Universal coding with minimum probability of codeword length overflow

Lossless block-to-variable length source coding is studied for finite-state, finite-alphabet sources. The aim is to minimize the probability that the normalized length of the codeword will exceed a given threshold B, subject to the Kraft inequality. It is shown that the Lempel-Ziv algorithm (1978) a...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on information theory Ročník 37; číslo 3; s. 556 - 563
Hlavný autor: Merhav, N.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York, NY IEEE 01.05.1991
Institute of Electrical and Electronics Engineers
Predmet:
ISSN:0018-9448, 1557-9654
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:Lossless block-to-variable length source coding is studied for finite-state, finite-alphabet sources. The aim is to minimize the probability that the normalized length of the codeword will exceed a given threshold B, subject to the Kraft inequality. It is shown that the Lempel-Ziv algorithm (1978) asymptotically attains the optimal performance in the sense just defined, independently of the source and the value of B. For the subclass of unifilar Markov sources, faster convergence to the asymptotic optimum performance can be accomplished by using the minimum-description-length universal code for this subclass. It is demonstrated that these universal codes are also nearly optimal in the sense of minimizing buffer overflow probability, and asymptotically optimal in a competitive sense.< >
Bibliografia:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0018-9448
1557-9654
DOI:10.1109/18.79912