A multi-parameter parallel ADMM for multi-block linearly constrained separable convex optimization

The alternating direction method of multipliers (ADMM) has been proved to be effective for solving two-block convex minimization model subject to linear constraints. However, the convergence of multiple-block convex minimization model with linear constraints may not be guaranteed without additional...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Applied numerical mathematics Ročník 171; s. 369 - 388
Hlavní autori: Shen, Yuan, Gao, Qianming, Yin, Xue
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier B.V 01.01.2022
Predmet:
ISSN:0168-9274, 1873-5460
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The alternating direction method of multipliers (ADMM) has been proved to be effective for solving two-block convex minimization model subject to linear constraints. However, the convergence of multiple-block convex minimization model with linear constraints may not be guaranteed without additional assumptions. Recently, some parallel multi-block ADMM algorithms which solve the subproblems in a parallel way have been proposed. This paper is a further study on this method with the purpose of improving the parallel multi-block ADMM algorithm by introducing more parameters. We propose two multi-parameter parallel ADMM algorithms with proximal point terms attached to all subproblems. Comparing with some popular parallel ADMM-based algorithms, the parameter conditions of the new algorithms are relaxed. Experiments on both real and synthetic problems are conducted to justify the effectiveness of the proposed algorithms compared to several efficient ADMM-based algorithms for multi-block problems.
AbstractList The alternating direction method of multipliers (ADMM) has been proved to be effective for solving two-block convex minimization model subject to linear constraints. However, the convergence of multiple-block convex minimization model with linear constraints may not be guaranteed without additional assumptions. Recently, some parallel multi-block ADMM algorithms which solve the subproblems in a parallel way have been proposed. This paper is a further study on this method with the purpose of improving the parallel multi-block ADMM algorithm by introducing more parameters. We propose two multi-parameter parallel ADMM algorithms with proximal point terms attached to all subproblems. Comparing with some popular parallel ADMM-based algorithms, the parameter conditions of the new algorithms are relaxed. Experiments on both real and synthetic problems are conducted to justify the effectiveness of the proposed algorithms compared to several efficient ADMM-based algorithms for multi-block problems.
Author Shen, Yuan
Gao, Qianming
Yin, Xue
Author_xml – sequence: 1
  givenname: Yuan
  surname: Shen
  fullname: Shen, Yuan
  email: ocsiban@126.com
– sequence: 2
  givenname: Qianming
  orcidid: 0000-0001-6964-1760
  surname: Gao
  fullname: Gao, Qianming
  email: 13762361538@163.com
– sequence: 3
  givenname: Xue
  surname: Yin
  fullname: Yin, Xue
  email: yx15380940286@163.com
BookMark eNqFkMtOwzAQRS1UJNrCF7DxDyTYifNasKjKU2rFBtaWPZlILk5cOW5F-XqStisWsJqH7hnduTMy6VyHhNxyFnPG87tNrLbdro0TlvCYVTHj_IJMeVmkUSZyNiHTQVVGVVKIKzLr-w1jLMsEmxK9oO3OBhNtlVctBvR07KxFSxcP6zVtnD8rtHXwSa3pUHl7oOC6Png1jDXtcYS0xXG7xy_qtsG05lsF47prctko2-PNuc7Jx9Pj-_IlWr09vy4XqwhSloYIs7RMtOB5UQBoqOpGQa6KPGug0FrUOuEIIisFa0BBKqoShEpQ1SqpaqzSdE6q013wru89NhJMODoYbVrJmRzDkht5DEuOYUlWySGsgU1_sVtvWuUP_1D3JwqHt_YGvezBYAdYG48QZO3Mn_wP3YGKWA
CitedBy_id crossref_primary_10_1111_mice_13077
crossref_primary_10_1016_j_cam_2022_114821
crossref_primary_10_1080_02331934_2023_2230994
crossref_primary_10_1007_s00186_022_00796_8
crossref_primary_10_1016_j_apenergy_2022_118750
crossref_primary_10_1007_s11075_024_01793_0
crossref_primary_10_1016_j_energy_2023_127395
crossref_primary_10_1007_s10589_025_00647_2
Cites_doi 10.1007/s40305-017-0186-y
10.1155/2013/183961
10.1007/s10589-017-9971-0
10.1145/1970392.1970395
10.1090/S0025-5718-2014-02829-9
10.1137/110822347
10.1007/s11228-017-0421-z
10.1007/s10957-009-9619-z
10.1137/100781894
10.1007/s10589-007-9109-x
10.1142/S0217595915500244
10.1007/s10915-015-0060-1
10.1109/TPAMI.2011.282
10.1137/130922793
10.1080/02331934.2011.611885
10.1007/s10107-014-0826-5
10.3934/jimo.2018181
10.1007/BF00927673
10.1007/s11590-014-0825-8
10.1007/s10957-012-0003-z
ContentType Journal Article
Copyright 2021 IMACS
Copyright_xml – notice: 2021 IMACS
DBID AAYXX
CITATION
DOI 10.1016/j.apnum.2021.09.011
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISSN 1873-5460
EndPage 388
ExternalDocumentID 10_1016_j_apnum_2021_09_011
S0168927421002658
GrantInformation_xml – fundername: Social Science Foundation of Jiangsu Province
  grantid: 17ZTB011
  funderid: https://doi.org/10.13039/501100018562
– fundername: National Social Science Foundation of China
  grantid: 19AZD018; 20BGL028; 17BTQ063; 19BGL205
  funderid: https://doi.org/10.13039/501100012456
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABAOU
ABEFU
ABJNI
ABMAC
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADGUI
ADIYS
ADMUD
AEBSH
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AI.
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMJ
HVGLF
HZ~
IHE
J1W
KOM
M26
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SME
SPC
SPCBC
SSW
SSZ
T5K
TN5
VH1
VOH
WH7
WUQ
XPP
ZMT
~02
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c303t-e5382b41677ccbc9dfac6a765fc7bb4db21ec45840fcac3498c4a2eada29de933
ISICitedReferencesCount 11
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000706372000020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0168-9274
IngestDate Sat Nov 29 07:24:35 EST 2025
Tue Nov 18 20:29:12 EST 2025
Fri Feb 23 02:42:27 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Multi-block
Alternating direction method of multipliers
Parallel computing
Proximal point algorithm
Convex optimization
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c303t-e5382b41677ccbc9dfac6a765fc7bb4db21ec45840fcac3498c4a2eada29de933
ORCID 0000-0001-6964-1760
PageCount 20
ParticipantIDs crossref_citationtrail_10_1016_j_apnum_2021_09_011
crossref_primary_10_1016_j_apnum_2021_09_011
elsevier_sciencedirect_doi_10_1016_j_apnum_2021_09_011
PublicationCentury 2000
PublicationDate January 2022
2022-01-00
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 01
  year: 2022
  text: January 2022
PublicationDecade 2020
PublicationTitle Applied numerical mathematics
PublicationYear 2022
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Han, Yuan, Zhang (br0090) 2014; 83
Peng, Arvind, John (br0220) 2012; 34
Wright, Ganesh, Rao, Peng, Ma (br0270) December 2009
Candès, Li, Ma, Wright (br0020) 2009; 58
Han, Yuan (br0080) 2012; 155
Wang, Hong, Ma, Luo (br0260) 2015; 11
Facchinei, Pang (br0070) 2003
He, Xu, Yuan (br0160) 2018; 6
Hestenes (br0170) 1969; 4
Liu, Duan, Wang (br0210) 2020; 2020
He, Tao, Yuan (br0140) 2012; 22
Chen, He, Ye, Yuan (br0030) 2016; 155
He (br0100) 2009; 42
He, Xu, Yuan (br0150) 2016; 66
Bai, Li, Xu, Zhang (br0010) 2018; 70
He, Ma, Yuan (br0120) 2019; 66
Wang, Desai, He (br0250) 2015; 9
He, Tao, Xu, Yuan (br0130) 2013; 62
Jiang, Yuan (br0190) 2010; 145
Jiang, Wu, Cai (br0180) 2020; 34
Deng, Lai, Peng, Yin (br0060) 2016; 65
Davis, Yin (br0050) 2017; 25
Chen, Shen, You (br0040) 2013; 2013
He, Hou, Yuan (br0110) 2015; 25
Li, Sun, Toh (br0200) 2015; 32
Wang, Desai (br0240) 2017; 34
Tao, Yuan (br0230) 2011; 21
Wu, Liu, Li (br0280) 2018; 96
Facchinei (10.1016/j.apnum.2021.09.011_br0070) 2003
He (10.1016/j.apnum.2021.09.011_br0140) 2012; 22
Davis (10.1016/j.apnum.2021.09.011_br0050) 2017; 25
Jiang (10.1016/j.apnum.2021.09.011_br0190) 2010; 145
Deng (10.1016/j.apnum.2021.09.011_br0060) 2016; 65
Han (10.1016/j.apnum.2021.09.011_br0080) 2012; 155
Wang (10.1016/j.apnum.2021.09.011_br0260) 2015; 11
He (10.1016/j.apnum.2021.09.011_br0130) 2013; 62
Li (10.1016/j.apnum.2021.09.011_br0200) 2015; 32
He (10.1016/j.apnum.2021.09.011_br0120) 2019; 66
Wang (10.1016/j.apnum.2021.09.011_br0240) 2017; 34
Wang (10.1016/j.apnum.2021.09.011_br0250) 2015; 9
Candès (10.1016/j.apnum.2021.09.011_br0020) 2009; 58
Chen (10.1016/j.apnum.2021.09.011_br0040) 2013; 2013
He (10.1016/j.apnum.2021.09.011_br0150) 2016; 66
He (10.1016/j.apnum.2021.09.011_br0100) 2009; 42
Jiang (10.1016/j.apnum.2021.09.011_br0180) 2020; 34
Hestenes (10.1016/j.apnum.2021.09.011_br0170) 1969; 4
Peng (10.1016/j.apnum.2021.09.011_br0220) 2012; 34
Han (10.1016/j.apnum.2021.09.011_br0090) 2014; 83
He (10.1016/j.apnum.2021.09.011_br0110) 2015; 25
Chen (10.1016/j.apnum.2021.09.011_br0030) 2016; 155
Wu (10.1016/j.apnum.2021.09.011_br0280) 2018; 96
Liu (10.1016/j.apnum.2021.09.011_br0210) 2020; 2020
Tao (10.1016/j.apnum.2021.09.011_br0230) 2011; 21
Bai (10.1016/j.apnum.2021.09.011_br0010) 2018; 70
He (10.1016/j.apnum.2021.09.011_br0160) 2018; 6
Wright (10.1016/j.apnum.2021.09.011_br0270) 2009
References_xml – volume: 34
  start-page: 1
  year: 2017
  end-page: 27
  ident: br0240
  article-title: On the convergence rate of the augmented lagrangian-based parallel splitting method
  publication-title: Optim. Methods Softw.
– volume: 62
  start-page: 573
  year: 2013
  end-page: 596
  ident: br0130
  article-title: An alternating direction-based contraction method for linearly constrained separable convex programming problems
  publication-title: Optimization
– volume: 21
  start-page: 57
  year: 2011
  end-page: 81
  ident: br0230
  article-title: Recovering low-rank and sparse components of matrices from incomplete and noisy observations
  publication-title: SIAM J. Optim.
– year: December 2009
  ident: br0270
  article-title: Robust principal component analysis: exact recovery of corrupted low-rank matrices by convex optimization
  publication-title: Proceedings of Neural Information Processing Systems (NIPS)
– volume: 34
  start-page: 2233
  year: 2012
  end-page: 2246
  ident: br0220
  article-title: Rasl: robust alignment by sparse and low-rank decomposition for linearly correlated images
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 25
  start-page: 13
  year: 2017
  end-page: 15
  ident: br0050
  article-title: A three-operator splitting scheme and its optimization applications
  publication-title: Set-Valued Var. Anal.
– volume: 58
  year: 2009
  ident: br0020
  article-title: Robust principal component analysis?
  publication-title: J. ACM
– volume: 22
  start-page: 313
  year: 2012
  end-page: 340
  ident: br0140
  article-title: Alternating direction method with gaussian back substitution for separable convex programming
  publication-title: SIAM J. Optim.
– volume: 9
  start-page: 1199
  year: 2015
  end-page: 1212
  ident: br0250
  article-title: A note on augmented lagrangian-based parallel splitting method
  publication-title: Optim. Lett.
– volume: 66
  start-page: 1
  year: 2019
  end-page: 29
  ident: br0120
  article-title: Optimal proximal augmented lagrangian method and its application to full jacobian splitting for multi-block separable convex minimization problems
  publication-title: IMA J. Numer. Anal.
– volume: 34
  start-page: 835
  year: 2020
  end-page: 856
  ident: br0180
  article-title: Generalized admm with optimal indefinite proximal term for linearly constrained convex minimization
  publication-title: J. Ind. Manag. Optim.
– volume: 155
  start-page: 227
  year: 2012
  end-page: 238
  ident: br0080
  article-title: A note on the alternating direction method of multipliers
  publication-title: J. Optim. Theory Appl.
– volume: 83
  start-page: 2263
  year: 2014
  end-page: 2291
  ident: br0090
  article-title: An augmented lagrangian based parallel splitting method for separable convex minimization with applications to image processing
  publication-title: Math. Comput.
– volume: 11
  start-page: 57
  year: 2015
  end-page: 81
  ident: br0260
  article-title: Solving multiple-block separable convex minimization problems using two-block alternating direction method of multipliers
  publication-title: Pac. J. Optim.
– volume: 2013
  year: 2013
  ident: br0040
  article-title: On the convergence analysis of the alternating direction method of multipliers with three blocks
  publication-title: Abstr. Appl. Anal.
– volume: 25
  start-page: 2274
  year: 2015
  end-page: 2312
  ident: br0110
  article-title: On full jacobian decomposition of the augmented lagrangian method for separable convex programming
  publication-title: SIAM J. Optim.
– volume: 65
  start-page: 1204
  year: 2016
  end-page: 1217
  ident: br0060
  article-title: Parallel multi-block admm with
  publication-title: J. Sci. Comput.
– volume: 155
  start-page: 57
  year: 2016
  end-page: 79
  ident: br0030
  article-title: The direct extension of admm for multi-block convex minimization problems is not necessarily convergent
  publication-title: Math. Program.
– volume: 96
  start-page: 1
  year: 2018
  end-page: 26
  ident: br0280
  article-title: A proximal Peaceman-Rachford splitting method for solving the multi-block separable convex minimization problems
  publication-title: Int. J. Comput. Math.
– volume: 145
  start-page: 311
  year: 2010
  end-page: 323
  ident: br0190
  article-title: New parallel descent-like method for solving a class of variational inequalities
  publication-title: J. Optim. Theory Appl.
– volume: 70
  start-page: 129
  year: 2018
  end-page: 170
  ident: br0010
  article-title: Generalized symmetric admm for separable convex optimization
  publication-title: Comput. Optim. Appl.
– volume: 66
  start-page: 1204
  year: 2016
  end-page: 1217
  ident: br0150
  article-title: On the proximal jacobian decomposition of alm for multiple-block separable convex minimization problems and its relationship to admm
  publication-title: J. Sci. Comput.
– volume: 4
  start-page: 303
  year: 1969
  end-page: 320
  ident: br0170
  article-title: Multiplier and gradient methods
  publication-title: J. Optim. Theory Appl.
– volume: 42
  start-page: 195
  year: 2009
  end-page: 212
  ident: br0100
  article-title: Parallel splitting augmented lagrangian methods for monotone structured variational inequalities
  publication-title: Comput. Optim. Appl.
– volume: 6
  start-page: 485
  year: 2018
  end-page: 506
  ident: br0160
  article-title: Block-wise admm with a relaxation factor for multiple-block convex programming
  publication-title: J. Oper. Res. Soc. China
– volume: 32
  start-page: 15500241
  year: 2015
  end-page: 155002419
  ident: br0200
  article-title: A convergent 3-block semi-proximal admm for convex minimization problems with one strongly convex block
  publication-title: Asia-Pac. J. Oper. Res.
– volume: 2020
  start-page: 1
  year: 2020
  end-page: 10
  ident: br0210
  article-title: A parallel splitting augmented lagrangian method for two-block separable convex programming with application in image processing
  publication-title: Math. Probl. Eng.
– year: 2003
  ident: br0070
  article-title: Finite-Dimensional Variational Inequalities and Complementarity Problems, vol. II
  publication-title: Springer Ser. Oper. Res.
– volume: 6
  start-page: 485
  issue: 4
  year: 2018
  ident: 10.1016/j.apnum.2021.09.011_br0160
  article-title: Block-wise admm with a relaxation factor for multiple-block convex programming
  publication-title: J. Oper. Res. Soc. China
  doi: 10.1007/s40305-017-0186-y
– volume: 2013
  year: 2013
  ident: 10.1016/j.apnum.2021.09.011_br0040
  article-title: On the convergence analysis of the alternating direction method of multipliers with three blocks
  publication-title: Abstr. Appl. Anal.
  doi: 10.1155/2013/183961
– volume: 11
  start-page: 57
  issue: 4
  year: 2015
  ident: 10.1016/j.apnum.2021.09.011_br0260
  article-title: Solving multiple-block separable convex minimization problems using two-block alternating direction method of multipliers
  publication-title: Pac. J. Optim.
– volume: 70
  start-page: 129
  year: 2018
  ident: 10.1016/j.apnum.2021.09.011_br0010
  article-title: Generalized symmetric admm for separable convex optimization
  publication-title: Comput. Optim. Appl.
  doi: 10.1007/s10589-017-9971-0
– volume: 58
  issue: 3
  year: 2009
  ident: 10.1016/j.apnum.2021.09.011_br0020
  article-title: Robust principal component analysis?
  publication-title: J. ACM
  doi: 10.1145/1970392.1970395
– volume: 83
  start-page: 2263
  year: 2014
  ident: 10.1016/j.apnum.2021.09.011_br0090
  article-title: An augmented lagrangian based parallel splitting method for separable convex minimization with applications to image processing
  publication-title: Math. Comput.
  doi: 10.1090/S0025-5718-2014-02829-9
– volume: 22
  start-page: 313
  issue: 2
  year: 2012
  ident: 10.1016/j.apnum.2021.09.011_br0140
  article-title: Alternating direction method with gaussian back substitution for separable convex programming
  publication-title: SIAM J. Optim.
  doi: 10.1137/110822347
– volume: 25
  start-page: 13
  issue: 4
  year: 2017
  ident: 10.1016/j.apnum.2021.09.011_br0050
  article-title: A three-operator splitting scheme and its optimization applications
  publication-title: Set-Valued Var. Anal.
  doi: 10.1007/s11228-017-0421-z
– volume: 65
  start-page: 1204
  year: 2016
  ident: 10.1016/j.apnum.2021.09.011_br0060
  article-title: Parallel multi-block admm with o(1k) convergence
  publication-title: J. Sci. Comput.
– volume: 66
  start-page: 1
  year: 2019
  ident: 10.1016/j.apnum.2021.09.011_br0120
  article-title: Optimal proximal augmented lagrangian method and its application to full jacobian splitting for multi-block separable convex minimization problems
  publication-title: IMA J. Numer. Anal.
– volume: 145
  start-page: 311
  issue: 2
  year: 2010
  ident: 10.1016/j.apnum.2021.09.011_br0190
  article-title: New parallel descent-like method for solving a class of variational inequalities
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/s10957-009-9619-z
– volume: 2020
  start-page: 1
  issue: 2
  year: 2020
  ident: 10.1016/j.apnum.2021.09.011_br0210
  article-title: A parallel splitting augmented lagrangian method for two-block separable convex programming with application in image processing
  publication-title: Math. Probl. Eng.
– volume: 21
  start-page: 57
  issue: 1
  year: 2011
  ident: 10.1016/j.apnum.2021.09.011_br0230
  article-title: Recovering low-rank and sparse components of matrices from incomplete and noisy observations
  publication-title: SIAM J. Optim.
  doi: 10.1137/100781894
– volume: 34
  start-page: 1
  issue: 2
  year: 2017
  ident: 10.1016/j.apnum.2021.09.011_br0240
  article-title: On the convergence rate of the augmented lagrangian-based parallel splitting method
  publication-title: Optim. Methods Softw.
– volume: 42
  start-page: 195
  year: 2009
  ident: 10.1016/j.apnum.2021.09.011_br0100
  article-title: Parallel splitting augmented lagrangian methods for monotone structured variational inequalities
  publication-title: Comput. Optim. Appl.
  doi: 10.1007/s10589-007-9109-x
– year: 2009
  ident: 10.1016/j.apnum.2021.09.011_br0270
  article-title: Robust principal component analysis: exact recovery of corrupted low-rank matrices by convex optimization
– volume: 32
  start-page: 15500241
  issue: 4
  year: 2015
  ident: 10.1016/j.apnum.2021.09.011_br0200
  article-title: A convergent 3-block semi-proximal admm for convex minimization problems with one strongly convex block
  publication-title: Asia-Pac. J. Oper. Res.
  doi: 10.1142/S0217595915500244
– volume: 66
  start-page: 1204
  issue: 3
  year: 2016
  ident: 10.1016/j.apnum.2021.09.011_br0150
  article-title: On the proximal jacobian decomposition of alm for multiple-block separable convex minimization problems and its relationship to admm
  publication-title: J. Sci. Comput.
  doi: 10.1007/s10915-015-0060-1
– year: 2003
  ident: 10.1016/j.apnum.2021.09.011_br0070
  article-title: Finite-Dimensional Variational Inequalities and Complementarity Problems, vol. II
– volume: 34
  start-page: 2233
  issue: 11
  year: 2012
  ident: 10.1016/j.apnum.2021.09.011_br0220
  article-title: Rasl: robust alignment by sparse and low-rank decomposition for linearly correlated images
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2011.282
– volume: 96
  start-page: 1
  issue: 4
  year: 2018
  ident: 10.1016/j.apnum.2021.09.011_br0280
  article-title: A proximal Peaceman-Rachford splitting method for solving the multi-block separable convex minimization problems
  publication-title: Int. J. Comput. Math.
– volume: 25
  start-page: 2274
  issue: 4
  year: 2015
  ident: 10.1016/j.apnum.2021.09.011_br0110
  article-title: On full jacobian decomposition of the augmented lagrangian method for separable convex programming
  publication-title: SIAM J. Optim.
  doi: 10.1137/130922793
– volume: 62
  start-page: 573
  issue: 4
  year: 2013
  ident: 10.1016/j.apnum.2021.09.011_br0130
  article-title: An alternating direction-based contraction method for linearly constrained separable convex programming problems
  publication-title: Optimization
  doi: 10.1080/02331934.2011.611885
– volume: 155
  start-page: 57
  issue: 1
  year: 2016
  ident: 10.1016/j.apnum.2021.09.011_br0030
  article-title: The direct extension of admm for multi-block convex minimization problems is not necessarily convergent
  publication-title: Math. Program.
  doi: 10.1007/s10107-014-0826-5
– volume: 34
  start-page: 835
  issue: 6
  year: 2020
  ident: 10.1016/j.apnum.2021.09.011_br0180
  article-title: Generalized admm with optimal indefinite proximal term for linearly constrained convex minimization
  publication-title: J. Ind. Manag. Optim.
  doi: 10.3934/jimo.2018181
– volume: 4
  start-page: 303
  year: 1969
  ident: 10.1016/j.apnum.2021.09.011_br0170
  article-title: Multiplier and gradient methods
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/BF00927673
– volume: 9
  start-page: 1199
  issue: 6
  year: 2015
  ident: 10.1016/j.apnum.2021.09.011_br0250
  article-title: A note on augmented lagrangian-based parallel splitting method
  publication-title: Optim. Lett.
  doi: 10.1007/s11590-014-0825-8
– volume: 155
  start-page: 227
  issue: 1
  year: 2012
  ident: 10.1016/j.apnum.2021.09.011_br0080
  article-title: A note on the alternating direction method of multipliers
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/s10957-012-0003-z
SSID ssj0005540
Score 2.3651967
Snippet The alternating direction method of multipliers (ADMM) has been proved to be effective for solving two-block convex minimization model subject to linear...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 369
SubjectTerms Alternating direction method of multipliers
Convex optimization
Multi-block
Parallel computing
Proximal point algorithm
Title A multi-parameter parallel ADMM for multi-block linearly constrained separable convex optimization
URI https://dx.doi.org/10.1016/j.apnum.2021.09.011
Volume 171
WOSCitedRecordID wos000706372000020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-5460
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005540
  issn: 0168-9274
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZKxwMvMG5iGyA_8FYyJc7NfqzGGCA2gTZQeYrsE1tipFm1tlP59zuOnTSsaAIkXqIoilvH58vnz865EPIqBCPAmDgoU5RvSc7LQMoyCSQHLlJuuGicaL5-zE9O-GQiPg0GP9tYmKsqr2u-WonZfzU1XkNj29DZvzB396N4Ac_R6HhEs-Pxjww_dk6CgU3qPbXOLiN7VlUabfHm-LjxK3R3KJzIfoyszmyyHIOVirZiBGrQubaNbFRV45a-Gl0gtUx9zGZf0LYqtl66Tz_VaNolgu3k-qkPAfm2XGPxSDabtJ8RntN2-rTs43IaTJa6vx_B2I39iM1AGbdvmSGvMleQZ187ruW59ctw5QQ6MnYFWTydxq6Mi5-ZY1cAcIP03f7D-b6c4bPikp9FTepaT-K_ZtM-tT2xHWE29yzKrztki-GaiQ_J1vj94eTD2j8obaJpu563Kasa58CNv_q9rOlJlbNtct-vMejYYeMhGej6EXngLUU9m88fEzWmN6BCW6hQCxWKUKE9qNAWKrQHFdpBhTqo0D5UnpAvbw_PDt4FvuZGAChmFoHGCZApVOl5DqBAlEZCJvMsNZArlZSKRRrst_XQgIQ4ERwSyZCOJBOlFnH8lAzri1o_IzQROo6iTMUqThPDjIyYhggMhFoJGYY7hLVDVoBPSG-7XhWt5-F50YxzYce5CEWB47xDXneNZi4fy-23Z60tCi8pnVQsEDy3Ndz914Z75N76rXhOhovLpX5B7sLV4vv88qUH2TUh56Cq
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+multi-parameter+parallel+ADMM+for+multi-block+linearly+constrained+separable+convex+optimization&rft.jtitle=Applied+numerical+mathematics&rft.au=Shen%2C+Yuan&rft.au=Gao%2C+Qianming&rft.au=Yin%2C+Xue&rft.date=2022-01-01&rft.pub=Elsevier+B.V&rft.issn=0168-9274&rft.eissn=1873-5460&rft.volume=171&rft.spage=369&rft.epage=388&rft_id=info:doi/10.1016%2Fj.apnum.2021.09.011&rft.externalDocID=S0168927421002658
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0168-9274&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0168-9274&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0168-9274&client=summon