM for lidars.•Hardware implementation on a reconfigurable SoC with FPGA.•Fully pipelined implementation to maximize throughput.•Drastically reduced power consumption in comparison to classical implementations on CPUs and GPUs.•Competitive results to state-of-the-art algorithms.
AbstractList Simultaneous Localization and Mapping (SLAM) is one of the fundamental problems in autonomous robotics. Over the years, many approaches to solve this problem for 6D poses and 3D maps based on LiDAR sensors or depth cameras have been proposed. One of the main drawbacks of the solutions found in the literature is the required computational power and corresponding energy consumption. In this paper, we present an approach for LiDAR-based SLAM that maintains a global truncated signed distance function (TSDF) to represent the map. It is implemented on a System-On-Chip (SoC) with an integrated FPGA accelerator. The proposed system is able to track the position of state-of-the-art LiDARs in real time, while maintaining a global TSDF map that can be used to create a polygonal map of the environment. We show that our implementation delivers competitive results compared to state-of-the-art algorithms while drastically reducing the power consumption compared to classical CPU or GPU-based methods. •TSDF-based real time capable 6D SLAM for lidars.•Hardware implementation on a reconfigurable SoC with FPGA.•Fully pipelined implementation to maximize throughput.•Drastically reduced power consumption in comparison to classical implementations on CPUs and GPUs.•Competitive results to state-of-the-art algorithms.
ArticleNumber 104205
Author Eisoldt, Marc
Tassemeier, Marco
Wiemann, Thomas
Flottmann, Marcel
Porrmann, Mario
Gaal, Julian
Rothmann, Marc
Author_xml – sequence: 1
  givenname: Marc
  surname: Eisoldt
  fullname: Eisoldt, Marc
  email: meisoldt@uos.de
  organization: Osnabrück University, Autonomous Robotics Group, Osnabrück, Germany
– sequence: 2
  givenname: Julian
  surname: Gaal
  fullname: Gaal, Julian
  email: gjulian@uos.de
  organization: Osnabrück University, Autonomous Robotics Group, Osnabrück, Germany
– sequence: 3
  givenname: Thomas
  surname: Wiemann
  fullname: Wiemann, Thomas
  email: twiemann@uos.de
  organization: Osnabrück University, Autonomous Robotics Group, Osnabrück, Germany
– sequence: 4
  givenname: Marcel
  surname: Flottmann
  fullname: Flottmann, Marcel
  email: mflottmann@uos.de
  organization: Osnabrück University, Computer Engineering Group, Osnabrück, Germany
– sequence: 5
  givenname: Marc
  surname: Rothmann
  fullname: Rothmann, Marc
  email: mrothmann@uos.de
  organization: Osnabrück University, Computer Engineering Group, Osnabrück, Germany
– sequence: 6
  givenname: Marco
  surname: Tassemeier
  fullname: Tassemeier, Marco
  email: mtassemeier@uos.de
  organization: Osnabrück University, Computer Engineering Group, Osnabrück, Germany
– sequence: 7
  givenname: Mario
  surname: Porrmann
  fullname: Porrmann, Mario
  email: mporrmann@uos.de
  organization: Osnabrück University, Computer Engineering Group, Osnabrück, Germany
BookMark eNqFkMFKAzEURYNUsK1-gZssdTE1k0zbzMLF0ForVARbwY2ETPJiU6YTSaKlf-_UERcudPXgXc6Fe3qoU7saEDpPySAl6ehqM_CudHFACaXNJ6NkeIS6KR_TZJyz5w7qkpymCec5OUG9EDaEEDYcsy56KbB5r6o9tnWEVy8jaBz2IcIWG-fxWnq9kx4SqRRU0Oar5XSGl4viHu9sXOOFnRaPOEAdnA_4Yl785Jen6NjIKsDZ9-2jp9nNajJPFg-3d5NikShGWEzMaJwbrmRWap4qTSXNh1nJgCleykyPgGuS5anWZsQNhXJoCKfNIqkAKOeE9RFre5V3IXgw4s3brfR7kRJxMCQ24suQOBgSraGGyn9RykYZraujl7b6h71uWWhmfVjwIigLtQJtPagotLN_8p-qa4RQ
CitedBy_id crossref_primary_10_3389_fsufs_2023_1201994
crossref_primary_10_1109_ACCESS_2023_3268992
crossref_primary_10_1109_LRA_2025_3540383
crossref_primary_10_1142_S1793351X25410053
crossref_primary_10_1016_j_robot_2023_104380
Cites_doi 10.1016/j.ifacol.2016.07.734
10.1145/2508363.2508374
10.7148/2013-0712
10.1109/ASAP.2019.00-25
10.15607/RSS.2014.X.007
10.1109/FPL.2016.7577365
10.1016/j.ifacol.2019.08.101
10.15607/RSS.2009.V.021
10.3390/s20072068
10.1145/1057432.1057456
10.23919/FPL.2017.8056831
10.1145/3177853
10.1109/TIE.2020.2978722
ContentType Journal Article
Copyright 2022 Elsevier B.V.
Copyright_xml – notice: 2022 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.robot.2022.104205
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1872-793X
ExternalDocumentID 10_1016_j_robot_2022_104205
S0921889022001178
GroupedDBID --K
--M
-~X
.~1
0R~
123
1B1
1~.
1~5
29P
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABIVO
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHPGS
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
RXW
SBC
SCC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TAE
UNMZH
WUQ
XPP
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c303t-f679f8ca4bd81cd2a2954b3e3c8ba4d6e8d0491ddf68f2eb5f082092acee28803
ISICitedReferencesCount 8
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000843552500007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0921-8890
IngestDate Sat Nov 29 07:14:38 EST 2025
Tue Nov 18 22:44:26 EST 2025
Fri Feb 23 02:38:17 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords FPGA programming
SLAM
Hardware acceleration
3D mapping
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c303t-f679f8ca4bd81cd2a2954b3e3c8ba4d6e8d0491ddf68f2eb5f082092acee28803
ParticipantIDs crossref_primary_10_1016_j_robot_2022_104205
crossref_citationtrail_10_1016_j_robot_2022_104205
elsevier_sciencedirect_doi_10_1016_j_robot_2022_104205
PublicationCentury 2000
PublicationDate October 2022
2022-10-00
PublicationDateYYYYMMDD 2022-10-01
PublicationDate_xml – month: 10
  year: 2022
  text: October 2022
PublicationDecade 2020
PublicationTitle Robotics and autonomous systems
PublicationYear 2022
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Shan, Englot (b12) 2018
A. Segal, D. Haehnel, S. Thrun, Generalized-icp., in: Robotics: Science and Systems, Vol. 2, (4) 2009, p. 435.
J. Zhang, S. Singh, LOAM: Lidar Odometry and Mapping in Real-time, in: Robotics: Science and Systems, Vol. 2, (9) 2014.
Törtei, Piat, Devy (b20) 2014
T. Wiemann, K. Lingemann, J. Hertzberg, Automatic Map Creation for Environment Modelling in Robotic Simulators, in: Proceedings of the European Conference on Modelling and Simulation, ECMS, 2013.
Nießner, Zollhöfer, Izadi, Stamminger (b16) 2013; 32
Flottmann, Eisoldt, Gaal, Rothmann, Tassemeier, Wiemann, Porrmann (b4) 2021
Low (b9) 2004
Holz, Behnke (b10) 2014
Gautier, Shearer, Matai, Richmond, Meng, Kastner (b17) 2014
Wiemann, Igelbrink, Pütz, Hertzberg (b25) 2019; 52
Izadi, Newcombe, Kim, Hilliges, Molyneaux, Hodges, Kohli, Shotton, Davison, Fitzgibbon (b14) 2011
Boikos, Bouganis (b23) 2019
O. Sorkine, D. Cohen-Or, Y. Lipman, M. Alexa, C. Rössl, H.-P. Seidel, Laplacian surface editing, in: Proceedings of the 2004 Eurographics/ACM SIGGRAPH Symposium on Geometry Processing, 2004, pp. 175–184.
Besl, McKay (b7) 1992
Canelhas, Stoyanov, Lilienthal (b24) 2013
K. Boikos, C. Bouganis, A high-performance system-on-chip architecture for direct tracking for SLAM, in: 2017 27th International Conference on Field Programmable Logic and Applications, FPL, 2017, pp. 1–7.
Eisoldt, Flottmann, Gaal, Buschermöhle, Hinderink, Hillmann, Nitschmann, Hoffmann, Wiemann, Porrmann (b3) 2021
Q. Gautier, A. Althoff, R. Kastner, FPGA Architectures for Real-time Dense SLAM, in: 2019 IEEE 30th International Conference on Application-Specific Systems, Architectures and Processors, Vol. 2160-052X, ASAP, 2019, pp. 83–90.
Kosuge, Yamamoto, Akamine, Oshima (b18) 2021; 68
T. Whelan, M. Kaess, M. Fallon, H. Johannsson, J. Leonard, J. McDonald, Kintinuous: Spatially Extended KinectFusion, in: RSS Workshop on RGB-D: Advanced Reasoning with Depth Cameras, Sydney, Australia, 2012.
Debeunne, Vivet (b2) 2020; 20
Saputra, Markham, Trigoni (b1) 2018; 51
Wiemann, Mitschke, Mock, Hertzberg (b26) 2018
Pütz, Wiemann, Sprickerhof, Hertzberg (b5) 2016; 49
Lorensen, Cline (b13) 1987
K. Boikos, C. Bouganis, Semi-dense SLAM on an FPGA SoC, in: 2016 26th International Conference on Field Programmable Logic and Applications, FPL, 2016, pp. 1–4.
Gautier (10.1016/j.robot.2022.104205_b17) 2014
Eisoldt (10.1016/j.robot.2022.104205_b3) 2021
Shan (10.1016/j.robot.2022.104205_b12) 2018
Flottmann (10.1016/j.robot.2022.104205_b4) 2021
10.1016/j.robot.2022.104205_b19
Wiemann (10.1016/j.robot.2022.104205_b25) 2019; 52
10.1016/j.robot.2022.104205_b15
Debeunne (10.1016/j.robot.2022.104205_b2) 2020; 20
Besl (10.1016/j.robot.2022.104205_b7) 1992
Low (10.1016/j.robot.2022.104205_b9) 2004
10.1016/j.robot.2022.104205_b11
Boikos (10.1016/j.robot.2022.104205_b23) 2019
Pütz (10.1016/j.robot.2022.104205_b5) 2016; 49
Kosuge (10.1016/j.robot.2022.104205_b18) 2021; 68
10.1016/j.robot.2022.104205_b27
Saputra (10.1016/j.robot.2022.104205_b1) 2018; 51
10.1016/j.robot.2022.104205_b22
Nießner (10.1016/j.robot.2022.104205_b16) 2013; 32
Törtei (10.1016/j.robot.2022.104205_b20) 2014
10.1016/j.robot.2022.104205_b21
Wiemann (10.1016/j.robot.2022.104205_b26) 2018
10.1016/j.robot.2022.104205_b8
10.1016/j.robot.2022.104205_b6
Lorensen (10.1016/j.robot.2022.104205_b13) 1987
Izadi (10.1016/j.robot.2022.104205_b14) 2011
Holz (10.1016/j.robot.2022.104205_b10) 2014
Canelhas (10.1016/j.robot.2022.104205_b24) 2013
References_xml – reference: A. Segal, D. Haehnel, S. Thrun, Generalized-icp., in: Robotics: Science and Systems, Vol. 2, (4) 2009, p. 435.
– volume: 68
  start-page: 3567
  year: 2021
  end-page: 3576
  ident: b18
  article-title: An SoC-FPGA-based iterative-closest-point accelerator enabling faster picking robots
  publication-title: IEEE Trans. Ind. Electron.
– start-page: 326
  year: 2014
  end-page: 329
  ident: b17
  article-title: Real-time 3D reconstruction for FPGAs: A case study for evaluating the performance, area, and programmability trade-offs of the Altera openCL SDK
  publication-title: FPT Conference
– year: 2014
  ident: b20
  article-title: FPGA design and implementation of a matrix multiplier based accelerator for 3D EKF SLAM
  publication-title: 2014 International Conference on Reconfigurable Computing and FPGAs
– volume: 49
  start-page: 212
  year: 2016
  end-page: 217
  ident: b5
  article-title: 3D navigation mesh generation for path planning in uneven terrain
  publication-title: IFAC-PapersOnLine
– start-page: 3671
  year: 2013
  end-page: 3676
  ident: b24
  article-title: SDF tracker: A parallel algorithm for on-line pose estimation and scene reconstruction from depth images
  publication-title: 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems
– volume: 20
  start-page: 2068
  year: 2020
  ident: b2
  article-title: A review of visual-LiDAR fusion based simultaneous localization and mapping
  publication-title: Sensors
– reference: K. Boikos, C. Bouganis, A high-performance system-on-chip architecture for direct tracking for SLAM, in: 2017 27th International Conference on Field Programmable Logic and Applications, FPL, 2017, pp. 1–7.
– start-page: 278
  year: 2018
  end-page: 281
  ident: b26
  article-title: Surface reconstruction from arbitrarily large point clouds
  publication-title: 2018 Second IEEE International Conference on Robotic Computing
– volume: 52
  start-page: 403
  year: 2019
  end-page: 408
  ident: b25
  article-title: A file structure and reference data set for high resolution hyperspectral 3D point clouds
  publication-title: IFAC-PapersOnLine
– start-page: 586
  year: 1992
  end-page: 606
  ident: b7
  article-title: Method for registration of 3-D shapes
  publication-title: Sensor Fusion IV: Control Paradigms and Data Structures, Vol. 1611
– reference: T. Whelan, M. Kaess, M. Fallon, H. Johannsson, J. Leonard, J. McDonald, Kintinuous: Spatially Extended KinectFusion, in: RSS Workshop on RGB-D: Advanced Reasoning with Depth Cameras, Sydney, Australia, 2012.
– reference: T. Wiemann, K. Lingemann, J. Hertzberg, Automatic Map Creation for Environment Modelling in Robotic Simulators, in: Proceedings of the European Conference on Modelling and Simulation, ECMS, 2013.
– reference: K. Boikos, C. Bouganis, Semi-dense SLAM on an FPGA SoC, in: 2016 26th International Conference on Field Programmable Logic and Applications, FPL, 2016, pp. 1–4.
– year: 2019
  ident: b23
  article-title: A scalable FPGA-based architecture for depth estimation in SLAM
  publication-title: ARC
– year: 1987
  ident: b13
  article-title: Marching cubes: A high resolution 3D surface construction algorithm
  publication-title: ACM SIGGRAPH ’87
– reference: O. Sorkine, D. Cohen-Or, Y. Lipman, M. Alexa, C. Rössl, H.-P. Seidel, Laplacian surface editing, in: Proceedings of the 2004 Eurographics/ACM SIGGRAPH Symposium on Geometry Processing, 2004, pp. 175–184.
– reference: Q. Gautier, A. Althoff, R. Kastner, FPGA Architectures for Real-time Dense SLAM, in: 2019 IEEE 30th International Conference on Application-Specific Systems, Architectures and Processors, Vol. 2160-052X, ASAP, 2019, pp. 83–90.
– start-page: 1
  year: 2021
  end-page: 6
  ident: b4
  article-title: Energy-efficient FPGA-accelerated LiDAR-based SLAM for embedded robotics
  publication-title: 2021 International Conference on Field-Programmable Technology
– reference: J. Zhang, S. Singh, LOAM: Lidar Odometry and Mapping in Real-time, in: Robotics: Science and Systems, Vol. 2, (9) 2014.
– volume: 32
  start-page: 1
  year: 2013
  end-page: 11
  ident: b16
  article-title: Real-time 3D reconstruction at scale using voxel hashing
  publication-title: ACM Trans. Graphics (ToG)
– start-page: 4758
  year: 2018
  end-page: 4765
  ident: b12
  article-title: LeGO-LOAM: Lightweight and ground-optimized lidar odometry and mapping on variable terrain
  publication-title: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems
– year: 2011
  ident: b14
  article-title: KinectFusion: Real-time dynamic 3D surface reconstruction and interaction
  publication-title: ACM SIGGRAPH 2011 Talks
– start-page: 1
  year: 2004
  end-page: 3
  ident: b9
  article-title: Linear least-squares optimization for point-to-plane icp surface registration, Vol. 4
– start-page: 1
  year: 2021
  end-page: 7
  ident: b3
  article-title: HATSDF SLAM–hardware-accelerated TSDF SLAM for reconfigurable SoCs
  publication-title: 2021 European Conference on Mobile Robots
– volume: 51
  start-page: 1
  year: 2018
  end-page: 36
  ident: b1
  article-title: Visual SLAM and structure from motion in dynamic environments: A survey
  publication-title: ACM Comput. Surv.
– start-page: 1
  year: 2014
  end-page: 7
  ident: b10
  article-title: Registration of non-uniform density 3D point clouds using approximate surface reconstruction
  publication-title: ISR/Robotik 2014; 41st International Symposium on Robotics
– volume: 49
  start-page: 212
  issue: 15
  year: 2016
  ident: 10.1016/j.robot.2022.104205_b5
  article-title: 3D navigation mesh generation for path planning in uneven terrain
  publication-title: IFAC-PapersOnLine
  doi: 10.1016/j.ifacol.2016.07.734
– start-page: 278
  year: 2018
  ident: 10.1016/j.robot.2022.104205_b26
  article-title: Surface reconstruction from arbitrarily large point clouds
– volume: 32
  start-page: 1
  issue: 6
  year: 2013
  ident: 10.1016/j.robot.2022.104205_b16
  article-title: Real-time 3D reconstruction at scale using voxel hashing
  publication-title: ACM Trans. Graphics (ToG)
  doi: 10.1145/2508363.2508374
– ident: 10.1016/j.robot.2022.104205_b6
  doi: 10.7148/2013-0712
– year: 1987
  ident: 10.1016/j.robot.2022.104205_b13
  article-title: Marching cubes: A high resolution 3D surface construction algorithm
– start-page: 1
  year: 2021
  ident: 10.1016/j.robot.2022.104205_b4
  article-title: Energy-efficient FPGA-accelerated LiDAR-based SLAM for embedded robotics
– start-page: 3671
  year: 2013
  ident: 10.1016/j.robot.2022.104205_b24
  article-title: SDF tracker: A parallel algorithm for on-line pose estimation and scene reconstruction from depth images
– ident: 10.1016/j.robot.2022.104205_b19
  doi: 10.1109/ASAP.2019.00-25
– ident: 10.1016/j.robot.2022.104205_b11
  doi: 10.15607/RSS.2014.X.007
– start-page: 1
  year: 2021
  ident: 10.1016/j.robot.2022.104205_b3
  article-title: HATSDF SLAM–hardware-accelerated TSDF SLAM for reconfigurable SoCs
– ident: 10.1016/j.robot.2022.104205_b21
  doi: 10.1109/FPL.2016.7577365
– volume: 52
  start-page: 403
  issue: 8
  year: 2019
  ident: 10.1016/j.robot.2022.104205_b25
  article-title: A file structure and reference data set for high resolution hyperspectral 3D point clouds
  publication-title: IFAC-PapersOnLine
  doi: 10.1016/j.ifacol.2019.08.101
– start-page: 1
  year: 2004
  ident: 10.1016/j.robot.2022.104205_b9
– ident: 10.1016/j.robot.2022.104205_b15
– year: 2014
  ident: 10.1016/j.robot.2022.104205_b20
  article-title: FPGA design and implementation of a matrix multiplier based accelerator for 3D EKF SLAM
– start-page: 586
  year: 1992
  ident: 10.1016/j.robot.2022.104205_b7
  article-title: Method for registration of 3-D shapes
– year: 2011
  ident: 10.1016/j.robot.2022.104205_b14
  article-title: KinectFusion: Real-time dynamic 3D surface reconstruction and interaction
– start-page: 4758
  year: 2018
  ident: 10.1016/j.robot.2022.104205_b12
  article-title: LeGO-LOAM: Lightweight and ground-optimized lidar odometry and mapping on variable terrain
– ident: 10.1016/j.robot.2022.104205_b8
  doi: 10.15607/RSS.2009.V.021
– volume: 20
  start-page: 2068
  issue: 7
  year: 2020
  ident: 10.1016/j.robot.2022.104205_b2
  article-title: A review of visual-LiDAR fusion based simultaneous localization and mapping
  publication-title: Sensors
  doi: 10.3390/s20072068
– ident: 10.1016/j.robot.2022.104205_b27
  doi: 10.1145/1057432.1057456
– year: 2019
  ident: 10.1016/j.robot.2022.104205_b23
  article-title: A scalable FPGA-based architecture for depth estimation in SLAM
– start-page: 326
  year: 2014
  ident: 10.1016/j.robot.2022.104205_b17
  article-title: Real-time 3D reconstruction for FPGAs: A case study for evaluating the performance, area, and programmability trade-offs of the Altera openCL SDK
– ident: 10.1016/j.robot.2022.104205_b22
  doi: 10.23919/FPL.2017.8056831
– volume: 51
  start-page: 1
  issue: 2
  year: 2018
  ident: 10.1016/j.robot.2022.104205_b1
  article-title: Visual SLAM and structure from motion in dynamic environments: A survey
  publication-title: ACM Comput. Surv.
  doi: 10.1145/3177853
– volume: 68
  start-page: 3567
  issue: 4
  year: 2021
  ident: 10.1016/j.robot.2022.104205_b18
  article-title: An SoC-FPGA-based iterative-closest-point accelerator enabling faster picking robots
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2020.2978722
– start-page: 1
  year: 2014
  ident: 10.1016/j.robot.2022.104205_b10
  article-title: Registration of non-uniform density 3D point clouds using approximate surface reconstruction
SSID ssj0003573
Score 2.4183533
Snippet Simultaneous Localization and Mapping (SLAM) is one of the fundamental problems in autonomous robotics. Over the years, many approaches to solve this problem...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 104205
SubjectTerms 3D mapping
FPGA programming
Hardware acceleration
SLAM
Title A fully integrated system for hardware-accelerated TSDF SLAM with LiDAR sensors (HATSDF SLAM)
URI https://dx.doi.org/10.1016/j.robot.2022.104205
Volume 156
WOSCitedRecordID wos000843552500007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection - Elsevier
  customDbUrl:
  eissn: 1872-793X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003573
  issn: 0921-8890
  databaseCode: AIEXJ
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6FlgMcEE-1vLQHDqDgKLEde320aKuCSoVoELkga59SquBUiVvKb-BPM-N9xNAqogculuVdT2zPp92Zycw3hLwyxTDTIlWRZBocFC14xFMJWAZTxCAfeC5N22wiPz5m02nxqdf75WthLuZ5XbPLy-Lsv6oaroGysXT2BuoOQuECnIPS4Qhqh-M_Kb7sY0j955oIQjm65jajEIusfvCljriUsOPY8cnJ3kH_5Kj8aMOyR7O98nN_BQ4uduIBE_SwDDN85CBweotFIHrm5w2WSGBS7apDhI72-gzeWfniIBmSfjif-yLtNUq_zvR317q5k77UYmzRNH4I5bh0fxe0AH_Xp7-F6GM8ihiznULDQjzuLqXgJ8ZtRfbVVd4GHE4HS3zHAcofrGf_yan9114XMhB9cttp1QqpUEhlhdwi23E-LmCV3y7f708_hI09GduEBf_snsSqTRe88izXGzod42Vyn9xzXgctLVoekJ6uH5K7HS7KR-RbSVvc0DVuqNUiBdzQ63BDERUUUUERN7TFDXW4oa8tatrxN4_Jl4P9ybvDyPXeiCQYNU1ksrwwTPJUKDaSKub4f7BIdCKZ4KnKNFPgW46UMhkzsRZjg7ZkEXMwumLYE5InZKte1HqH0GIo9ShVQ2OQJDrNhJAJE1okwmg9zIpdEvsPVUlHTI_9UebVBiXtkrfhpjPLy7J5euY1UDnT0pqMFWBq041Pb_Y7z8idNdyfk61mea5fkNvyopmtli8doH4Dd-CZjw
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+fully+integrated+system+for+hardware-accelerated+TSDF+SLAM+with+LiDAR+sensors+%28HATSDF+SLAM%29&rft.jtitle=Robotics+and+autonomous+systems&rft.au=Eisoldt%2C+Marc&rft.au=Gaal%2C+Julian&rft.au=Wiemann%2C+Thomas&rft.au=Flottmann%2C+Marcel&rft.date=2022-10-01&rft.issn=0921-8890&rft.volume=156&rft.spage=104205&rft_id=info:doi/10.1016%2Fj.robot.2022.104205&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_robot_2022_104205
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0921-8890&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0921-8890&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0921-8890&client=summon