Active-set based block coordinate descent algorithm in group LASSO for self-exciting threshold autoregressive model

Group LASSO (gLASSO) estimator has been recently proposed to estimate thresholds for the self-exciting threshold autoregressive model, and a group least angle regression ( gLAR ) algorithm has been applied to obtain an approximate solution to the optimization problem. Although gLAR algorithm is comp...

Full description

Saved in:
Bibliographic Details
Published in:Statistical papers (Berlin, Germany) Vol. 65; no. 5; pp. 2973 - 3006
Main Authors: Nasir, Muhammad Jaffri Mohd, Khan, Ramzan Nazim, Nair, Gopalan, Nur, Darfiana
Format: Journal Article
Language:English
Published: Berlin/Heidelberg Springer Berlin Heidelberg 01.07.2024
Springer Nature B.V
Subjects:
ISSN:0932-5026, 1613-9798
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Group LASSO (gLASSO) estimator has been recently proposed to estimate thresholds for the self-exciting threshold autoregressive model, and a group least angle regression ( gLAR ) algorithm has been applied to obtain an approximate solution to the optimization problem. Although gLAR algorithm is computationally fast, it has been reported that the algorithm tends to estimate too many irrelevant thresholds along with the relevant ones. This paper develops an active-set based block coordinate descent ( aBCD ) algorithm as an exact optimization method for gLASSO to improve the performance of estimating relevant thresholds. Methods and strategy for choosing the appropriate values of shrinkage parameter for gLASSO are also discussed. To consistently estimate relevant thresholds from the threshold set obtained by the gLASSO, the backward elimination algorithm ( BEA ) is utilized. We evaluate numerical efficiency of the proposed algorithms, along with the Single-Line-Search ( SLS ) and the gLAR algorithms through simulated data and real data sets. Simulation studies show that the SLS and aBCD algorithms have similar performance in estimating thresholds although the latter method is much faster. In addition, the aBCD-BEA can sometimes outperform gLAR-BEA in terms of estimating the correct number of thresholds under certain conditions. The results from case studies have also shown that aBCD-BEA performs better in identifying important thresholds.
AbstractList Group LASSO (gLASSO) estimator has been recently proposed to estimate thresholds for the self-exciting threshold autoregressive model, and a group least angle regression ( gLAR ) algorithm has been applied to obtain an approximate solution to the optimization problem. Although gLAR algorithm is computationally fast, it has been reported that the algorithm tends to estimate too many irrelevant thresholds along with the relevant ones. This paper develops an active-set based block coordinate descent ( aBCD ) algorithm as an exact optimization method for gLASSO to improve the performance of estimating relevant thresholds. Methods and strategy for choosing the appropriate values of shrinkage parameter for gLASSO are also discussed. To consistently estimate relevant thresholds from the threshold set obtained by the gLASSO, the backward elimination algorithm ( BEA ) is utilized. We evaluate numerical efficiency of the proposed algorithms, along with the Single-Line-Search ( SLS ) and the gLAR algorithms through simulated data and real data sets. Simulation studies show that the SLS and aBCD algorithms have similar performance in estimating thresholds although the latter method is much faster. In addition, the aBCD-BEA can sometimes outperform gLAR-BEA in terms of estimating the correct number of thresholds under certain conditions. The results from case studies have also shown that aBCD-BEA performs better in identifying important thresholds.
Group LASSO (gLASSO) estimator has been recently proposed to estimate thresholds for the self-exciting threshold autoregressive model, and a group least angle regression (gLAR) algorithm has been applied to obtain an approximate solution to the optimization problem. Although gLAR algorithm is computationally fast, it has been reported that the algorithm tends to estimate too many irrelevant thresholds along with the relevant ones. This paper develops an active-set based block coordinate descent (aBCD) algorithm as an exact optimization method for gLASSO to improve the performance of estimating relevant thresholds. Methods and strategy for choosing the appropriate values of shrinkage parameter for gLASSO are also discussed. To consistently estimate relevant thresholds from the threshold set obtained by the gLASSO, the backward elimination algorithm (BEA) is utilized. We evaluate numerical efficiency of the proposed algorithms, along with the Single-Line-Search (SLS) and the gLAR algorithms through simulated data and real data sets. Simulation studies show that the SLS and aBCD algorithms have similar performance in estimating thresholds although the latter method is much faster. In addition, the aBCD-BEA can sometimes outperform gLAR-BEA in terms of estimating the correct number of thresholds under certain conditions. The results from case studies have also shown that aBCD-BEA performs better in identifying important thresholds.
Author Khan, Ramzan Nazim
Nair, Gopalan
Nasir, Muhammad Jaffri Mohd
Nur, Darfiana
Author_xml – sequence: 1
  givenname: Muhammad Jaffri Mohd
  orcidid: 0000-0001-9423-0218
  surname: Nasir
  fullname: Nasir, Muhammad Jaffri Mohd
  email: jaffri.mn@umk.edu.my
  organization: Faculty of Entrepreneurship and Business, Universiti Malaysia Kelantan
– sequence: 2
  givenname: Ramzan Nazim
  orcidid: 0000-0003-3349-5006
  surname: Khan
  fullname: Khan, Ramzan Nazim
  organization: Department of Mathematics and Statistics, The University of Western Australia
– sequence: 3
  givenname: Gopalan
  orcidid: 0000-0003-3883-4986
  surname: Nair
  fullname: Nair, Gopalan
  organization: Department of Mathematics and Statistics, The University of Western Australia
– sequence: 4
  givenname: Darfiana
  orcidid: 0000-0002-7690-1097
  surname: Nur
  fullname: Nur, Darfiana
  organization: Department of Mathematics and Statistics, The University of Western Australia
BookMark eNp9kEtLAzEUhYNUsFb_gKuA6-jNYyYzy1J8QaGL6jpkMnemU6eTmqSi_97RCu5cXS585xz4zslk8AMScsXhhgPo2wggc8FASAZcacH0CZnynEtW6rKYkCmUUrAMRH5GzmPcAvCiKGBK4tyl7h1ZxEQrG7GmVe_dK3Xeh7obbEJaY3Q4JGr71ocubXa0G2gb_GFPl_P1ekUbH2jEvmH44brUDS1Nm4Bx4_ua2kPyAdvxjeMM3fka-wty2tg-4uXvnZGX-7vnxSNbrh6eFvMlcxJkYnVTVLpUmcJcYJXllXBlLm1RZU2VKY6gKgQHcoQaZ0vlIFdFDdpiUSqeCzkj18feffBvB4zJbP0hDOOkkaCVyIRWcqTEkXLBxxiwMfvQ7Wz4NBzMt1xzlGtGueZHrtFjSB5DcYSHFsNf9T-pL6-gf-w
Cites_doi 10.1080/01621459.2013.866566
10.1016/j.jeconom.2015.03.023
10.1145/1390156.1390263
10.1007/s11222-014-9498-5
10.1016/S0304-4076(02)00098-2
10.1111/j.1467-9868.2008.00693.x
10.1080/10920277.2004.10596170
10.4310/SII.2011.v4.n2.a12
10.1214/07-AOS558
10.1111/1468-0262.00124
10.2307/3532
10.1080/10618600.2000.10474883
10.1093/oso/9780198522249.001.0001
10.1016/j.jeconom.2011.11.006
10.1080/01621459.2014.954706
10.1214/12-STS392
10.1007/s11222-013-9407-3
10.1002/0471704091
10.1007/s11222-016-9669-7
10.1080/01621459.1989.10478760
10.1080/01621459.1998.10473779
10.1111/j.2517-6161.1990.tb01800.x
10.1007/s00180-016-0673-3
10.1007/978-0-387-69395-8
10.18637/jss.v040.i08
10.1007/s10463-009-0256-y
10.2307/3213771
10.1111/j.1467-9892.1993.tb00156.x
10.1007/s00180-010-0198-0
10.1080/00949655.2012.695374
10.1111/j.1467-9892.2005.00455.x
10.1111/j.1467-9868.2005.00532.x
10.1080/03610926.2013.814785
10.1198/jasa.2010.tm09181
10.1214/08-AOS620
10.1111/j.2517-6161.1980.tb01126.x
10.1111/j.1467-9892.1995.tb00247.x
10.1016/S0165-1889(02)00123-9
10.1017/S0266466615000237
10.1016/j.csda.2008.05.006
10.1002/jae.659
10.1016/S0378-3758(98)00113-X
10.1080/07350015.2015.1064820
10.1214/08-EJS200
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
88I
8AO
8C1
8FD
8FE
8FG
8FK
8FL
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
FYUFA
F~G
GHDGH
GNUQQ
HCIFZ
JQ2
K60
K6~
L.-
L6V
L7M
L~C
L~D
M0C
M2P
M7S
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOI 10.1007/s00362-023-01472-7
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ProQuest ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Science Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni Edition)
ProQuest Materials Science & Engineering
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest Business Premium Collection
Technology collection
ProQuest One Community College
ProQuest Central
Business Premium Collection (Alumni)
Health Research Premium Collection
ABI/INFORM Global (Corporate)
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Science Database (subscription)
Engineering Database (ProQuest)
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Business (UW System Shared)
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
ProQuest Central Basic
DatabaseTitle CrossRef
ProQuest Business Collection (Alumni Edition)
ProQuest Central Student
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Health & Medical Research Collection
ProQuest Central (New)
Engineering Collection
Business Premium Collection
ABI/INFORM Global
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
ProQuest Business Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Pharma Collection
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Health & Medical Research Collection
ProQuest Engineering Collection
ProQuest Central Korea
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
ProQuest Public Health
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList
ProQuest Business Collection (Alumni Edition)
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Statistics
EISSN 1613-9798
EndPage 3006
ExternalDocumentID 10_1007_s00362_023_01472_7
GroupedDBID -52
-5D
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
29Q
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
7WY
88I
8AO
8C1
8FE
8FG
8FL
8TC
8UJ
8V8
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADBBV
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMOZ
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHQJS
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKVCP
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BAPOH
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
DU5
DWQXO
EBA
EBLON
EBO
EBR
EBS
EBU
EIOEI
EJD
EMK
EOH
EPL
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
FYUFA
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K1G
K60
K6~
KDC
KOV
L6V
LAS
LLZTM
M0C
M2P
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NF0
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P9R
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
PTHSS
Q2X
QOK
QOS
R89
R9I
RHV
RIG
ROL
RPX
RSV
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TH9
TSG
TSK
TSV
TUC
U2A
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7X
Z7Z
Z81
Z83
Z87
Z88
Z8M
Z8O
Z8R
Z8T
Z8U
Z8W
Z91
Z92
ZMTXR
ZWQNP
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
7SC
7XB
8FD
8FK
JQ2
L.-
L7M
L~C
L~D
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c303t-df8b79454e62eb56b2c963a8b5fb541e04be0c03b79fca94c0648d07ae8941623
IEDL.DBID RSV
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001118698800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0932-5026
IngestDate Wed Nov 05 02:39:20 EST 2025
Sat Nov 29 04:24:57 EST 2025
Fri Feb 21 02:40:25 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords SETAR
Group LASSO
Sparsity conditions
Karush–Kuhn–Tucker
algorithm
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c303t-df8b79454e62eb56b2c963a8b5fb541e04be0c03b79fca94c0648d07ae8941623
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3883-4986
0000-0002-7690-1097
0000-0003-3349-5006
0000-0001-9423-0218
PQID 3074252743
PQPubID 31177
PageCount 34
ParticipantIDs proquest_journals_3074252743
crossref_primary_10_1007_s00362_023_01472_7
springer_journals_10_1007_s00362_023_01472_7
PublicationCentury 2000
PublicationDate 20240700
2024-07-00
20240701
PublicationDateYYYYMMDD 2024-07-01
PublicationDate_xml – month: 7
  year: 2024
  text: 20240700
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle Statistical papers (Berlin, Germany)
PublicationTitleAbbrev Stat Papers
PublicationYear 2024
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Wang, Leng (CR48) 2008; 52
Bach (CR1) 2008; 9
Huang, Breheny, Ma (CR27) 2012; 27
Yau, Tang, Lee (CR54) 2015; 110
Tibshirani (CR41) 2013; 7
CR34
Wang, Li, Leng (CR49) 2009; 71
Coakley, Fuertes, Pérez (CR18) 2003; 27
Weisberg (CR50) 2005
Chan, Yau, Zhang (CR12) 2015; 189
Chan, Wong, Tong (CR10) 2004; 8
Ciuperca (CR17) 2011; 63
Tsay, Chen (CR47) 2018
Bulmer (CR6) 1974; 43
Chan, Ing, Li, Yau (CR13) 2017; 35
Jiang, Huang (CR28) 2014; 24
Chan (CR7) 1993; 21
Tong (CR43) 1990
Yuan, Lin (CR55) 2006; 68
CR5
Zhao, Yu (CR56) 2006; 7
Chan, Petruccelli, Tong, Woolford (CR9) 1985; 22
Bickel, Ritov, Tsybakov (CR3) 2009; 37
Qian (CR38) 1998; 75
CR40
Pan, Xia, Liu (CR37) 2017; 32
Tsay (CR45) 1989; 84
Li, Tong (CR31) 2016; 26
Osborne, Presnell, Turlach (CR36) 2000; 9
Hansen (CR25) 2000; 68
Tsay (CR46) 1998; 93
Boysen, Kempe, Liebscher, Munk, Wittich (CR4) 2009; 37
Yau, Hui (CR53) 2017; 27
CR16
Bai, Perron (CR2) 2003; 18
CR15
Lopes, Salazar (CR32) 2006; 27
Eddelbuettel, Francois (CR20) 2011; 40
Qian, Su (CR39) 2016; 32
CR52
CR51
Li, Tong, Smelser, Baltes (CR30) 2001
Nardi, Rinaldo (CR33) 2008; 2
Tong, Chen (CR42) 1978
Cryer, Chan (CR19) 2008
Niglio, Vitale (CR35) 2015; 44
Chen (CR14) 1995; 16
Gonzalo, Pitarakis (CR24) 2002; 110
Chan, Yau, Zhang (CR11) 2014; 109
Harchaoui, Lévy-Leduc (CR26) 2010; 105
Tong, Lim (CR44) 1980; 42
CR22
Fan, Yao (CR21) 2003
Geweke, Terui (CR23) 1993; 14
Li, Ling (CR29) 2012; 167
Chan, Tong (CR8) 1990; 52
1472_CR5
RJ Tibshirani (1472_CR41) 2013; 7
J Bai (1472_CR2) 2003; 18
S Weisberg (1472_CR50) 2005
1472_CR34
J Gonzalo (1472_CR24) 2002; 110
R Chen (1472_CR14) 1995; 16
M Yuan (1472_CR55) 2006; 68
KS Chan (1472_CR7) 1993; 21
NH Chan (1472_CR11) 2014; 109
WK Li (1472_CR30) 2001
J Coakley (1472_CR18) 2003; 27
H Wang (1472_CR48) 2008; 52
H Wang (1472_CR49) 2009; 71
1472_CR22
PJ Bickel (1472_CR3) 2009; 37
D Li (1472_CR31) 2016; 26
WS Chan (1472_CR10) 2004; 8
KS Chan (1472_CR8) 1990; 52
P Zhao (1472_CR56) 2006; 7
J Huang (1472_CR27) 2012; 27
D Li (1472_CR29) 2012; 167
L Boysen (1472_CR4) 2009; 37
RS Tsay (1472_CR45) 1989; 84
KS Chan (1472_CR9) 1985; 22
MR Osborne (1472_CR36) 2000; 9
CY Yau (1472_CR53) 2017; 27
1472_CR16
1472_CR15
RS Tsay (1472_CR46) 1998; 93
HF Lopes (1472_CR32) 2006; 27
RS Tsay (1472_CR47) 2018
1472_CR52
1472_CR51
H Tong (1472_CR42) 1978
L Qian (1472_CR38) 1998; 75
J Qian (1472_CR39) 2016; 32
H Tong (1472_CR44) 1980; 42
JD Cryer (1472_CR19) 2008
D Eddelbuettel (1472_CR20) 2011; 40
J Pan (1472_CR37) 2017; 32
MG Bulmer (1472_CR6) 1974; 43
BE Hansen (1472_CR25) 2000; 68
Z Harchaoui (1472_CR26) 2010; 105
J Fan (1472_CR21) 2003
1472_CR40
CY Yau (1472_CR54) 2015; 110
D Jiang (1472_CR28) 2014; 24
H Tong (1472_CR43) 1990
NH Chan (1472_CR12) 2015; 189
M Niglio (1472_CR35) 2015; 44
NH Chan (1472_CR13) 2017; 35
J Geweke (1472_CR23) 1993; 14
FR Bach (1472_CR1) 2008; 9
G Ciuperca (1472_CR17) 2011; 63
Y Nardi (1472_CR33) 2008; 2
References_xml – ident: CR22
– volume: 109
  start-page: 590
  issue: 506
  year: 2014
  end-page: 599
  ident: CR11
  article-title: Group LASSO for structural break time series
  publication-title: J Am Stat Assoc
– year: 2005
  ident: CR50
  publication-title: Applied linear regression
– volume: 16
  start-page: 461
  issue: 5
  year: 1995
  end-page: 481
  ident: CR14
  article-title: Threshold variable selection in open-loop threshold autoregressive models
  publication-title: J Time Ser Anal
– year: 2008
  ident: CR19
  publication-title: Time series analysis. With applications in R
– volume: 68
  start-page: 575
  issue: 3
  year: 2000
  end-page: 603
  ident: CR25
  article-title: Sample splitting and threshold estimation
  publication-title: Econometrica
– ident: CR16
– volume: 27
  start-page: 481
  issue: 4
  year: 2012
  end-page: 499
  ident: CR27
  article-title: A selective review of group selection in high-dimensional models
  publication-title: Stat Sci
– volume: 14
  start-page: 441
  issue: 5
  year: 1993
  end-page: 454
  ident: CR23
  article-title: Bayesian threshold autoregressive models for nonlinear time series
  publication-title: J Time Ser Anal
– ident: CR51
– volume: 43
  start-page: 701
  issue: 3
  year: 1974
  end-page: 718
  ident: CR6
  article-title: A statistical analysis of the 10-year cycle in Canada
  publication-title: J Anim Ecol
– volume: 37
  start-page: 157
  issue: 1
  year: 2009
  end-page: 183
  ident: CR4
  article-title: Consistencies and rates of convergence of jump-penalized least squares estimators
  publication-title: Ann Stat
– volume: 71
  start-page: 671
  issue: 3
  year: 2009
  end-page: 683
  ident: CR49
  article-title: Shrinkage tuning parameter selection with a diverging number of parameters
  publication-title: J R Stat Soc Ser B (Stat Methodol)
– volume: 18
  start-page: 1
  issue: 1
  year: 2003
  end-page: 22
  ident: CR2
  article-title: Computation and analysis of multiple structural change models
  publication-title: J Appl Econom
– volume: 44
  start-page: 2911
  issue: 14
  year: 2015
  end-page: 2923
  ident: CR35
  article-title: Threshold vector ARMA models
  publication-title: Commun Stat Theory Methods
– volume: 9
  start-page: 1179
  year: 2008
  end-page: 1225
  ident: CR1
  article-title: Consistency of the group LASSO and multiple kernel learning
  publication-title: J Mach Learn Res
– year: 2003
  ident: CR21
  publication-title: Nonlinear time series: nonparametric and parametric methods
– volume: 42
  start-page: 245
  issue: 3
  year: 1980
  end-page: 292
  ident: CR44
  article-title: Threshold autoregression, limit cycles and cyclical data
  publication-title: J R Stat Soc Ser B (Stat Methodol)
– volume: 105
  start-page: 1480
  issue: 492
  year: 2010
  end-page: 1493
  ident: CR26
  article-title: Multiple change-point estimation with a total variation penalty
  publication-title: J Am Stat Assoc
– volume: 35
  start-page: 334
  issue: 2
  year: 2017
  end-page: 345
  ident: CR13
  article-title: Threshold estimation via group orthogonal greedy algorithm
  publication-title: J Bus Econ Stat
– ident: CR15
– volume: 27
  start-page: 99
  issue: 1
  year: 2006
  end-page: 117
  ident: CR32
  article-title: Bayesian model uncertainty in smooth transition autoregressions
  publication-title: J Time Ser Anal
– volume: 27
  start-page: 2219
  year: 2003
  end-page: 2242
  ident: CR18
  article-title: Numerical issues in threshold autoregressive modeling of time series
  publication-title: J Econ Dyn Control
– volume: 75
  start-page: 21
  year: 1998
  end-page: 46
  ident: CR38
  article-title: On maximum likelihood estimators for a threshold autoregression
  publication-title: J Stat Plan Inference
– ident: CR5
– volume: 52
  start-page: 5277
  issue: 12
  year: 2008
  end-page: 5286
  ident: CR48
  article-title: A note on adaptive group LASSO
  publication-title: Comput Stat Data Anal
– volume: 22
  start-page: 267
  issue: 2
  year: 1985
  end-page: 279
  ident: CR9
  article-title: A multiple-threshold AR(1) model
  publication-title: J Appl Probab
– volume: 52
  start-page: 469
  issue: 3
  year: 1990
  end-page: 476
  ident: CR8
  article-title: On likelihood ratio tests for threshold autoregression
  publication-title: J R Stat Soc Ser B (Stat Methodol)
– volume: 68
  start-page: 49
  issue: 1
  year: 2006
  end-page: 67
  ident: CR55
  article-title: Model selection and estimation in regression with grouped variables
  publication-title: J R Stat Soc Ser B (Stat Methodol)
– volume: 110
  start-page: 1175
  issue: 511
  year: 2015
  end-page: 1186
  ident: CR54
  article-title: Estimation of multiple-regime threshold autoregressive models with structural breaks
  publication-title: J Am Stat Assoc
– year: 1990
  ident: CR43
  publication-title: Non-linear time series. A dynamical system approach
– volume: 26
  start-page: 1543
  issue: 4
  year: 2016
  end-page: 1554
  ident: CR31
  article-title: Nested sub-sample search algorithm for estimation of threshold models
  publication-title: Stat Sin
– ident: CR40
– volume: 40
  start-page: 1
  issue: 8
  year: 2011
  end-page: 18
  ident: CR20
  article-title: Rcpp: seamless R and C++ integration
  publication-title: J Stat Softw
– volume: 32
  start-page: 1376
  year: 2016
  end-page: 1433
  ident: CR39
  article-title: Shrinkage estimation of regression models with multiple structural changes
  publication-title: Econom Theory
– volume: 8
  start-page: 37
  issue: 4
  year: 2004
  end-page: 61
  ident: CR10
  article-title: Some nonlinear threshold autoregressive time series models for actuarial use
  publication-title: N Am Actuar J
– year: 2018
  ident: CR47
  publication-title: Nonlinear time series analysis
– start-page: 101
  year: 1978
  end-page: 141
  ident: CR42
  article-title: On a threshold model
  publication-title: Pattern recognition and signal processing
– volume: 37
  start-page: 1705
  issue: 4
  year: 2009
  end-page: 1732
  ident: CR3
  article-title: Simultaneous analysis of LASSO and Dantzig selector
  publication-title: Ann Stat
– volume: 167
  start-page: 240
  issue: 1
  year: 2012
  end-page: 253
  ident: CR29
  article-title: On the least squares estimation of multiple-regime threshold autoregressive models
  publication-title: J Econom
– volume: 9
  start-page: 319
  issue: 2
  year: 2000
  end-page: 337
  ident: CR36
  article-title: On the LASSO and its dual
  publication-title: J Comput Graph Stat
– volume: 24
  start-page: 871
  issue: 5
  year: 2014
  end-page: 883
  ident: CR28
  article-title: Majorization minimization by coordinate descent for concave penalized generalized linear models
  publication-title: Stat Comput
– ident: CR52
– volume: 21
  start-page: 520
  issue: 1
  year: 1993
  end-page: 533
  ident: CR7
  article-title: Consistency and limiting distribution of the least squares estimator of a threshold autoregressive model
  publication-title: Ann Stat
– volume: 7
  start-page: 1456
  issue: 1
  year: 2013
  end-page: 1490
  ident: CR41
  article-title: The LASSO problem and uniqueness
  publication-title: Electron J Stat
– ident: CR34
– start-page: 15699
  year: 2001
  end-page: 15704
  ident: CR30
  article-title: Time series: advanced methods
  publication-title: International encyclopedia of the social & behavioral sciences
– volume: 2
  start-page: 605
  year: 2008
  end-page: 633
  ident: CR33
  article-title: On the asymptotic properties of the group LASSO estimator for linear models
  publication-title: Electron J Stat
– volume: 110
  start-page: 319
  issue: 2
  year: 2002
  end-page: 352
  ident: CR24
  article-title: Estimation and model selection based inference in single and multiple threshold models
  publication-title: J Econom
– volume: 32
  start-page: 219
  issue: 1
  year: 2017
  end-page: 237
  ident: CR37
  article-title: Bayesian analysis of multiple thresholds autoregressive model
  publication-title: Comput Stat
– volume: 27
  start-page: 1041
  year: 2017
  end-page: 1048
  ident: CR53
  article-title: LARS-type algorithm for group LASSO
  publication-title: Stat Comput
– volume: 84
  start-page: 231
  issue: 405
  year: 1989
  end-page: 240
  ident: CR45
  article-title: Testing and modeling threshold autoregressive processes
  publication-title: J Am Stat Assoc
– volume: 7
  start-page: 2541
  year: 2006
  end-page: 2563
  ident: CR56
  article-title: On model selection consistency of LASSO
  publication-title: J Mach Learn Res
– volume: 189
  start-page: 285
  issue: 2
  year: 2015
  end-page: 296
  ident: CR12
  article-title: LASSO estimation of threshold autoregressive models
  publication-title: J Econom
– volume: 93
  start-page: 1188
  issue: 443
  year: 1998
  end-page: 1202
  ident: CR46
  article-title: Testing and modeling multivariate threshold models
  publication-title: J Am Stat Assoc
– volume: 63
  start-page: 717
  issue: 4
  year: 2011
  end-page: 743
  ident: CR17
  article-title: Estimating nonlinear regression with and without change-points by the LAD method
  publication-title: Ann Inst Stat Math
– volume: 109
  start-page: 590
  issue: 506
  year: 2014
  ident: 1472_CR11
  publication-title: J Am Stat Assoc
  doi: 10.1080/01621459.2013.866566
– volume: 189
  start-page: 285
  issue: 2
  year: 2015
  ident: 1472_CR12
  publication-title: J Econom
  doi: 10.1016/j.jeconom.2015.03.023
– ident: 1472_CR40
  doi: 10.1145/1390156.1390263
– volume-title: Nonlinear time series analysis
  year: 2018
  ident: 1472_CR47
– ident: 1472_CR52
  doi: 10.1007/s11222-014-9498-5
– ident: 1472_CR22
– volume: 110
  start-page: 319
  issue: 2
  year: 2002
  ident: 1472_CR24
  publication-title: J Econom
  doi: 10.1016/S0304-4076(02)00098-2
– volume: 71
  start-page: 671
  issue: 3
  year: 2009
  ident: 1472_CR49
  publication-title: J R Stat Soc Ser B (Stat Methodol)
  doi: 10.1111/j.1467-9868.2008.00693.x
– volume: 8
  start-page: 37
  issue: 4
  year: 2004
  ident: 1472_CR10
  publication-title: N Am Actuar J
  doi: 10.1080/10920277.2004.10596170
– ident: 1472_CR34
– ident: 1472_CR16
  doi: 10.4310/SII.2011.v4.n2.a12
– volume: 37
  start-page: 157
  issue: 1
  year: 2009
  ident: 1472_CR4
  publication-title: Ann Stat
  doi: 10.1214/07-AOS558
– volume: 68
  start-page: 575
  issue: 3
  year: 2000
  ident: 1472_CR25
  publication-title: Econometrica
  doi: 10.1111/1468-0262.00124
– volume: 43
  start-page: 701
  issue: 3
  year: 1974
  ident: 1472_CR6
  publication-title: J Anim Ecol
  doi: 10.2307/3532
– volume: 9
  start-page: 319
  issue: 2
  year: 2000
  ident: 1472_CR36
  publication-title: J Comput Graph Stat
  doi: 10.1080/10618600.2000.10474883
– volume-title: Non-linear time series. A dynamical system approach
  year: 1990
  ident: 1472_CR43
  doi: 10.1093/oso/9780198522249.001.0001
– volume: 167
  start-page: 240
  issue: 1
  year: 2012
  ident: 1472_CR29
  publication-title: J Econom
  doi: 10.1016/j.jeconom.2011.11.006
– volume: 110
  start-page: 1175
  issue: 511
  year: 2015
  ident: 1472_CR54
  publication-title: J Am Stat Assoc
  doi: 10.1080/01621459.2014.954706
– volume: 27
  start-page: 481
  issue: 4
  year: 2012
  ident: 1472_CR27
  publication-title: Stat Sci
  doi: 10.1214/12-STS392
– volume: 24
  start-page: 871
  issue: 5
  year: 2014
  ident: 1472_CR28
  publication-title: Stat Comput
  doi: 10.1007/s11222-013-9407-3
– start-page: 101
  volume-title: Pattern recognition and signal processing
  year: 1978
  ident: 1472_CR42
– volume: 7
  start-page: 1456
  issue: 1
  year: 2013
  ident: 1472_CR41
  publication-title: Electron J Stat
– volume-title: Applied linear regression
  year: 2005
  ident: 1472_CR50
  doi: 10.1002/0471704091
– volume: 27
  start-page: 1041
  year: 2017
  ident: 1472_CR53
  publication-title: Stat Comput
  doi: 10.1007/s11222-016-9669-7
– start-page: 15699
  volume-title: International encyclopedia of the social & behavioral sciences
  year: 2001
  ident: 1472_CR30
– volume: 84
  start-page: 231
  issue: 405
  year: 1989
  ident: 1472_CR45
  publication-title: J Am Stat Assoc
  doi: 10.1080/01621459.1989.10478760
– volume: 93
  start-page: 1188
  issue: 443
  year: 1998
  ident: 1472_CR46
  publication-title: J Am Stat Assoc
  doi: 10.1080/01621459.1998.10473779
– volume: 52
  start-page: 469
  issue: 3
  year: 1990
  ident: 1472_CR8
  publication-title: J R Stat Soc Ser B (Stat Methodol)
  doi: 10.1111/j.2517-6161.1990.tb01800.x
– volume: 32
  start-page: 219
  issue: 1
  year: 2017
  ident: 1472_CR37
  publication-title: Comput Stat
  doi: 10.1007/s00180-016-0673-3
– volume-title: Nonlinear time series: nonparametric and parametric methods
  year: 2003
  ident: 1472_CR21
  doi: 10.1007/978-0-387-69395-8
– volume: 40
  start-page: 1
  issue: 8
  year: 2011
  ident: 1472_CR20
  publication-title: J Stat Softw
  doi: 10.18637/jss.v040.i08
– volume: 63
  start-page: 717
  issue: 4
  year: 2011
  ident: 1472_CR17
  publication-title: Ann Inst Stat Math
  doi: 10.1007/s10463-009-0256-y
– volume: 9
  start-page: 1179
  year: 2008
  ident: 1472_CR1
  publication-title: J Mach Learn Res
– volume: 22
  start-page: 267
  issue: 2
  year: 1985
  ident: 1472_CR9
  publication-title: J Appl Probab
  doi: 10.2307/3213771
– volume: 14
  start-page: 441
  issue: 5
  year: 1993
  ident: 1472_CR23
  publication-title: J Time Ser Anal
  doi: 10.1111/j.1467-9892.1993.tb00156.x
– ident: 1472_CR15
  doi: 10.1007/s00180-010-0198-0
– ident: 1472_CR51
  doi: 10.1080/00949655.2012.695374
– volume: 27
  start-page: 99
  issue: 1
  year: 2006
  ident: 1472_CR32
  publication-title: J Time Ser Anal
  doi: 10.1111/j.1467-9892.2005.00455.x
– volume: 68
  start-page: 49
  issue: 1
  year: 2006
  ident: 1472_CR55
  publication-title: J R Stat Soc Ser B (Stat Methodol)
  doi: 10.1111/j.1467-9868.2005.00532.x
– volume: 44
  start-page: 2911
  issue: 14
  year: 2015
  ident: 1472_CR35
  publication-title: Commun Stat Theory Methods
  doi: 10.1080/03610926.2013.814785
– volume: 105
  start-page: 1480
  issue: 492
  year: 2010
  ident: 1472_CR26
  publication-title: J Am Stat Assoc
  doi: 10.1198/jasa.2010.tm09181
– volume: 37
  start-page: 1705
  issue: 4
  year: 2009
  ident: 1472_CR3
  publication-title: Ann Stat
  doi: 10.1214/08-AOS620
– volume: 42
  start-page: 245
  issue: 3
  year: 1980
  ident: 1472_CR44
  publication-title: J R Stat Soc Ser B (Stat Methodol)
  doi: 10.1111/j.2517-6161.1980.tb01126.x
– volume: 16
  start-page: 461
  issue: 5
  year: 1995
  ident: 1472_CR14
  publication-title: J Time Ser Anal
  doi: 10.1111/j.1467-9892.1995.tb00247.x
– ident: 1472_CR5
– volume-title: Time series analysis. With applications in R
  year: 2008
  ident: 1472_CR19
– volume: 27
  start-page: 2219
  year: 2003
  ident: 1472_CR18
  publication-title: J Econ Dyn Control
  doi: 10.1016/S0165-1889(02)00123-9
– volume: 32
  start-page: 1376
  year: 2016
  ident: 1472_CR39
  publication-title: Econom Theory
  doi: 10.1017/S0266466615000237
– volume: 7
  start-page: 2541
  year: 2006
  ident: 1472_CR56
  publication-title: J Mach Learn Res
– volume: 52
  start-page: 5277
  issue: 12
  year: 2008
  ident: 1472_CR48
  publication-title: Comput Stat Data Anal
  doi: 10.1016/j.csda.2008.05.006
– volume: 18
  start-page: 1
  issue: 1
  year: 2003
  ident: 1472_CR2
  publication-title: J Appl Econom
  doi: 10.1002/jae.659
– volume: 21
  start-page: 520
  issue: 1
  year: 1993
  ident: 1472_CR7
  publication-title: Ann Stat
– volume: 75
  start-page: 21
  year: 1998
  ident: 1472_CR38
  publication-title: J Stat Plan Inference
  doi: 10.1016/S0378-3758(98)00113-X
– volume: 35
  start-page: 334
  issue: 2
  year: 2017
  ident: 1472_CR13
  publication-title: J Bus Econ Stat
  doi: 10.1080/07350015.2015.1064820
– volume: 2
  start-page: 605
  year: 2008
  ident: 1472_CR33
  publication-title: Electron J Stat
  doi: 10.1214/08-EJS200
– volume: 26
  start-page: 1543
  issue: 4
  year: 2016
  ident: 1472_CR31
  publication-title: Stat Sin
SSID ssj0018880
Score 2.3169794
Snippet Group LASSO (gLASSO) estimator has been recently proposed to estimate thresholds for the self-exciting threshold autoregressive model, and a group least angle...
Group LASSO (gLASSO) estimator has been recently proposed to estimate thresholds for the self-exciting threshold autoregressive model, and a group least angle...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 2973
SubjectTerms Algorithms
Autoregressive models
Economic Theory/Quantitative Economics/Mathematical Methods
Economics
Finance
Group theory
Insurance
Management
Mathematics and Statistics
Operations Research/Decision Theory
Optimization
Performance enhancement
Probability Theory and Stochastic Processes
Regular Article
Statistics
Statistics for Business
Thresholds
SummonAdditionalLinks – databaseName: Science Database (subscription)
  dbid: M2P
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV09T8MwED1BYWDhG1EoyAMbWCRxPidUISqGUnUA1C2yHRsqSlqagPj5nJ2kFUiwMCeKI5_te-_u_A7gTEk3ixEOUcETRZFvMJqEIqFMxAigfSa1Dbg99qPBIB6NkmEdcCvqssrmTLQHdTaVJkZ-yQyJC5BDsavZGzVdo0x2tW6hsQpriGxcU9J15w0XWQRkdzbGghiFBkg26ksz9uqcFWKh6LGQTPsRoszvjmmJNn8kSK3f6W3994-3YbNGnKRbLZEdWFH5LmwYkFlpNO9B0bWHHi1USYxXy4hAF_dC5BSZ6ThHNEqySvWJ8MkTDlE-v5JxTuyNENI3ypAEsS8p1ERT9SnHppSalLhKCpPcItzoJChL7HEYYpvv7MND7-b--pbWzRioRC9X0kzHAvdu4KvQUyIIhSdx7_JYBFoEvqscXyhHOgxf0pInvkSsE2dOxFWcIOjz2AG08mmuDoGo0FbHJQYq-iJwhc81E1o62uU8c0QbzhtLpLNKcyNdqCtbu6Vot9TaLY3a0GmmP633X5Eu574NF40Bl49__9rR3187hg0PUU1Vr9uBVjl_VyewLj_QZPNTu_q-AFlT4PI
  priority: 102
  providerName: ProQuest
Title Active-set based block coordinate descent algorithm in group LASSO for self-exciting threshold autoregressive model
URI https://link.springer.com/article/10.1007/s00362-023-01472-7
https://www.proquest.com/docview/3074252743
Volume 65
WOSCitedRecordID wos001118698800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1613-9798
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0018880
  issn: 0932-5026
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwEB0BRYILSwFRlsoHbmApa-McoQJxKFXFUsopsh0HIkqKmoD4fMZO0goEB7hYimI50Yztec-zGOBISTtmCIeo4KGiyDdcGnZESF3BEEB7rkzMgduwF_T7bDQKB1VSWF5Hu9cuSbNTz5LdTOkUijYG6a8XIC5chAaaO6YvbLi-Gc58B8jpzMkKIhPqI8WoUmV-HuOrOZpjzG9uUWNtLtb_958bsFahS3JaTodNWFBZE1bq5OO8CasaXJa1mbcgPzWbHc1VQbQ1i4lA0_ZM5AQZaZohCiVxWe2J8PHjZJoWTy8kzYjJBCE9XRGSIOYluRonVH3IVIdQkwJnR66dWoTr-gjKEHr8DDGX7mzD3cX5bfeSVpcwUInWraBxwgSuWd9THUcJvyMciWuWM-EnwvdsZXlCWdJysVMieehJxDgstgKuWIhgz3F3YCmbZGoXiOqYqLhQQ0RP-LbweOKKRFqJzXlsiRYc17qIXstaG9GsqrKRaoRSjYxUo6AFB7W6omrd5ZGrqb6PTNttwUmtnvnr30fb-1v3fVh1EN2UcbsHsFRM39QhLMt3VOG0DYvB_QO2rGu3oXF23h9c49OV1dWtM9BtcNM2s_YT9Obg4A
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V07T8MwED5VgAQLb0ShgAeYwCJNnDYZEKp4qKil6lAQW7AdBypKWprw-lP8Rs5OQwUSbB2YEyVx7vPdd77zZ4BdJcuhh3SICu4rivmGQ_2K8KkjPCTQzJGRWXC7blZbLe_mxm8X4CPfC6PbKnOfaBx12Jd6jfzQ0UmcizmUczx4ovrUKF1dzY_QyGDRUO-vmLIlRxenaN892z4_65zU6ehUASrRXac0jDyBIHSZqthKuBVhSwQh94QbCZeVlcWEsqTl4E2R5D6TGLS90Kpy5fnIXrTQAbr8aaaVxXSroN3-qlpgNmnWdJATUReTm9EmHbNVzwi_UIyQmLyzKrLa74FwzG5_FGRNnDtf-G9_aBHmR4ya1LIpsAQFFS_DnCbRmQb1CiQ149RpolKio3ZIBIbwByL7-JHdGNk2CTNVK8J7dzik9P6RdGNidryQpla-JMjtSaJ6EVVvsqtbxUmKsyDRxTvCtQ6EMgsX-BpiDhdahauJDHoNpuJ-rNaBqIrp_vM1FWbCLQvGI0dE0orKnIeWKMJ-bvlgkGmKBF_q0QYnAeIkMDgJqkUo5eYORv4lCca2LsJBDpjx5d-ftvH303Zgtt65bAbNi1ZjE-ZsZHBZb3IJptLhs9qCGfmC5htuG-QTuJ00kD4BN909pA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V07T8MwED4hQIiFN6I8PcAEFmniNMmAEAIqqlYVAyC2YDs2VJQUSHj9NX4dZyehAgk2BuZESZz7fPfd0wCbStaTEOkQFTxSFP0Nj0YNEVFPhEigmSe1DbhddIJuN7y8jE5H4L3qhTFllZVOtIo6GUgTI9_1jBPnow_l7eqyLOL0qLl__0DNCVIm01odp1FApK3eXtB9y_ZaRyjrLddtHp8dntDyhAEqUXXnNNGhQED6TDVcJfyGcCUCkofC18JndeUwoRzpeHiTljxiEg14mDgBV2GETMYMPUD1PxYwNJumbNA5_MxgoGdp4zvIj6iPjk7ZsGPb9uwQGIrWEh15FiDD_WoUh0z3W3LW2rzm9H_-WzMwVTJtclBsjVkYUekcTBpyXcymnofswCp7mqmcGGueEIGm_ZbIAX5kL0UWTpJi2hXh_WtcUn5zR3opsZ0wpGMmYhLk_CRTfU3Vq-yZEnKS4-7ITFKPcDMfQtmABr6G2EOHFuD8Txa9CKPpIFVLQFTDVgVGhiIz4dcF49oTWjq6znniiBpsVyiI74tZI_HnVGmLmRgxE1vMxEENVivRx6XeyeKh3GuwU4FnePnnpy3__rQNmED8xJ1Wt70Cky4Su6JkeRVG88cntQbj8hml97huNwGBq7_G0QcEeEZG
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Active-set+based+block+coordinate+descent+algorithm+in+group+LASSO+for+self-exciting+threshold+autoregressive+model&rft.jtitle=Statistical+papers+%28Berlin%2C+Germany%29&rft.au=Nasir%2C+Muhammad+Jaffri+Mohd&rft.au=Khan%2C+Ramzan+Nazim&rft.au=Nair%2C+Gopalan&rft.au=Nur%2C+Darfiana&rft.date=2024-07-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=0932-5026&rft.eissn=1613-9798&rft.volume=65&rft.issue=5&rft.spage=2973&rft.epage=3006&rft_id=info:doi/10.1007%2Fs00362-023-01472-7&rft.externalDocID=10_1007_s00362_023_01472_7
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0932-5026&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0932-5026&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0932-5026&client=summon