Image encryption algorithm based on hyperchaotic system and a new DNA sequence operation
As the application of multimedia technology intensifies recently, more and more attention has been paid to privacy protection in image data. The interest in DNA-based image encryption techniques is increasing due to their high parallelism and large storage capacity. However, there are only few types...
Uložené v:
| Vydané v: | Chaos, solitons and fractals Ročník 162; s. 112456 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier Ltd
01.09.2022
|
| Predmet: | |
| ISSN: | 0960-0779, 1873-2887 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | As the application of multimedia technology intensifies recently, more and more attention has been paid to privacy protection in image data. The interest in DNA-based image encryption techniques is increasing due to their high parallelism and large storage capacity. However, there are only few types of operations in existing DNA encryption methods and many of them are susceptible to chosen-plaintext attacks. To solve these problems, this paper proposes a novel image encryption algorithm based on a new DNA sequence operation and hyperchaotic system. Firstly, SHA-256 algorithm is used in conjunction with chaotic systems to generate plaintext-related random sequences. Secondly, the plain image is decomposed into RGB channels and encoded into DNA matrices. Thirdly, a new DNA operation called DNA triploid mutation (DNA-TM) is introduced to achieve cryptographic conversion of DNA bases. Furthermore, after decoding three DNA matrices, row-column permutation and pixel diffusion are employed to fuse the image. The experimental results demonstrate that our encryption approach is secure, with an average information entropy of 7.9972. In addition, the security analysis reveals that our scheme can resist differential attacks, plaintext attacks, noise attacks and occlusion attacks.
•Two-dimensional Logistic-adjusted-Sine map (2D-LASM) and four-dimensional quadratic autonomous hyperchaotic system (4D-QAHS) are utilized to generate chaotic sequences.•A novel DNA sequence operation called DNA triploid mutation (DNA-TM) is introduced to disrupt the nucleotide bases.•Dynamic DNA coding is used in our encryption process to keep the encryption algorithm secure.•SHA-256 is combined with two chaotic systems to generate plaintext-related random sequences.•Experimental result demonstrates that our method can resist various attacks. |
|---|---|
| AbstractList | As the application of multimedia technology intensifies recently, more and more attention has been paid to privacy protection in image data. The interest in DNA-based image encryption techniques is increasing due to their high parallelism and large storage capacity. However, there are only few types of operations in existing DNA encryption methods and many of them are susceptible to chosen-plaintext attacks. To solve these problems, this paper proposes a novel image encryption algorithm based on a new DNA sequence operation and hyperchaotic system. Firstly, SHA-256 algorithm is used in conjunction with chaotic systems to generate plaintext-related random sequences. Secondly, the plain image is decomposed into RGB channels and encoded into DNA matrices. Thirdly, a new DNA operation called DNA triploid mutation (DNA-TM) is introduced to achieve cryptographic conversion of DNA bases. Furthermore, after decoding three DNA matrices, row-column permutation and pixel diffusion are employed to fuse the image. The experimental results demonstrate that our encryption approach is secure, with an average information entropy of 7.9972. In addition, the security analysis reveals that our scheme can resist differential attacks, plaintext attacks, noise attacks and occlusion attacks.
•Two-dimensional Logistic-adjusted-Sine map (2D-LASM) and four-dimensional quadratic autonomous hyperchaotic system (4D-QAHS) are utilized to generate chaotic sequences.•A novel DNA sequence operation called DNA triploid mutation (DNA-TM) is introduced to disrupt the nucleotide bases.•Dynamic DNA coding is used in our encryption process to keep the encryption algorithm secure.•SHA-256 is combined with two chaotic systems to generate plaintext-related random sequences.•Experimental result demonstrates that our method can resist various attacks. |
| ArticleNumber | 112456 |
| Author | Yu, Jinwei Wang, Huan Xie, Wei Zhong, Zhenyu |
| Author_xml | – sequence: 1 givenname: Jinwei surname: Yu fullname: Yu, Jinwei organization: School of Automation Science and Engineering, South China University of Technology, Guangzhou 510641, China – sequence: 2 givenname: Wei surname: Xie fullname: Xie, Wei email: weixie@scut.edu.cn organization: School of Automation Science and Engineering, South China University of Technology, Guangzhou 510641, China – sequence: 3 givenname: Zhenyu surname: Zhong fullname: Zhong, Zhenyu organization: Institute of Intelligent Manufacturing, GDAS, Guangzhou 510641, China – sequence: 4 givenname: Huan surname: Wang fullname: Wang, Huan organization: Guangdong Institute of Scientific and Technical Information, Guangzhou 510641, China |
| BookMark | eNqFkM9OwzAMhyM0JLbBE3DJC7Q4SdukBw7T-DcJwQUkblGaulumtR1JAfXtaTdOHOBkyfL3s_3NyKRpGyTkkkHMgGVX29huTBtiDpzHjPEkzU7IlCkpIq6UnJAp5BlEIGV-RmYhbAGAQcan5G1VmzVSbKzv951rG2p269a7blPTwgQs6dDa9Hv044bOWRr60GFNTVNSQxv8ojdPCxrw_WPIQNoOk2bMOSenldkFvPipc_J6d_uyfIgen-9Xy8VjZAWILqqSPC2ZNKlJODCOUiWiLAqZ5pKjRVCZsIm0UKlKWJC2qowUJufKysLkqhBzIo651rcheKz03rva-F4z0KMcvdUHOXqUo49yBir_RVnXHe7uvHG7f9jrI4vDW58OvQ7Wjc-XzqPtdNm6P_lvCCuEUA |
| CitedBy_id | crossref_primary_10_1007_s11042_024_20196_w crossref_primary_10_1016_j_cjph_2024_09_017 crossref_primary_10_1088_1402_4896_ad56d0 crossref_primary_10_1109_ACCESS_2023_3285481 crossref_primary_10_1016_j_eswa_2024_123215 crossref_primary_10_1016_j_jksuci_2023_101790 crossref_primary_10_3390_fractalfract7120887 crossref_primary_10_1088_1402_4896_ad3245 crossref_primary_10_1088_1402_4896_ad3487 crossref_primary_10_1007_s10586_023_04126_3 crossref_primary_10_1155_cplx_2910833 crossref_primary_10_3390_e27060606 crossref_primary_10_1007_s11071_024_10053_8 crossref_primary_10_1016_j_apm_2024_02_009 crossref_primary_10_1007_s11071_024_10143_7 crossref_primary_10_1016_j_apm_2024_04_023 crossref_primary_10_1142_S0218127425500804 crossref_primary_10_3390_math10234441 crossref_primary_10_1007_s11431_023_2584_y crossref_primary_10_1109_TCE_2024_3481260 crossref_primary_10_1049_ipr2_70181 crossref_primary_10_1088_1402_4896_acc5b6 crossref_primary_10_1007_s10489_024_05613_9 crossref_primary_10_1080_09540091_2024_2312108 crossref_primary_10_1016_j_chaos_2024_115638 crossref_primary_10_1007_s11042_023_14841_z crossref_primary_10_1016_j_jestch_2023_101612 crossref_primary_10_1016_j_eswa_2023_122052 crossref_primary_10_1038_s41598_024_57756_x crossref_primary_10_3389_fphy_2023_1162887 crossref_primary_10_1016_j_eswa_2024_124413 crossref_primary_10_3390_sym15081499 crossref_primary_10_1109_ACCESS_2024_3406766 crossref_primary_10_1109_ACCESS_2025_3563108 crossref_primary_10_3390_math11234835 crossref_primary_10_1007_s11042_023_16981_8 crossref_primary_10_1016_j_eswa_2025_128393 crossref_primary_10_1109_ACCESS_2023_3257349 crossref_primary_10_51537_chaos_1246581 crossref_primary_10_1016_j_optlastec_2025_112751 crossref_primary_10_1016_j_eswa_2023_122899 crossref_primary_10_1088_1402_4896_ad14d1 crossref_primary_10_1016_j_ins_2024_120332 crossref_primary_10_1016_j_chaos_2024_115986 crossref_primary_10_3390_s22249929 crossref_primary_10_1007_s00340_023_08029_4 crossref_primary_10_1007_s11071_024_09999_6 crossref_primary_10_1109_ACCESS_2024_3432876 crossref_primary_10_1016_j_apm_2023_10_004 crossref_primary_10_1049_ipr2_12974 crossref_primary_10_1016_j_matcom_2025_05_005 crossref_primary_10_1016_j_compeleceng_2025_110425 crossref_primary_10_1088_1402_4896_ad826f crossref_primary_10_1364_AO_543978 crossref_primary_10_1364_AO_561003 crossref_primary_10_1007_s11227_024_06400_6 crossref_primary_10_1016_j_optlastec_2023_109655 crossref_primary_10_1109_ACCESS_2022_3218886 crossref_primary_10_1109_ACCESS_2023_3311038 crossref_primary_10_1109_ACCESS_2024_3447068 crossref_primary_10_1088_1402_4896_ad5802 crossref_primary_10_1016_j_chaos_2023_114361 crossref_primary_10_1016_j_dsp_2024_104463 crossref_primary_10_1007_s11071_025_11582_6 crossref_primary_10_1007_s13369_023_08298_3 crossref_primary_10_1016_j_eij_2025_100716 crossref_primary_10_1109_ACCESS_2023_3343118 crossref_primary_10_1088_1402_4896_ad033f crossref_primary_10_1016_j_chaos_2024_115332 crossref_primary_10_1109_ACCESS_2024_3476347 crossref_primary_10_1038_s41598_024_71267_9 crossref_primary_10_1016_j_eswa_2025_126620 crossref_primary_10_3390_fractalfract8020075 crossref_primary_10_1007_s00371_023_03219_9 crossref_primary_10_1038_s41598_024_77955_w crossref_primary_10_1016_j_eswa_2025_127475 crossref_primary_10_1109_ACCESS_2023_3301460 crossref_primary_10_1007_s11071_024_10541_x crossref_primary_10_1016_j_vlsi_2025_102409 crossref_primary_10_1364_OE_554307 crossref_primary_10_1140_epjp_s13360_025_06290_4 crossref_primary_10_1088_1402_4896_ad83ff crossref_primary_10_1007_s11042_023_16869_7 crossref_primary_10_1007_s11071_025_11477_6 crossref_primary_10_1016_j_ins_2024_121088 crossref_primary_10_1088_1674_1056_ad20d9 crossref_primary_10_1016_j_mee_2024_112156 crossref_primary_10_1088_1402_4896_ad0d68 crossref_primary_10_1088_1402_4896_ad6f48 |
| Cites_doi | 10.1016/j.asoc.2012.01.016 10.1016/j.sigpro.2018.06.008 10.1016/j.ijleo.2018.01.064 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2 10.1016/j.ijleo.2013.05.009 10.1002/j.1538-7305.1948.tb01338.x 10.1016/j.optlaseng.2019.105809 10.1016/j.asoc.2015.08.008 10.1038/171737a0 10.1016/S0303-2647(00)00091-5 10.1016/j.optlaseng.2019.04.011 10.1016/j.ins.2019.10.028 10.1007/s00521-017-2993-9 10.1016/j.sigpro.2020.107684 10.1080/0161-118991863745 10.1007/s11042-017-4885-5 10.1016/j.chaos.2016.12.018 10.1007/s11071-013-0819-6 10.1007/s11071-022-07328-3 10.1007/s11071-016-3024-6 10.1016/j.ins.2016.01.017 10.1109/LSP.2022.3163685 10.1016/j.optlaseng.2019.03.006 10.1016/j.sigpro.2021.108041 10.1016/j.optlaseng.2013.12.003 10.1126/science.7973651 10.1016/j.ijleo.2013.09.040 10.1016/j.sigpro.2018.02.028 10.1007/s11071-015-2392-7 10.1016/j.sigpro.2018.09.029 10.1016/j.sigpro.2017.07.034 10.1016/j.ins.2014.11.018 10.1016/j.sigpro.2017.11.005 10.1016/j.optlaseng.2016.10.019 10.1007/s11071-019-05378-8 10.1016/j.sigpro.2016.12.008 10.1016/j.ijleo.2015.11.221 10.1016/j.biosystems.2004.05.018 10.1016/j.chaos.2003.12.022 |
| ContentType | Journal Article |
| Copyright | 2022 Elsevier Ltd |
| Copyright_xml | – notice: 2022 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.chaos.2022.112456 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Sciences (General) Mathematics |
| EISSN | 1873-2887 |
| ExternalDocumentID | 10_1016_j_chaos_2022_112456 S096007792200666X |
| GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29B 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABMAC ABNEU ABTAH ABXDB ABYKQ ACDAQ ACFVG ACGFS ACNNM ACRLP ADBBV ADEZE ADMUD AEBSH AEKER AENEX AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BBWZM BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HLZ HMV HVGLF HZ~ IHE J1W KOM LG9 M38 M41 MO0 N9A NDZJH O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SBC SDF SDG SDP SES SEW SPC SPCBC SPD SPG SSQ SSZ T5K WUQ XPP ZY4 ~G- 9DU AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c303t-f495d17a5a42012e7843dbb75972ece0863c47c0f8f3c07cffa73a928c7ba98b3 |
| ISICitedReferencesCount | 102 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000843863400005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0960-0779 |
| IngestDate | Sat Nov 29 07:07:25 EST 2025 Tue Nov 18 22:24:41 EST 2025 Fri Feb 23 02:38:48 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Image encryption DNA encryption Chaotic system 2D-LASM 4D-QAHS Triploid mutation |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c303t-f495d17a5a42012e7843dbb75972ece0863c47c0f8f3c07cffa73a928c7ba98b3 |
| ParticipantIDs | crossref_primary_10_1016_j_chaos_2022_112456 crossref_citationtrail_10_1016_j_chaos_2022_112456 elsevier_sciencedirect_doi_10_1016_j_chaos_2022_112456 |
| PublicationCentury | 2000 |
| PublicationDate | September 2022 2022-09-00 |
| PublicationDateYYYYMMDD | 2022-09-01 |
| PublicationDate_xml | – month: 09 year: 2022 text: September 2022 |
| PublicationDecade | 2020 |
| PublicationTitle | Chaos, solitons and fractals |
| PublicationYear | 2022 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Trujillo-Toledo, López-Bonilla, Garca-Guerrero, Tlelo-Cuautle, López-Mancilla, Guillén-Fernández, Inzunza-González (bb0045) 2021; 153 Alvarez, Li (bb0235) 2006; 16 Hu, Liu, Gong, Ouyang (bb0195) 2017; 87 Farah, Guesmi, Kachouri, Samet (bb0110) 2020; 121 Zhang, Sun, Liu, He (bb0205) 2017; 26 Zarei, Tavakoli (bb0225) 2016; 291 Dong, Li, Tang (bb0090) 2021; 153 SaberiKamarposhti, Mohammad, Rahim, Yaghobi (bb0180) 2014; 75 Head, Rozenberg, Bladergroen, Breek, Lommerse, Spaink (bb0100) 2000; 57 Balan, Krithivasan (bb0105) 2004; 76 Kadir, Hamdulla, Guo (bb0255) 2014; 125 Yin, Wang (bb0030) 2018; 28 Xu, Sun, Cao, Zhu (bb0085) 2019; 121 Chai, Zhi, Gan, Zhang, Chen, Fu (bb0160) 2021; 183 Wu, Wang, Wang, Kan, Kurths (bb0185) 2018; 148 Yang, Wang, Duan, Luo (bb0035) 2021; 133 Khalil, Sarhan, Alshewimy (bb0240) 2021; 143 Khedmati, Parvaz, Behroo (bb0275) 2020; 512 Liu, Sun, He, Yu (bb0070) 2017; 27 Shannon (bb0265) 1948; 27 Khanzadi, Eshghi, Borujeni (bb0250) 2014; 39 Chen, Zhu, Liu, Tanougast, Liu, Blondel (bb0055) 2020; 124 Hua, Zhou, Pun, Chen (bb0215) 2015; 297 Watson, Crick (bb0230) 1953; 171 Niyat, Moattar, Torshiz (bb0165) 2017; 90 Gong, Du, Wan, Zhou (bb0200) 2021; 2021 Chai, Bi, Gan, Liu, Zhang, Chen (bb0065) 2020; 176 Yang, Taralova, El Assad, Loiseau (bb0150) 2022 ur Rehman, Liao, Ashraf, Ullah, Wang (bb0075) 2018; 159 Zhou, Fan, Fan, Li (bb0245) 2020; 121 Wang, Yang (bb0260) 2021; 147 Chen, Zhu, Zhang, Zhang, Yang (bb0135) 2018; 142 Li, Wang, Yan, Liu (bb0130) 2016; 127 Wen, Wei, Zhang, Fang, Li (bb0190) 2020; 99 Adleman (bb0095) 1994; 266 Hua, Zhou (bb0210) 2016; 339 Enayatifar, Abdullah, Isnin (bb0010) 2014; 56 Wu, Kan, Kurths (bb0025) 2015; 37 Wang, Xiao, Chen, Huang (bb0050) 2018; 144 Yildirim (bb0155) 2022; 155 Wu, Liao, Yang (bb0120) 2018; 153 Sabir, Guleria, Mishra (bb0060) 2021; 63 Gong, Qiu, Deng, Zhou (bb0145) 2019; 121 Wu, Kurths, Kan (bb0005) 2018; 77 Guesmi, Farah, Kachouri, Samet (bb0125) 2016; 83 Chai, Fu, Gan, Lu, Chen (bb0140) 2019; 155 Chai, Fu, Gan, Lu, Zhang (bb0285) 2022; 108 Chen, Mao, Chui (bb0270) 2004; 21 W. Zheng L. Yan C. Gou F.-Y. Wang, An acp-based parallel approach for color image encryption using redundant blocks, IEEE Transactions on Cybernetics. Matthews (bb0020) 1989; 13 Liu, Wang (bb0175) 2012; 12 Çavuşoğlu, Kaçar, Pehlivan, Zengin (bb0040) 2017; 95 Zhang, Wei (bb0115) 2013; 124 Chai, Gan, Yuan, Chen, Liu (bb0220) 2019; 31 Chai, Wang, Chen, Gan, Zhang (bb0080) 2022; 29 Lorenz (bb0015) 1963; 20 Hu, Liu, Gong, Guo, Yuan (bb0170) 2017; 134 Xu (10.1016/j.chaos.2022.112456_bb0085) 2019; 121 SaberiKamarposhti (10.1016/j.chaos.2022.112456_bb0180) 2014; 75 Guesmi (10.1016/j.chaos.2022.112456_bb0125) 2016; 83 Zhou (10.1016/j.chaos.2022.112456_bb0245) 2020; 121 Niyat (10.1016/j.chaos.2022.112456_bb0165) 2017; 90 Balan (10.1016/j.chaos.2022.112456_bb0105) 2004; 76 Hua (10.1016/j.chaos.2022.112456_bb0215) 2015; 297 Khanzadi (10.1016/j.chaos.2022.112456_bb0250) 2014; 39 Shannon (10.1016/j.chaos.2022.112456_bb0265) 1948; 27 Chen (10.1016/j.chaos.2022.112456_bb0055) 2020; 124 ur Rehman (10.1016/j.chaos.2022.112456_bb0075) 2018; 159 Yang (10.1016/j.chaos.2022.112456_bb0035) 2021; 133 Khedmati (10.1016/j.chaos.2022.112456_bb0275) 2020; 512 Wang (10.1016/j.chaos.2022.112456_bb0260) 2021; 147 Yildirim (10.1016/j.chaos.2022.112456_bb0155) 2022; 155 Dong (10.1016/j.chaos.2022.112456_bb0090) 2021; 153 Wu (10.1016/j.chaos.2022.112456_bb0185) 2018; 148 Chai (10.1016/j.chaos.2022.112456_bb0080) 2022; 29 Liu (10.1016/j.chaos.2022.112456_bb0175) 2012; 12 Farah (10.1016/j.chaos.2022.112456_bb0110) 2020; 121 Alvarez (10.1016/j.chaos.2022.112456_bb0235) 2006; 16 Zarei (10.1016/j.chaos.2022.112456_bb0225) 2016; 291 Lorenz (10.1016/j.chaos.2022.112456_bb0015) 1963; 20 Chai (10.1016/j.chaos.2022.112456_bb0140) 2019; 155 Yin (10.1016/j.chaos.2022.112456_bb0030) 2018; 28 Hu (10.1016/j.chaos.2022.112456_bb0195) 2017; 87 Enayatifar (10.1016/j.chaos.2022.112456_bb0010) 2014; 56 Khalil (10.1016/j.chaos.2022.112456_bb0240) 2021; 143 Chai (10.1016/j.chaos.2022.112456_bb0065) 2020; 176 Çavuşoğlu (10.1016/j.chaos.2022.112456_bb0040) 2017; 95 Gong (10.1016/j.chaos.2022.112456_bb0145) 2019; 121 Sabir (10.1016/j.chaos.2022.112456_bb0060) 2021; 63 Head (10.1016/j.chaos.2022.112456_bb0100) 2000; 57 Matthews (10.1016/j.chaos.2022.112456_bb0020) 1989; 13 Wu (10.1016/j.chaos.2022.112456_bb0025) 2015; 37 Chai (10.1016/j.chaos.2022.112456_bb0160) 2021; 183 Kadir (10.1016/j.chaos.2022.112456_bb0255) 2014; 125 Hu (10.1016/j.chaos.2022.112456_bb0170) 2017; 134 Wen (10.1016/j.chaos.2022.112456_bb0190) 2020; 99 Chai (10.1016/j.chaos.2022.112456_bb0285) 2022; 108 Wu (10.1016/j.chaos.2022.112456_bb0005) 2018; 77 Yang (10.1016/j.chaos.2022.112456_bb0150) 2022 Adleman (10.1016/j.chaos.2022.112456_bb0095) 1994; 266 Trujillo-Toledo (10.1016/j.chaos.2022.112456_bb0045) 2021; 153 Zhang (10.1016/j.chaos.2022.112456_bb0205) 2017; 26 Zhang (10.1016/j.chaos.2022.112456_bb0115) 2013; 124 Wu (10.1016/j.chaos.2022.112456_bb0120) 2018; 153 Chen (10.1016/j.chaos.2022.112456_bb0135) 2018; 142 Chen (10.1016/j.chaos.2022.112456_bb0270) 2004; 21 Li (10.1016/j.chaos.2022.112456_bb0130) 2016; 127 10.1016/j.chaos.2022.112456_bb0280 Liu (10.1016/j.chaos.2022.112456_bb0070) 2017; 27 Gong (10.1016/j.chaos.2022.112456_bb0200) 2021; 2021 Chai (10.1016/j.chaos.2022.112456_bb0220) 2019; 31 Wang (10.1016/j.chaos.2022.112456_bb0050) 2018; 144 Hua (10.1016/j.chaos.2022.112456_bb0210) 2016; 339 Watson (10.1016/j.chaos.2022.112456_bb0230) 1953; 171 |
| References_xml | – volume: 90 start-page: 225 year: 2017 end-page: 237 ident: bb0165 article-title: Color image encryption based on hybrid hyper-chaotic system and cellular automata publication-title: Opt Lasers Eng – volume: 57 start-page: 87 year: 2000 end-page: 93 ident: bb0100 article-title: Computing with dna by operating on plasmids publication-title: Biosystems – volume: 31 start-page: 219 year: 2019 end-page: 237 ident: bb0220 article-title: A novel image encryption scheme based on dna sequence operations and chaotic systems publication-title: Neural ComputApplic – volume: 133 year: 2021 ident: bb0035 article-title: Dynamical analysis and image encryption application of a novel memristive hyperchaotic system publication-title: OptLaser Technol – volume: 183 year: 2021 ident: bb0160 article-title: Combining improved genetic algorithm and matrix semi-tensor product (stp) in color image encryption publication-title: Signal Process – volume: 297 start-page: 80 year: 2015 end-page: 94 ident: bb0215 article-title: 2d sine logistic modulation map for image encryption publication-title: Inform Sci – volume: 155 start-page: 44 year: 2019 end-page: 62 ident: bb0140 article-title: A color image cryptosystem based on dynamic dna encryption and chaos publication-title: Signal Process – volume: 28 start-page: 1850047 year: 2018 ident: bb0030 article-title: A new chaotic image encryption scheme using breadth-first search and dynamic diffusion publication-title: IntJBifurcationChaos – volume: 159 start-page: 348 year: 2018 end-page: 367 ident: bb0075 article-title: A color image encryption technique using exclusive-or with dna complementary rules based on chaos theory and sha-2 publication-title: Optik – volume: 12 start-page: 1457 year: 2012 end-page: 1466 ident: bb0175 article-title: Image encryption using dna complementary rule and chaotic maps publication-title: Appl Soft Comput – volume: 142 start-page: 340 year: 2018 end-page: 353 ident: bb0135 article-title: Exploiting self-adaptive permutation–diffusion and dna random encoding for secure and efficient image encryption publication-title: Signal Process – reference: W. Zheng L. Yan C. Gou F.-Y. Wang, An acp-based parallel approach for color image encryption using redundant blocks, IEEE Transactions on Cybernetics. – volume: 63 year: 2021 ident: bb0060 article-title: Security of multiple rgb images in the time domain and frequency domain publication-title: JInfSecurApplic – volume: 95 start-page: 92 year: 2017 end-page: 101 ident: bb0040 article-title: Secure image encryption algorithm design using a novel chaos based s-box publication-title: Chaos, SolitonsFractals – volume: 121 start-page: 169 year: 2019 end-page: 180 ident: bb0145 article-title: An optical image compression and encryption scheme based on compressive sensing and rsa algorithm publication-title: Opt Lasers Eng – volume: 13 start-page: 29 year: 1989 end-page: 42 ident: bb0020 article-title: On the derivation of a “chaotic” encryption algorithm publication-title: Cryptologia – volume: 76 start-page: 303 year: 2004 end-page: 307 ident: bb0105 article-title: Parallel computation of simple arithmetic using peptide–antibody interactions publication-title: Biosystems – volume: 2021 start-page: 1 year: 2021 end-page: 16 ident: bb0200 article-title: Image encryption scheme based on block scrambling, closed-loop diffusion, and dna molecular mutation publication-title: Secur Commun Netw – volume: 26 year: 2017 ident: bb0205 article-title: A novel color image encryption scheme using fractional-order hyperchaotic system and dna sequence operations publication-title: ChinPhysB – volume: 77 start-page: 12349 year: 2018 end-page: 12376 ident: bb0005 article-title: A robust and lossless dna encryption scheme for color images publication-title: Multimed Tools Appl – volume: 56 start-page: 83 year: 2014 end-page: 93 ident: bb0010 article-title: Chaos-based image encryption using a hybrid genetic algorithm and a dna sequence publication-title: Opt Lasers Eng – volume: 127 start-page: 2558 year: 2016 end-page: 2565 ident: bb0130 article-title: An improvement color image encryption algorithm based on dna operations and real and complex chaotic systems publication-title: Optik – volume: 147 year: 2021 ident: bb0260 article-title: Spatiotemporal chaos in multiple coupled mapping lattices with multi-dynamic coupling coefficient and its application in color image encryption publication-title: Chaos, SolitonsFractals – volume: 87 start-page: 51 year: 2017 end-page: 66 ident: bb0195 article-title: An image encryption scheme combining chaos with cycle operation for dna sequences publication-title: Nonlinear Dyn – volume: 176 year: 2020 ident: bb0065 article-title: Color image compression and encryption scheme based on compressive sensing and double random encryption strategy publication-title: Signal Process – volume: 339 start-page: 237 year: 2016 end-page: 253 ident: bb0210 article-title: Image encryption using 2d logistic-adjusted-sine map publication-title: Inform Sci – volume: 37 start-page: 24 year: 2015 end-page: 39 ident: bb0025 article-title: A new color image encryption scheme based on dna sequences and multiple improved 1d chaotic maps publication-title: Appl Soft Comput – volume: 99 start-page: 1587 year: 2020 end-page: 1600 ident: bb0190 article-title: Colour light field image encryption based on dna sequences and chaotic systems publication-title: Nonlinear Dyn – volume: 155 year: 2022 ident: bb0155 article-title: Optical color image encryption scheme with a novel dna encoding algorithm based on a chaotic circuit publication-title: Chaos, SolitonsFractals – volume: 121 year: 2020 ident: bb0110 article-title: A novel chaos based optical image encryption using fractional Fourier transform and dna sequence operation publication-title: OptLaser Technol – volume: 121 year: 2020 ident: bb0245 article-title: Secure image encryption scheme using double random-phase encoding and compressed sensing publication-title: OptLaser Technol – volume: 171 start-page: 737 year: 1953 end-page: 738 ident: bb0230 article-title: Molecular structure of nucleic acids: a structure for deoxyribose nucleic acid publication-title: Nature – volume: 153 year: 2021 ident: bb0045 article-title: Real-time rgb image encryption for iot applications using enhanced sequences from chaotic maps publication-title: Chaos, SolitonsFractals – volume: 148 start-page: 272 year: 2018 end-page: 287 ident: bb0185 article-title: Color image dna encryption using nca map-based cml and one-time keys publication-title: Signal Process – volume: 153 start-page: 11 year: 2018 end-page: 23 ident: bb0120 article-title: Image encryption using 2d hénon-sine map and dna approach publication-title: Signal Process – volume: 16 start-page: 2129 year: 2006 end-page: 2151 ident: bb0235 article-title: Some basic cryptographic requirements for chaos-based cryptosystems publication-title: IntJBifurcationChaos – volume: 143 year: 2021 ident: bb0240 article-title: An efficient color/grayscale image encryption scheme based on hybrid chaotic maps publication-title: OptLaser Technol – volume: 121 start-page: 203 year: 2019 end-page: 214 ident: bb0085 article-title: A fast image encryption algorithm based on compressive sensing and hyperchaotic map publication-title: Opt Lasers Eng – volume: 39 start-page: 1039 year: 2014 end-page: 1047 ident: bb0250 article-title: Image encryption using random bit sequence based on chaotic maps publication-title: ArabJSciEng – volume: 27 start-page: 379 year: 1948 end-page: 423 ident: bb0265 article-title: A mathematical theory of communication publication-title: Bell Syst Tech J – volume: 291 start-page: 323 year: 2016 end-page: 339 ident: bb0225 article-title: Hopf bifurcation analysis and ultimate bound estimation of a new 4-d quadratic autonomous hyper-chaotic system publication-title: Appl Math Comput – volume: 27 start-page: 1750171 year: 2017 ident: bb0070 article-title: Color image encryption using three-dimensional sine icmic modulation map and dna sequence operations publication-title: IntJBifurcationChaos – volume: 20 start-page: 130 year: 1963 end-page: 141 ident: bb0015 article-title: Deterministic non-period flows publication-title: J Atmos Sci – volume: 83 start-page: 1123 year: 2016 end-page: 1136 ident: bb0125 article-title: A novel chaos-based image encryption using dna sequence operation and secure hash algorithm sha-2 publication-title: Nonlinear Dyn – volume: 134 start-page: 234 year: 2017 end-page: 243 ident: bb0170 article-title: Chaotic image cryptosystem using dna deletion and dna insertion publication-title: Signal Process – volume: 144 start-page: 444 year: 2018 end-page: 452 ident: bb0050 article-title: Cryptanalysis and enhancements of image encryption using combination of the 1d chaotic map publication-title: Signal Process – volume: 124 year: 2020 ident: bb0055 article-title: Optical single-channel color image asymmetric cryptosystem based on hyperchaotic system and random modulus decomposition in gyrator domains publication-title: Opt Lasers Eng – volume: 266 start-page: 1021 year: 1994 end-page: 1024 ident: bb0095 article-title: Molecular computation of solutions to combinatorial problems publication-title: Science – volume: 124 start-page: 6276 year: 2013 end-page: 6281 ident: bb0115 article-title: A novel couple images encryption algorithm based on dna subsequence operation and chaotic system publication-title: Optik – volume: 125 start-page: 1671 year: 2014 end-page: 1675 ident: bb0255 article-title: Color image encryption using skew tent map and hyper chaotic system of 6th-order cnn publication-title: Optik – volume: 153 year: 2021 ident: bb0090 article-title: Image encryption-then-transmission combining random sub-block scrambling and loop dna algorithm in an optical chaotic system publication-title: Chaos, SolitonsFractals – volume: 108 start-page: 2671 year: 2022 end-page: 2704 ident: bb0285 article-title: An image encryption scheme based on multi-objective optimization and block compressed sensing publication-title: Nonlinear Dyn – volume: 21 start-page: 749 year: 2004 end-page: 761 ident: bb0270 article-title: A symmetric image encryption scheme based on 3d chaotic cat maps publication-title: Chaos, SolitonsFractals – volume: 29 start-page: 972 year: 2022 end-page: 976 ident: bb0080 article-title: Tpe-Gan: thumbnail preserving encryption based on gan with key publication-title: IEEE Signal ProcessLett – start-page: 1 year: 2022 end-page: 25 ident: bb0150 article-title: Image encryption based on fractional chaotic pseudo-random number generator and dna encryption method publication-title: Nonlinear Dyn – volume: 75 start-page: 407 year: 2014 end-page: 416 ident: bb0180 article-title: Using 3-cell chaotic map for image encryption based on biological operations publication-title: Nonlinear Dyn – volume: 512 start-page: 855 year: 2020 end-page: 879 ident: bb0275 article-title: 2d hybrid chaos map for image security transform based on framelet and cellular automata publication-title: Inform Sci – volume: 12 start-page: 1457 issue: 5 year: 2012 ident: 10.1016/j.chaos.2022.112456_bb0175 article-title: Image encryption using dna complementary rule and chaotic maps publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2012.01.016 – volume: 153 start-page: 11 year: 2018 ident: 10.1016/j.chaos.2022.112456_bb0120 article-title: Image encryption using 2d hénon-sine map and dna approach publication-title: Signal Process doi: 10.1016/j.sigpro.2018.06.008 – volume: 39 start-page: 1039 issue: 2 year: 2014 ident: 10.1016/j.chaos.2022.112456_bb0250 article-title: Image encryption using random bit sequence based on chaotic maps publication-title: ArabJSciEng – volume: 143 year: 2021 ident: 10.1016/j.chaos.2022.112456_bb0240 article-title: An efficient color/grayscale image encryption scheme based on hybrid chaotic maps publication-title: OptLaser Technol – volume: 155 year: 2022 ident: 10.1016/j.chaos.2022.112456_bb0155 article-title: Optical color image encryption scheme with a novel dna encoding algorithm based on a chaotic circuit publication-title: Chaos, SolitonsFractals – volume: 159 start-page: 348 year: 2018 ident: 10.1016/j.chaos.2022.112456_bb0075 article-title: A color image encryption technique using exclusive-or with dna complementary rules based on chaos theory and sha-2 publication-title: Optik doi: 10.1016/j.ijleo.2018.01.064 – volume: 20 start-page: 130 year: 1963 ident: 10.1016/j.chaos.2022.112456_bb0015 article-title: Deterministic non-period flows publication-title: J Atmos Sci doi: 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2 – volume: 124 start-page: 6276 issue: 23 year: 2013 ident: 10.1016/j.chaos.2022.112456_bb0115 article-title: A novel couple images encryption algorithm based on dna subsequence operation and chaotic system publication-title: Optik doi: 10.1016/j.ijleo.2013.05.009 – volume: 27 start-page: 379 issue: 3 year: 1948 ident: 10.1016/j.chaos.2022.112456_bb0265 article-title: A mathematical theory of communication publication-title: Bell Syst Tech J doi: 10.1002/j.1538-7305.1948.tb01338.x – volume: 124 year: 2020 ident: 10.1016/j.chaos.2022.112456_bb0055 article-title: Optical single-channel color image asymmetric cryptosystem based on hyperchaotic system and random modulus decomposition in gyrator domains publication-title: Opt Lasers Eng doi: 10.1016/j.optlaseng.2019.105809 – volume: 37 start-page: 24 year: 2015 ident: 10.1016/j.chaos.2022.112456_bb0025 article-title: A new color image encryption scheme based on dna sequences and multiple improved 1d chaotic maps publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2015.08.008 – volume: 171 start-page: 737 issue: 4356 year: 1953 ident: 10.1016/j.chaos.2022.112456_bb0230 article-title: Molecular structure of nucleic acids: a structure for deoxyribose nucleic acid publication-title: Nature doi: 10.1038/171737a0 – volume: 57 start-page: 87 issue: 2 year: 2000 ident: 10.1016/j.chaos.2022.112456_bb0100 article-title: Computing with dna by operating on plasmids publication-title: Biosystems doi: 10.1016/S0303-2647(00)00091-5 – volume: 121 start-page: 203 year: 2019 ident: 10.1016/j.chaos.2022.112456_bb0085 article-title: A fast image encryption algorithm based on compressive sensing and hyperchaotic map publication-title: Opt Lasers Eng doi: 10.1016/j.optlaseng.2019.04.011 – volume: 512 start-page: 855 year: 2020 ident: 10.1016/j.chaos.2022.112456_bb0275 article-title: 2d hybrid chaos map for image security transform based on framelet and cellular automata publication-title: Inform Sci doi: 10.1016/j.ins.2019.10.028 – volume: 31 start-page: 219 issue: 1 year: 2019 ident: 10.1016/j.chaos.2022.112456_bb0220 article-title: A novel image encryption scheme based on dna sequence operations and chaotic systems publication-title: Neural ComputApplic doi: 10.1007/s00521-017-2993-9 – volume: 176 year: 2020 ident: 10.1016/j.chaos.2022.112456_bb0065 article-title: Color image compression and encryption scheme based on compressive sensing and double random encryption strategy publication-title: Signal Process doi: 10.1016/j.sigpro.2020.107684 – volume: 13 start-page: 29 issue: 1 year: 1989 ident: 10.1016/j.chaos.2022.112456_bb0020 article-title: On the derivation of a “chaotic” encryption algorithm publication-title: Cryptologia doi: 10.1080/0161-118991863745 – volume: 16 start-page: 2129 issue: 08 year: 2006 ident: 10.1016/j.chaos.2022.112456_bb0235 article-title: Some basic cryptographic requirements for chaos-based cryptosystems publication-title: IntJBifurcationChaos – volume: 77 start-page: 12349 issue: 10 year: 2018 ident: 10.1016/j.chaos.2022.112456_bb0005 article-title: A robust and lossless dna encryption scheme for color images publication-title: Multimed Tools Appl doi: 10.1007/s11042-017-4885-5 – volume: 63 year: 2021 ident: 10.1016/j.chaos.2022.112456_bb0060 article-title: Security of multiple rgb images in the time domain and frequency domain publication-title: JInfSecurApplic – volume: 95 start-page: 92 year: 2017 ident: 10.1016/j.chaos.2022.112456_bb0040 article-title: Secure image encryption algorithm design using a novel chaos based s-box publication-title: Chaos, SolitonsFractals doi: 10.1016/j.chaos.2016.12.018 – volume: 75 start-page: 407 issue: 3 year: 2014 ident: 10.1016/j.chaos.2022.112456_bb0180 article-title: Using 3-cell chaotic map for image encryption based on biological operations publication-title: Nonlinear Dyn doi: 10.1007/s11071-013-0819-6 – volume: 147 year: 2021 ident: 10.1016/j.chaos.2022.112456_bb0260 article-title: Spatiotemporal chaos in multiple coupled mapping lattices with multi-dynamic coupling coefficient and its application in color image encryption publication-title: Chaos, SolitonsFractals – volume: 108 start-page: 2671 issue: 3 year: 2022 ident: 10.1016/j.chaos.2022.112456_bb0285 article-title: An image encryption scheme based on multi-objective optimization and block compressed sensing publication-title: Nonlinear Dyn doi: 10.1007/s11071-022-07328-3 – volume: 28 start-page: 1850047 issue: 04 year: 2018 ident: 10.1016/j.chaos.2022.112456_bb0030 article-title: A new chaotic image encryption scheme using breadth-first search and dynamic diffusion publication-title: IntJBifurcationChaos – volume: 87 start-page: 51 issue: 1 year: 2017 ident: 10.1016/j.chaos.2022.112456_bb0195 article-title: An image encryption scheme combining chaos with cycle operation for dna sequences publication-title: Nonlinear Dyn doi: 10.1007/s11071-016-3024-6 – volume: 339 start-page: 237 year: 2016 ident: 10.1016/j.chaos.2022.112456_bb0210 article-title: Image encryption using 2d logistic-adjusted-sine map publication-title: Inform Sci doi: 10.1016/j.ins.2016.01.017 – volume: 121 year: 2020 ident: 10.1016/j.chaos.2022.112456_bb0110 article-title: A novel chaos based optical image encryption using fractional Fourier transform and dna sequence operation publication-title: OptLaser Technol – volume: 291 start-page: 323 year: 2016 ident: 10.1016/j.chaos.2022.112456_bb0225 article-title: Hopf bifurcation analysis and ultimate bound estimation of a new 4-d quadratic autonomous hyper-chaotic system publication-title: Appl Math Comput – volume: 29 start-page: 972 year: 2022 ident: 10.1016/j.chaos.2022.112456_bb0080 article-title: Tpe-Gan: thumbnail preserving encryption based on gan with key publication-title: IEEE Signal ProcessLett doi: 10.1109/LSP.2022.3163685 – volume: 121 start-page: 169 year: 2019 ident: 10.1016/j.chaos.2022.112456_bb0145 article-title: An optical image compression and encryption scheme based on compressive sensing and rsa algorithm publication-title: Opt Lasers Eng doi: 10.1016/j.optlaseng.2019.03.006 – volume: 27 start-page: 1750171 issue: 11 year: 2017 ident: 10.1016/j.chaos.2022.112456_bb0070 article-title: Color image encryption using three-dimensional sine icmic modulation map and dna sequence operations publication-title: IntJBifurcationChaos – volume: 183 year: 2021 ident: 10.1016/j.chaos.2022.112456_bb0160 article-title: Combining improved genetic algorithm and matrix semi-tensor product (stp) in color image encryption publication-title: Signal Process doi: 10.1016/j.sigpro.2021.108041 – volume: 121 year: 2020 ident: 10.1016/j.chaos.2022.112456_bb0245 article-title: Secure image encryption scheme using double random-phase encoding and compressed sensing publication-title: OptLaser Technol – ident: 10.1016/j.chaos.2022.112456_bb0280 – volume: 56 start-page: 83 year: 2014 ident: 10.1016/j.chaos.2022.112456_bb0010 article-title: Chaos-based image encryption using a hybrid genetic algorithm and a dna sequence publication-title: Opt Lasers Eng doi: 10.1016/j.optlaseng.2013.12.003 – volume: 266 start-page: 1021 issue: 5187 year: 1994 ident: 10.1016/j.chaos.2022.112456_bb0095 article-title: Molecular computation of solutions to combinatorial problems publication-title: Science doi: 10.1126/science.7973651 – volume: 125 start-page: 1671 issue: 5 year: 2014 ident: 10.1016/j.chaos.2022.112456_bb0255 article-title: Color image encryption using skew tent map and hyper chaotic system of 6th-order cnn publication-title: Optik doi: 10.1016/j.ijleo.2013.09.040 – volume: 148 start-page: 272 year: 2018 ident: 10.1016/j.chaos.2022.112456_bb0185 article-title: Color image dna encryption using nca map-based cml and one-time keys publication-title: Signal Process doi: 10.1016/j.sigpro.2018.02.028 – volume: 153 year: 2021 ident: 10.1016/j.chaos.2022.112456_bb0090 article-title: Image encryption-then-transmission combining random sub-block scrambling and loop dna algorithm in an optical chaotic system publication-title: Chaos, SolitonsFractals – volume: 83 start-page: 1123 issue: 3 year: 2016 ident: 10.1016/j.chaos.2022.112456_bb0125 article-title: A novel chaos-based image encryption using dna sequence operation and secure hash algorithm sha-2 publication-title: Nonlinear Dyn doi: 10.1007/s11071-015-2392-7 – volume: 155 start-page: 44 year: 2019 ident: 10.1016/j.chaos.2022.112456_bb0140 article-title: A color image cryptosystem based on dynamic dna encryption and chaos publication-title: Signal Process doi: 10.1016/j.sigpro.2018.09.029 – volume: 142 start-page: 340 year: 2018 ident: 10.1016/j.chaos.2022.112456_bb0135 article-title: Exploiting self-adaptive permutation–diffusion and dna random encoding for secure and efficient image encryption publication-title: Signal Process doi: 10.1016/j.sigpro.2017.07.034 – volume: 297 start-page: 80 year: 2015 ident: 10.1016/j.chaos.2022.112456_bb0215 article-title: 2d sine logistic modulation map for image encryption publication-title: Inform Sci doi: 10.1016/j.ins.2014.11.018 – volume: 144 start-page: 444 year: 2018 ident: 10.1016/j.chaos.2022.112456_bb0050 article-title: Cryptanalysis and enhancements of image encryption using combination of the 1d chaotic map publication-title: Signal Process doi: 10.1016/j.sigpro.2017.11.005 – volume: 90 start-page: 225 year: 2017 ident: 10.1016/j.chaos.2022.112456_bb0165 article-title: Color image encryption based on hybrid hyper-chaotic system and cellular automata publication-title: Opt Lasers Eng doi: 10.1016/j.optlaseng.2016.10.019 – volume: 99 start-page: 1587 issue: 2 year: 2020 ident: 10.1016/j.chaos.2022.112456_bb0190 article-title: Colour light field image encryption based on dna sequences and chaotic systems publication-title: Nonlinear Dyn doi: 10.1007/s11071-019-05378-8 – volume: 134 start-page: 234 year: 2017 ident: 10.1016/j.chaos.2022.112456_bb0170 article-title: Chaotic image cryptosystem using dna deletion and dna insertion publication-title: Signal Process doi: 10.1016/j.sigpro.2016.12.008 – volume: 127 start-page: 2558 issue: 5 year: 2016 ident: 10.1016/j.chaos.2022.112456_bb0130 article-title: An improvement color image encryption algorithm based on dna operations and real and complex chaotic systems publication-title: Optik doi: 10.1016/j.ijleo.2015.11.221 – volume: 76 start-page: 303 issue: 1–3 year: 2004 ident: 10.1016/j.chaos.2022.112456_bb0105 article-title: Parallel computation of simple arithmetic using peptide–antibody interactions publication-title: Biosystems doi: 10.1016/j.biosystems.2004.05.018 – volume: 2021 start-page: 1 year: 2021 ident: 10.1016/j.chaos.2022.112456_bb0200 article-title: Image encryption scheme based on block scrambling, closed-loop diffusion, and dna molecular mutation publication-title: Secur Commun Netw – volume: 153 year: 2021 ident: 10.1016/j.chaos.2022.112456_bb0045 article-title: Real-time rgb image encryption for iot applications using enhanced sequences from chaotic maps publication-title: Chaos, SolitonsFractals – volume: 21 start-page: 749 issue: 3 year: 2004 ident: 10.1016/j.chaos.2022.112456_bb0270 article-title: A symmetric image encryption scheme based on 3d chaotic cat maps publication-title: Chaos, SolitonsFractals doi: 10.1016/j.chaos.2003.12.022 – volume: 133 year: 2021 ident: 10.1016/j.chaos.2022.112456_bb0035 article-title: Dynamical analysis and image encryption application of a novel memristive hyperchaotic system publication-title: OptLaser Technol – start-page: 1 year: 2022 ident: 10.1016/j.chaos.2022.112456_bb0150 article-title: Image encryption based on fractional chaotic pseudo-random number generator and dna encryption method publication-title: Nonlinear Dyn – volume: 26 issue: 10 year: 2017 ident: 10.1016/j.chaos.2022.112456_bb0205 article-title: A novel color image encryption scheme using fractional-order hyperchaotic system and dna sequence operations publication-title: ChinPhysB |
| SSID | ssj0001062 |
| Score | 2.649436 |
| Snippet | As the application of multimedia technology intensifies recently, more and more attention has been paid to privacy protection in image data. The interest in... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 112456 |
| SubjectTerms | 2D-LASM 4D-QAHS Chaotic system DNA encryption Image encryption Triploid mutation |
| Title | Image encryption algorithm based on hyperchaotic system and a new DNA sequence operation |
| URI | https://dx.doi.org/10.1016/j.chaos.2022.112456 |
| Volume | 162 |
| WOSCitedRecordID | wos000843863400005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: ScienceDirect customDbUrl: eissn: 1873-2887 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001062 issn: 0960-0779 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB5BygEOiBYQ5aU9cAAFV47tetfHCIpaBBGHAqYXa71ek1SpE9kJtP-e2acLRRE9cLGikXez2vk0OzM7_gbgRYYBWih4FQie8gDP2ypgokwDXo1EmNFwxHVV5ZcPdDJheZ59ssmcTrcToE3Dzs-z5X9VNcpQ2erT2Wuo20-KAvyNSscnqh2f_6T4ozNVhoMrai-MOeDz74t2tpqeDdWRVanrgSlGn4okaaHoWg2Zs2FtVR3Gh28n46ErsR4ulrLttec4DXCoBkCnyudUtY0aXasvrvjce-nf1hojs-annDlZbu5DvvaSk6mtCj6ZyuZi3Wf4jfRwbfFrUxMY1braK59jTMMgpKZbjDe31voag4nuXmKYxa_YcpNWON1Tu6GI1aNor3_7d-bsP040X2foSthOCz1JoSYpzCQ3YSui-xkbwNb46CB_749vjJH11ZNbu6Oq0kWBV9byd3fmkotyfA_u2tiCjA0mtuGGbHbgzkdPzNvtwLa15R15aQnHX92HXEOG9JAhHjJEQ4ag6DJkiIEMQaUTThAyBCFDHGSIh8wD-Pzu4PjNYWA7bgQCXZlVUGO4XI0o3-cJOoaRpCyJq7LEfaKRFBLD31gkVIQ1q2MRUlHXnMY8i5igJc9YGT-EQbNo5CMgrKQiUrRZCS2TNOWl5BxPh6pOZVYxXu9C5DauEJaOXnVFmRcblLYLr_2gpWFj2fx66jRSWIfSOIoFYmzTwMfX-58ncLuH_1MYrNq1fAa3xI_VrGufW4D9AnjzmHk |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Image+encryption+algorithm+based+on+hyperchaotic+system+and+a+new+DNA+sequence+operation&rft.jtitle=Chaos%2C+solitons+and+fractals&rft.au=Yu%2C+Jinwei&rft.au=Xie%2C+Wei&rft.au=Zhong%2C+Zhenyu&rft.au=Wang%2C+Huan&rft.date=2022-09-01&rft.issn=0960-0779&rft.volume=162&rft.spage=112456&rft_id=info:doi/10.1016%2Fj.chaos.2022.112456&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_chaos_2022_112456 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-0779&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-0779&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-0779&client=summon |