A novel density peaks clustering algorithm based on k nearest neighbors for improving assignment process

Density Peaks Clustering (DPC) algorithm is a kind of density-based clustering approach, which can quickly search and find density peaks. However, DPC has deficiency in assignment process, which is likely to trigger domino effect. Especially, it cannot process some non-spherical data sets such as Sp...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Physica A Ročník 523; s. 702 - 713
Hlavní autoři: Jiang, Jianhua, Chen, Yujun, Meng, Xianqiu, Wang, Limin, Li, Keqin
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 01.06.2019
Témata:
ISSN:0378-4371, 1873-2119
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Density Peaks Clustering (DPC) algorithm is a kind of density-based clustering approach, which can quickly search and find density peaks. However, DPC has deficiency in assignment process, which is likely to trigger domino effect. Especially, it cannot process some non-spherical data sets such as Spiral. The research results indicate that assignment process appears to be the most significant step in deciding the success of the clustering performance. Therefore, we propose a density peaks clustering based on k nearest neighbors (DPC-KNN) which aims to overcome the weakness of DPC. The proposed DPC-KNN integrates the idea of k nearest neighbors into the distance computation and assignment process, which is more reasonable. It can be seen from experimental results that the DPC-KNN algorithm is more feasible and effective, compared with K-means, DBSCAN and DPC. •K nearest neighbors is adopted to solve domino effect problem in density peaks clustering.•The capability of aggregating some non-spherical clusters is enhanced effectively.•Experimental results show that the DPC-KNN algorithm is more effective.
AbstractList Density Peaks Clustering (DPC) algorithm is a kind of density-based clustering approach, which can quickly search and find density peaks. However, DPC has deficiency in assignment process, which is likely to trigger domino effect. Especially, it cannot process some non-spherical data sets such as Spiral. The research results indicate that assignment process appears to be the most significant step in deciding the success of the clustering performance. Therefore, we propose a density peaks clustering based on k nearest neighbors (DPC-KNN) which aims to overcome the weakness of DPC. The proposed DPC-KNN integrates the idea of k nearest neighbors into the distance computation and assignment process, which is more reasonable. It can be seen from experimental results that the DPC-KNN algorithm is more feasible and effective, compared with K-means, DBSCAN and DPC. •K nearest neighbors is adopted to solve domino effect problem in density peaks clustering.•The capability of aggregating some non-spherical clusters is enhanced effectively.•Experimental results show that the DPC-KNN algorithm is more effective.
Author Jiang, Jianhua
Li, Keqin
Chen, Yujun
Wang, Limin
Meng, Xianqiu
Author_xml – sequence: 1
  givenname: Jianhua
  surname: Jiang
  fullname: Jiang, Jianhua
  email: jjh@jlufe.edu.cn
  organization: Department of Data Science, Jilin University of Finance and Economics, Changchun 130117, PR China
– sequence: 2
  givenname: Yujun
  surname: Chen
  fullname: Chen, Yujun
  organization: Department of Data Science, Jilin University of Finance and Economics, Changchun 130117, PR China
– sequence: 3
  givenname: Xianqiu
  surname: Meng
  fullname: Meng, Xianqiu
  organization: Department of Data Science, Jilin University of Finance and Economics, Changchun 130117, PR China
– sequence: 4
  givenname: Limin
  surname: Wang
  fullname: Wang, Limin
  organization: Department of Data Science, Jilin University of Finance and Economics, Changchun 130117, PR China
– sequence: 5
  givenname: Keqin
  surname: Li
  fullname: Li, Keqin
  email: lik@newpaltz.edu
  organization: Department of Computer Science, State University of New York, New Paltz, NY 12561, USA
BookMark eNqF0M1KAzEQwPEgFWyrT-AlL7BrstmazcFDKX6B4EXPIZvMtmm3ScnEQt_ebevJg54GBn4D85-QUYgBCLnlrOSM39-ty93qgKasGFclEyXj1QUZ80aKouJcjciYCdkUtZD8ikwQ14wxLkU1Jqs5DXEPPXUQ0OcD3YHZILX9F2ZIPiyp6Zcx-bza0tYgOBoD3dAAJgHmYfrlqo0JaRcT9dtdivsTQvTLsIWQ6bCygHhNLjvTI9z8zCn5fHr8WLwUb-_Pr4v5W2EFE7mAWlYKlOJdK4VRnWwFb42tWdNA3bROzBrhalvVM2MAnFXSdU5x61gjla0qMSXifNemiJig07vktyYdNGf6GEuv9SmWPsbSTOgh1qDUL2V9NtnHkJPx_T_24WxheGvvIWm0HoIF5xPYrF30f_pvYW2MSA
CitedBy_id crossref_primary_10_1016_j_ijhydene_2021_08_003
crossref_primary_10_1016_j_knosys_2020_106350
crossref_primary_10_1088_1361_6501_ac9db1
crossref_primary_10_3390_s20010238
crossref_primary_10_1016_j_ins_2021_01_010
crossref_primary_10_1109_ACCESS_2019_2962394
crossref_primary_10_1111_exsy_70011
crossref_primary_10_1007_s00521_021_06432_6
crossref_primary_10_1016_j_eswa_2021_114676
crossref_primary_10_1109_ACCESS_2020_3003057
crossref_primary_10_1109_ACCESS_2020_3006069
crossref_primary_10_3390_sym16060699
crossref_primary_10_1080_09540091_2021_2012422
crossref_primary_10_1016_j_neucom_2020_07_125
crossref_primary_10_1016_j_psep_2025_106941
crossref_primary_10_1155_2020_2816102
crossref_primary_10_1016_j_eswa_2022_118904
crossref_primary_10_1007_s10115_022_01769_3
crossref_primary_10_1007_s12559_022_10002_w
crossref_primary_10_1109_ACCESS_2019_2947640
crossref_primary_10_1109_ACCESS_2020_3021903
crossref_primary_10_1002_cpe_5795
crossref_primary_10_1080_21642583_2024_2328542
crossref_primary_10_1109_ACCESS_2020_3034144
crossref_primary_10_1109_ACCESS_2020_3022954
crossref_primary_10_1109_TIFS_2025_3602638
crossref_primary_10_1007_s13042_021_01369_7
crossref_primary_10_1007_s00500_023_08731_7
crossref_primary_10_1155_2022_8046620
crossref_primary_10_3390_sym14010060
crossref_primary_10_1016_j_neucom_2023_126633
crossref_primary_10_32604_cmc_2024_046314
crossref_primary_10_1007_s13042_020_01198_0
crossref_primary_10_1016_j_eswa_2022_116539
crossref_primary_10_1155_2020_8864239
crossref_primary_10_3233_IDA_216541
crossref_primary_10_1016_j_ress_2023_109132
crossref_primary_10_1109_TIM_2022_3216366
Cites_doi 10.1109/TPAMI.2002.1033218
10.1016/j.physa.2018.09.002
10.1007/11590316_1
10.1109/TSMCC.2008.2007252
10.1038/nmeth.3583
10.1126/science.1242072
10.1109/TIT.1982.1056489
10.1016/j.apenergy.2018.03.148
10.1016/j.knosys.2018.05.034
10.1016/j.patcog.2007.04.010
10.1007/s11042-015-2485-9
10.1145/1217299.1217303
10.1109/TNN.2005.845141
10.1007/s10115-008-0150-6
10.1360/N112015-00135
10.1016/j.neucom.2015.11.091
10.1186/1471-2105-8-3
10.1126/science.1136800
10.1145/331499.331504
10.1109/LGRS.2014.2372071
10.1016/j.physa.2018.11.059
10.1016/j.knosys.2016.02.001
10.1016/j.physa.2018.02.084
ContentType Journal Article
Copyright 2019 Elsevier B.V.
Copyright_xml – notice: 2019 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.physa.2019.03.012
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1873-2119
EndPage 713
ExternalDocumentID 10_1016_j_physa_2019_03_012
S0378437119302316
GrantInformation_xml – fundername: Social Science Foundation of Jilin Province, China
  grantid: 2017BS28
– fundername: Education Department of Jilin Province, China
  grantid: JJKH20180465kJ
  funderid: http://dx.doi.org/10.13039/501100010211
– fundername: Jilin University of Finance and Economics, China
  grantid: 2018Z05
  funderid: http://dx.doi.org/10.13039/100010747
– fundername: National Natural Science Foundation of China
  grantid: 61572225
  funderid: http://dx.doi.org/10.13039/501100001809
– fundername: Natural Science Foundation of the Science and Technology Department of Jilin Province, China
  grantid: 20180101044JC
GroupedDBID --K
--M
-DZ
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
7-5
71M
8P~
9JN
9JO
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAPFB
AAXUO
ABAOU
ABMAC
ABNEU
ABYKQ
ACAZW
ACDAQ
ACFVG
ACGFS
ACNCT
ACRLP
ADBBV
ADEZE
ADFHU
ADGUI
AEBSH
AEKER
AEYQN
AFFNX
AFKWA
AFTJW
AGHFR
AGTHC
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGVJ
AIIAU
AIKHN
AITUG
AIVDX
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
AXJTR
AXLSJ
BKOJK
BLXMC
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
IXIXF
J1W
K-O
KOM
M38
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SPD
SSB
SSF
SSQ
SSW
SSZ
T5K
TN5
TWZ
WH7
XPP
YNT
ZMT
~02
~G-
29O
5VS
6TJ
9DU
AAFFL
AAQFI
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABJNI
ABWVN
ABXDB
ACLOT
ACNNM
ACROA
ACRPL
ADMUD
ADNMO
ADVLN
AEIPS
AFJKZ
AFODL
AGQPQ
AIIUN
AJWLA
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BBWZM
BEHZQ
BEZPJ
BGSCR
BNTGB
BPUDD
BULVW
BZJEE
CITATION
EFKBS
FEDTE
FGOYB
HMV
HVGLF
HZ~
MVM
NDZJH
R2-
SEW
SPG
VOH
WUQ
XOL
YYP
ZY4
~HD
ID FETCH-LOGICAL-c303t-e4729e991fb73a9f7b31bac4088e48bd3583d4c245aaeedc97dfd91cd0879c223
ISICitedReferencesCount 46
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000470954500061&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0378-4371
IngestDate Sat Nov 29 07:08:59 EST 2025
Tue Nov 18 21:31:50 EST 2025
Fri Feb 23 02:33:07 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords 68T10
k nearest neighbors
Density peaks
00-01
Density clustering algorithm
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c303t-e4729e991fb73a9f7b31bac4088e48bd3583d4c245aaeedc97dfd91cd0879c223
PageCount 12
ParticipantIDs crossref_primary_10_1016_j_physa_2019_03_012
crossref_citationtrail_10_1016_j_physa_2019_03_012
elsevier_sciencedirect_doi_10_1016_j_physa_2019_03_012
PublicationCentury 2000
PublicationDate 2019-06-01
2019-06-00
PublicationDateYYYYMMDD 2019-06-01
PublicationDate_xml – month: 06
  year: 2019
  text: 2019-06-01
  day: 01
PublicationDecade 2010
PublicationTitle Physica A
PublicationYear 2019
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Xu, Wunsch (b1) 2005; 16
Frey, Dueck (b2) 2007; 315
Jain (b5) 2008
Rodriguez, Laio (b12) 2014; 344
Tsaparas, Mannila, Gionis (b24) 2007; 1
Jiang, Tao, Li (b19) 2018; 34
Hruschka, Campello, Freitas, Carvalho (b3) 2009; 39
M. Ester, H.P. Kriegel, J. Sander, X. Xu, A density-based algorithm for discovering clusters in large spatial databases with noise, in: International Conference on Knowledge Discovery and Data Mining, 1996, pp. 226–231.
Sun, Geng, Ji (b17) 2015; 12
Jiang, Chen, Hao, Li (b22) 2019; 514
Pfitzner, Leibbrandt, Powers (b31) 2009; 19
Han, Kamber (b9) 2011
Chen, Lai, Qi, Wang, Du (b15) 2016; 75
Du, Ding, Jia (b13) 2016; 99
Jain, Law (b27) 2005; 3776
Veenman, Reinders, Backer (b28) 2002; 24
Shi, Li, Wang, Chen, Stanley (b6) 2019; 518
Wang, Zuo, Wang (b14) 2016; 179
Fu, Medico (b25) 2007; 8
Jiang, Hao, Chen, Parmar, Li (b18) 2018; 502
Xu, Ding, Shi (b20) 2018; 158
Powers (b29) 2011; 2
Jain, Murty, Flynn (b4) 1999; 31
Vinh, Epps, Bailey (b30) 2010; 11
Wang, Zhao, Du, Wang, Chen, Tian, Stanley (b7) 2018; 220
Dua, Graff (b23) 2017
Wiwie, Baumbach, Rottger (b16) 2015; 12
Liu, Zhou, Huang, Shen (b21) 2017; 2017
Xie, Gao, Xie (b11) 2016; 46
Chang, Yeung (b26) 2008; 41
Lloyd (b8) 1982; 28
Hruschka (10.1016/j.physa.2019.03.012_b3) 2009; 39
Xu (10.1016/j.physa.2019.03.012_b1) 2005; 16
Sun (10.1016/j.physa.2019.03.012_b17) 2015; 12
Jiang (10.1016/j.physa.2019.03.012_b18) 2018; 502
Liu (10.1016/j.physa.2019.03.012_b21) 2017; 2017
Chang (10.1016/j.physa.2019.03.012_b26) 2008; 41
Jain (10.1016/j.physa.2019.03.012_b27) 2005; 3776
Han (10.1016/j.physa.2019.03.012_b9) 2011
Jiang (10.1016/j.physa.2019.03.012_b22) 2019; 514
Frey (10.1016/j.physa.2019.03.012_b2) 2007; 315
Tsaparas (10.1016/j.physa.2019.03.012_b24) 2007; 1
Powers (10.1016/j.physa.2019.03.012_b29) 2011; 2
10.1016/j.physa.2019.03.012_b10
Xie (10.1016/j.physa.2019.03.012_b11) 2016; 46
Wang (10.1016/j.physa.2019.03.012_b7) 2018; 220
Veenman (10.1016/j.physa.2019.03.012_b28) 2002; 24
Du (10.1016/j.physa.2019.03.012_b13) 2016; 99
Rodriguez (10.1016/j.physa.2019.03.012_b12) 2014; 344
Jiang (10.1016/j.physa.2019.03.012_b19) 2018; 34
Pfitzner (10.1016/j.physa.2019.03.012_b31) 2009; 19
Lloyd (10.1016/j.physa.2019.03.012_b8) 1982; 28
Wang (10.1016/j.physa.2019.03.012_b14) 2016; 179
Jain (10.1016/j.physa.2019.03.012_b4) 1999; 31
Chen (10.1016/j.physa.2019.03.012_b15) 2016; 75
Xu (10.1016/j.physa.2019.03.012_b20) 2018; 158
Fu (10.1016/j.physa.2019.03.012_b25) 2007; 8
Vinh (10.1016/j.physa.2019.03.012_b30) 2010; 11
Dua (10.1016/j.physa.2019.03.012_b23) 2017
Jain (10.1016/j.physa.2019.03.012_b5) 2008
Shi (10.1016/j.physa.2019.03.012_b6) 2019; 518
Wiwie (10.1016/j.physa.2019.03.012_b16) 2015; 12
References_xml – volume: 518
  start-page: 169
  year: 2019
  end-page: 176
  ident: b6
  article-title: A study of Chinese regional hierarchical structure based on surnames
  publication-title: Physica A
– volume: 179
  start-page: 219
  year: 2016
  end-page: 227
  ident: b14
  article-title: An improved density peaks-based clustering method for social circle discovery in social networks
  publication-title: Neurocomputing
– start-page: 3
  year: 2008
  end-page: 4
  ident: b5
  article-title: Data Clustering: 50 Years Beyond K-means
– volume: 315
  start-page: 972
  year: 2007
  end-page: 976
  ident: b2
  article-title: Clustering by passing messages between data points
  publication-title: Science
– volume: 2017
  start-page: 1
  year: 2017
  end-page: 7
  ident: b21
  article-title: Clustering mixed data by fast search and find of density peaks
  publication-title: Math. Probl. Eng.
– volume: 158
  start-page: 65
  year: 2018
  end-page: 74
  ident: b20
  article-title: An improved density peaks clustering algorithm with fast finding cluster centers
  publication-title: Knowl. Based Syst.
– volume: 12
  start-page: 998
  year: 2015
  end-page: 1002
  ident: b17
  article-title: Exemplar component analysis: a fast band selection method for hyperspectral imagery
  publication-title: IEEE Geosci. Remote Sens. Lett.
– volume: 3776
  start-page: 1
  year: 2005
  end-page: 10
  ident: b27
  article-title: Data clustering: a user’s dilemma
  publication-title: Lecture Notes in Comput. Sci.
– volume: 31
  start-page: 264
  year: 1999
  end-page: 323
  ident: b4
  article-title: Data clustering: a review
  publication-title: ACM Comput. Surv.
– volume: 8
  start-page: 3
  year: 2007
  ident: b25
  article-title: FLAME, a novel fuzzy clustering method for the analysis of DNA microarray data
  publication-title: BMC Bioinformatics
– year: 2017
  ident: b23
  article-title: UCI Machine Learning Repository
– volume: 46
  start-page: 258
  year: 2016
  ident: b11
  article-title: K-nearest neighbors optimized clustering algorithm by fast search and finding the density peaks of a dataset
  publication-title: Sci. Sin.
– volume: 39
  start-page: 133
  year: 2009
  end-page: 155
  ident: b3
  article-title: A survey of evolutionary algorithms for clustering
  publication-title: IEEE Trans. Syst. Man Cybern.
– volume: 502
  start-page: 345
  year: 2018
  end-page: 355
  ident: b18
  article-title: GDPC: Gravitation-based density peaks clustering algorithm
  publication-title: Physica A
– volume: 34
  start-page: 525
  year: 2018
  end-page: 536
  ident: b19
  article-title: DFC: Density fragment clustering without peaks
  publication-title: J. Intell. Fuzzy Systems
– volume: 220
  start-page: 480
  year: 2018
  end-page: 495
  ident: b7
  article-title: A novel hybrid method of forecasting crude oil prices using complex network science and artificial intelligence algorithms
  publication-title: Appl. Energy
– volume: 75
  start-page: 2877
  year: 2016
  end-page: 2895
  ident: b15
  article-title: A new method to estimate ages of facial image for large database
  publication-title: Multimedia Tools Appl.
– volume: 41
  start-page: 191
  year: 2008
  end-page: 203
  ident: b26
  article-title: Robust path-based spectral clustering
  publication-title: Pattern Recognit.
– volume: 16
  start-page: 645
  year: 2005
  end-page: 678
  ident: b1
  article-title: Survey of clustering algorithms
  publication-title: IEEE Trans. Neural Netw.
– reference: M. Ester, H.P. Kriegel, J. Sander, X. Xu, A density-based algorithm for discovering clusters in large spatial databases with noise, in: International Conference on Knowledge Discovery and Data Mining, 1996, pp. 226–231.
– volume: 28
  start-page: 129
  year: 1982
  end-page: 137
  ident: b8
  article-title: Least squares quantization in PCM
  publication-title: IEEE Trans. Inform. Theory
– volume: 24
  start-page: 1273
  year: 2002
  end-page: 1280
  ident: b28
  article-title: A maximum variance cluster algorithm
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 19
  start-page: 361
  year: 2009
  end-page: 394
  ident: b31
  article-title: Characterization and evaluation of similarity measures for pairs of clusterings
  publication-title: Knowl. Inf. Syst.
– volume: 1
  start-page: 4
  year: 2007
  ident: b24
  article-title: Clustering aggregation
  publication-title: ACM Trans. Knowl. Discov. Data
– volume: 11
  start-page: 2837
  year: 2010
  end-page: 2854
  ident: b30
  article-title: Information theoretic measures for clusterings comparison: variants, properties, normalization and correction for chance
  publication-title: J. Mach. Learn. Res.
– volume: 99
  start-page: 135
  year: 2016
  end-page: 145
  ident: b13
  article-title: Study on density peaks clustering based on k-nearest neighbors and principal component analysis
  publication-title: Knowl. Based Syst.
– year: 2011
  ident: b9
  article-title: Data Mining: Concepts and Technique
– volume: 2
  start-page: 37
  year: 2011
  end-page: 63
  ident: b29
  article-title: Evaluation: from precision, recall and f-measure to ROC, informedness, markedness and correlation
  publication-title: J. Mach. Learn. Technol.
– volume: 344
  start-page: 1492
  year: 2014
  end-page: 1496
  ident: b12
  article-title: Clustering by fast search and find of density peaks
  publication-title: Science
– volume: 514
  start-page: 25
  year: 2019
  end-page: 35
  ident: b22
  article-title: DPC-LG: Density peaks clustering based on logistic distribution and gravitation
  publication-title: Physica A
– volume: 12
  start-page: 1033
  year: 2015
  end-page: 1038
  ident: b16
  article-title: Comparing the performance of biomedical clustering methods
  publication-title: Nature Methods
– volume: 24
  start-page: 1273
  issue: 9
  year: 2002
  ident: 10.1016/j.physa.2019.03.012_b28
  article-title: A maximum variance cluster algorithm
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2002.1033218
– volume: 514
  start-page: 25
  year: 2019
  ident: 10.1016/j.physa.2019.03.012_b22
  article-title: DPC-LG: Density peaks clustering based on logistic distribution and gravitation
  publication-title: Physica A
  doi: 10.1016/j.physa.2018.09.002
– volume: 3776
  start-page: 1
  year: 2005
  ident: 10.1016/j.physa.2019.03.012_b27
  article-title: Data clustering: a user’s dilemma
  publication-title: Lecture Notes in Comput. Sci.
  doi: 10.1007/11590316_1
– volume: 39
  start-page: 133
  issue: 2
  year: 2009
  ident: 10.1016/j.physa.2019.03.012_b3
  article-title: A survey of evolutionary algorithms for clustering
  publication-title: IEEE Trans. Syst. Man Cybern.
  doi: 10.1109/TSMCC.2008.2007252
– ident: 10.1016/j.physa.2019.03.012_b10
– volume: 12
  start-page: 1033
  issue: 11
  year: 2015
  ident: 10.1016/j.physa.2019.03.012_b16
  article-title: Comparing the performance of biomedical clustering methods
  publication-title: Nature Methods
  doi: 10.1038/nmeth.3583
– volume: 2017
  start-page: 1
  year: 2017
  ident: 10.1016/j.physa.2019.03.012_b21
  article-title: Clustering mixed data by fast search and find of density peaks
  publication-title: Math. Probl. Eng.
– year: 2011
  ident: 10.1016/j.physa.2019.03.012_b9
– volume: 34
  start-page: 525
  issue: 1
  year: 2018
  ident: 10.1016/j.physa.2019.03.012_b19
  article-title: DFC: Density fragment clustering without peaks
  publication-title: J. Intell. Fuzzy Systems
– volume: 344
  start-page: 1492
  issue: 6191
  year: 2014
  ident: 10.1016/j.physa.2019.03.012_b12
  article-title: Clustering by fast search and find of density peaks
  publication-title: Science
  doi: 10.1126/science.1242072
– volume: 28
  start-page: 129
  issue: 2
  year: 1982
  ident: 10.1016/j.physa.2019.03.012_b8
  article-title: Least squares quantization in PCM
  publication-title: IEEE Trans. Inform. Theory
  doi: 10.1109/TIT.1982.1056489
– volume: 220
  start-page: 480
  year: 2018
  ident: 10.1016/j.physa.2019.03.012_b7
  article-title: A novel hybrid method of forecasting crude oil prices using complex network science and artificial intelligence algorithms
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2018.03.148
– volume: 158
  start-page: 65
  year: 2018
  ident: 10.1016/j.physa.2019.03.012_b20
  article-title: An improved density peaks clustering algorithm with fast finding cluster centers
  publication-title: Knowl. Based Syst.
  doi: 10.1016/j.knosys.2018.05.034
– year: 2017
  ident: 10.1016/j.physa.2019.03.012_b23
– volume: 41
  start-page: 191
  issue: 1
  year: 2008
  ident: 10.1016/j.physa.2019.03.012_b26
  article-title: Robust path-based spectral clustering
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2007.04.010
– volume: 75
  start-page: 2877
  issue: 5
  year: 2016
  ident: 10.1016/j.physa.2019.03.012_b15
  article-title: A new method to estimate ages of facial image for large database
  publication-title: Multimedia Tools Appl.
  doi: 10.1007/s11042-015-2485-9
– volume: 1
  start-page: 4
  issue: 1
  year: 2007
  ident: 10.1016/j.physa.2019.03.012_b24
  article-title: Clustering aggregation
  publication-title: ACM Trans. Knowl. Discov. Data
  doi: 10.1145/1217299.1217303
– start-page: 3
  year: 2008
  ident: 10.1016/j.physa.2019.03.012_b5
– volume: 11
  start-page: 2837
  year: 2010
  ident: 10.1016/j.physa.2019.03.012_b30
  article-title: Information theoretic measures for clusterings comparison: variants, properties, normalization and correction for chance
  publication-title: J. Mach. Learn. Res.
– volume: 16
  start-page: 645
  issue: 3
  year: 2005
  ident: 10.1016/j.physa.2019.03.012_b1
  article-title: Survey of clustering algorithms
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/TNN.2005.845141
– volume: 19
  start-page: 361
  issue: 3
  year: 2009
  ident: 10.1016/j.physa.2019.03.012_b31
  article-title: Characterization and evaluation of similarity measures for pairs of clusterings
  publication-title: Knowl. Inf. Syst.
  doi: 10.1007/s10115-008-0150-6
– volume: 46
  start-page: 258
  issue: 2
  year: 2016
  ident: 10.1016/j.physa.2019.03.012_b11
  article-title: K-nearest neighbors optimized clustering algorithm by fast search and finding the density peaks of a dataset
  publication-title: Sci. Sin.
  doi: 10.1360/N112015-00135
– volume: 179
  start-page: 219
  year: 2016
  ident: 10.1016/j.physa.2019.03.012_b14
  article-title: An improved density peaks-based clustering method for social circle discovery in social networks
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.11.091
– volume: 8
  start-page: 3
  issue: 1
  year: 2007
  ident: 10.1016/j.physa.2019.03.012_b25
  article-title: FLAME, a novel fuzzy clustering method for the analysis of DNA microarray data
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-8-3
– volume: 315
  start-page: 972
  issue: 5814
  year: 2007
  ident: 10.1016/j.physa.2019.03.012_b2
  article-title: Clustering by passing messages between data points
  publication-title: Science
  doi: 10.1126/science.1136800
– volume: 31
  start-page: 264
  issue: 3
  year: 1999
  ident: 10.1016/j.physa.2019.03.012_b4
  article-title: Data clustering: a review
  publication-title: ACM Comput. Surv.
  doi: 10.1145/331499.331504
– volume: 12
  start-page: 998
  issue: 5
  year: 2015
  ident: 10.1016/j.physa.2019.03.012_b17
  article-title: Exemplar component analysis: a fast band selection method for hyperspectral imagery
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2014.2372071
– volume: 518
  start-page: 169
  year: 2019
  ident: 10.1016/j.physa.2019.03.012_b6
  article-title: A study of Chinese regional hierarchical structure based on surnames
  publication-title: Physica A
  doi: 10.1016/j.physa.2018.11.059
– volume: 99
  start-page: 135
  year: 2016
  ident: 10.1016/j.physa.2019.03.012_b13
  article-title: Study on density peaks clustering based on k-nearest neighbors and principal component analysis
  publication-title: Knowl. Based Syst.
  doi: 10.1016/j.knosys.2016.02.001
– volume: 2
  start-page: 37
  issue: 1
  year: 2011
  ident: 10.1016/j.physa.2019.03.012_b29
  article-title: Evaluation: from precision, recall and f-measure to ROC, informedness, markedness and correlation
  publication-title: J. Mach. Learn. Technol.
– volume: 502
  start-page: 345
  issue: 15
  year: 2018
  ident: 10.1016/j.physa.2019.03.012_b18
  article-title: GDPC: Gravitation-based density peaks clustering algorithm
  publication-title: Physica A
  doi: 10.1016/j.physa.2018.02.084
SSID ssj0001732
Score 2.4711735
Snippet Density Peaks Clustering (DPC) algorithm is a kind of density-based clustering approach, which can quickly search and find density peaks. However, DPC has...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 702
SubjectTerms [formula omitted] nearest neighbors
Density clustering algorithm
Density peaks
Title A novel density peaks clustering algorithm based on k nearest neighbors for improving assignment process
URI https://dx.doi.org/10.1016/j.physa.2019.03.012
Volume 523
WOSCitedRecordID wos000470954500061&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-2119
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001732
  issn: 0378-4371
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELZKFyQuiKdYXvKBW8gqb8fHCi2CFVqtxILKKYodZ5s2pKVNqv0H_G1mYueBilaAxCWNrLi1PF8930zmQcjrWMkwUmFk81xJOwBObQvJMtt1BY-VCMO8bdr35SM7P4_nc34xmfzocmH2Jauq-Pqab_6rqGEMhI2ps38h7v5LYQDuQehwBbHD9Y8EP7Oq9V6VVoah6UCxNypd7SxZNlgSoU1JLK_W26JefLNQhWX4umBlVVjLdlfDJ1jrAjvwYPxh0bscgGMXVzpyYKNzC8a09kJLe3CMnhXGD403i2YIBzLJIF-bZdPDEiNrcXAOz34vmsHHr4cxB6saeycwISoaeycO02Z0qhaYroGve6-cKH3yxsy3sdzc-GgOPX90uDLHG-lppnNYD1SA9kYsT9AzhIWlXF3F1gRr_1pb-xOuBBcCNBYL4UW3yJHHQh5PydHsw-n8rFfqLvP1Cymz8q6AVRsqePBTvyc5I-JyeZ_cMxYHnWmkPCATVT0kd7TEdo_IYkZbvFCDF9rihQ54oT1eaIsXuq7oihq80B4vFPBCe7zQAS_U4OUx-fzu9PLte9u037Al8JraVgEYXgrsh1wwP-U5E74rUhmAXlJBLDI_jP0skF4QpikwLclZlmfclZkTMy6Bdj4h02pdqaeEcsVYqOC04E4QiNThTOSRp7zcT_MoYuyYeN1-JdLUpscWKWXSBSEuk3aTE9zkxPET2ORj8qaftNGlWW5-POoEkRh2qVljAsi5aeKzf534nNwd_hIvyLTeNuoluS33dbHbvjII-wl5LKPN
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+density+peaks+clustering+algorithm+based+on+k+nearest+neighbors+for+improving+assignment+process&rft.jtitle=Physica+A&rft.au=Jiang%2C+Jianhua&rft.au=Chen%2C+Yujun&rft.au=Meng%2C+Xianqiu&rft.au=Wang%2C+Limin&rft.date=2019-06-01&rft.pub=Elsevier+B.V&rft.issn=0378-4371&rft.eissn=1873-2119&rft.volume=523&rft.spage=702&rft.epage=713&rft_id=info:doi/10.1016%2Fj.physa.2019.03.012&rft.externalDocID=S0378437119302316
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-4371&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-4371&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-4371&client=summon