Active-set based block coordinate descent algorithm in group LASSO for self-exciting threshold autoregressive model
Group LASSO (gLASSO) estimator has been recently proposed to estimate thresholds for the self-exciting threshold autoregressive model, and a group least angle regression ( gLAR ) algorithm has been applied to obtain an approximate solution to the optimization problem. Although gLAR algorithm is comp...
Uloženo v:
| Vydáno v: | Statistical papers (Berlin, Germany) Ročník 65; číslo 5; s. 2973 - 3006 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.07.2024
Springer Nature B.V |
| Témata: | |
| ISSN: | 0932-5026, 1613-9798 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Group LASSO (gLASSO) estimator has been recently proposed to estimate thresholds for the
self-exciting
threshold autoregressive model, and a group least angle regression (
gLAR
) algorithm has been applied to obtain an approximate solution to the optimization problem. Although
gLAR
algorithm is computationally fast, it has been reported that the algorithm tends to estimate too many irrelevant thresholds along with the relevant ones. This paper develops an
active-set
based block coordinate descent (
aBCD
) algorithm as an exact optimization method for gLASSO to improve the performance of estimating relevant thresholds. Methods and strategy for choosing the appropriate values of shrinkage parameter for gLASSO are also discussed. To consistently estimate relevant thresholds from the threshold set obtained by the gLASSO, the backward elimination algorithm (
BEA
) is utilized. We evaluate numerical efficiency of the proposed algorithms, along with the Single-Line-Search (
SLS
) and the
gLAR
algorithms through simulated data and real data sets. Simulation studies show that the
SLS
and
aBCD
algorithms have similar performance in estimating thresholds although the latter method is much faster. In addition, the
aBCD-BEA
can sometimes outperform
gLAR-BEA
in terms of estimating the correct number of thresholds under certain conditions. The results from case studies have also shown that
aBCD-BEA
performs better in identifying important thresholds. |
|---|---|
| AbstractList | Group LASSO (gLASSO) estimator has been recently proposed to estimate thresholds for the
self-exciting
threshold autoregressive model, and a group least angle regression (
gLAR
) algorithm has been applied to obtain an approximate solution to the optimization problem. Although
gLAR
algorithm is computationally fast, it has been reported that the algorithm tends to estimate too many irrelevant thresholds along with the relevant ones. This paper develops an
active-set
based block coordinate descent (
aBCD
) algorithm as an exact optimization method for gLASSO to improve the performance of estimating relevant thresholds. Methods and strategy for choosing the appropriate values of shrinkage parameter for gLASSO are also discussed. To consistently estimate relevant thresholds from the threshold set obtained by the gLASSO, the backward elimination algorithm (
BEA
) is utilized. We evaluate numerical efficiency of the proposed algorithms, along with the Single-Line-Search (
SLS
) and the
gLAR
algorithms through simulated data and real data sets. Simulation studies show that the
SLS
and
aBCD
algorithms have similar performance in estimating thresholds although the latter method is much faster. In addition, the
aBCD-BEA
can sometimes outperform
gLAR-BEA
in terms of estimating the correct number of thresholds under certain conditions. The results from case studies have also shown that
aBCD-BEA
performs better in identifying important thresholds. Group LASSO (gLASSO) estimator has been recently proposed to estimate thresholds for the self-exciting threshold autoregressive model, and a group least angle regression (gLAR) algorithm has been applied to obtain an approximate solution to the optimization problem. Although gLAR algorithm is computationally fast, it has been reported that the algorithm tends to estimate too many irrelevant thresholds along with the relevant ones. This paper develops an active-set based block coordinate descent (aBCD) algorithm as an exact optimization method for gLASSO to improve the performance of estimating relevant thresholds. Methods and strategy for choosing the appropriate values of shrinkage parameter for gLASSO are also discussed. To consistently estimate relevant thresholds from the threshold set obtained by the gLASSO, the backward elimination algorithm (BEA) is utilized. We evaluate numerical efficiency of the proposed algorithms, along with the Single-Line-Search (SLS) and the gLAR algorithms through simulated data and real data sets. Simulation studies show that the SLS and aBCD algorithms have similar performance in estimating thresholds although the latter method is much faster. In addition, the aBCD-BEA can sometimes outperform gLAR-BEA in terms of estimating the correct number of thresholds under certain conditions. The results from case studies have also shown that aBCD-BEA performs better in identifying important thresholds. |
| Author | Khan, Ramzan Nazim Nair, Gopalan Nasir, Muhammad Jaffri Mohd Nur, Darfiana |
| Author_xml | – sequence: 1 givenname: Muhammad Jaffri Mohd orcidid: 0000-0001-9423-0218 surname: Nasir fullname: Nasir, Muhammad Jaffri Mohd email: jaffri.mn@umk.edu.my organization: Faculty of Entrepreneurship and Business, Universiti Malaysia Kelantan – sequence: 2 givenname: Ramzan Nazim orcidid: 0000-0003-3349-5006 surname: Khan fullname: Khan, Ramzan Nazim organization: Department of Mathematics and Statistics, The University of Western Australia – sequence: 3 givenname: Gopalan orcidid: 0000-0003-3883-4986 surname: Nair fullname: Nair, Gopalan organization: Department of Mathematics and Statistics, The University of Western Australia – sequence: 4 givenname: Darfiana orcidid: 0000-0002-7690-1097 surname: Nur fullname: Nur, Darfiana organization: Department of Mathematics and Statistics, The University of Western Australia |
| BookMark | eNp9kEtLAzEUhYNUsFb_gKuA6-jNYyYzy1J8QaGL6jpkMnemU6eTmqSi_97RCu5cXS585xz4zslk8AMScsXhhgPo2wggc8FASAZcacH0CZnynEtW6rKYkCmUUrAMRH5GzmPcAvCiKGBK4tyl7h1ZxEQrG7GmVe_dK3Xeh7obbEJaY3Q4JGr71ocubXa0G2gb_GFPl_P1ekUbH2jEvmH44brUDS1Nm4Bx4_ua2kPyAdvxjeMM3fka-wty2tg-4uXvnZGX-7vnxSNbrh6eFvMlcxJkYnVTVLpUmcJcYJXllXBlLm1RZU2VKY6gKgQHcoQaZ0vlIFdFDdpiUSqeCzkj18feffBvB4zJbP0hDOOkkaCVyIRWcqTEkXLBxxiwMfvQ7Wz4NBzMt1xzlGtGueZHrtFjSB5DcYSHFsNf9T-pL6-gf-w |
| Cites_doi | 10.1080/01621459.2013.866566 10.1016/j.jeconom.2015.03.023 10.1145/1390156.1390263 10.1007/s11222-014-9498-5 10.1016/S0304-4076(02)00098-2 10.1111/j.1467-9868.2008.00693.x 10.1080/10920277.2004.10596170 10.4310/SII.2011.v4.n2.a12 10.1214/07-AOS558 10.1111/1468-0262.00124 10.2307/3532 10.1080/10618600.2000.10474883 10.1093/oso/9780198522249.001.0001 10.1016/j.jeconom.2011.11.006 10.1080/01621459.2014.954706 10.1214/12-STS392 10.1007/s11222-013-9407-3 10.1002/0471704091 10.1007/s11222-016-9669-7 10.1080/01621459.1989.10478760 10.1080/01621459.1998.10473779 10.1111/j.2517-6161.1990.tb01800.x 10.1007/s00180-016-0673-3 10.1007/978-0-387-69395-8 10.18637/jss.v040.i08 10.1007/s10463-009-0256-y 10.2307/3213771 10.1111/j.1467-9892.1993.tb00156.x 10.1007/s00180-010-0198-0 10.1080/00949655.2012.695374 10.1111/j.1467-9892.2005.00455.x 10.1111/j.1467-9868.2005.00532.x 10.1080/03610926.2013.814785 10.1198/jasa.2010.tm09181 10.1214/08-AOS620 10.1111/j.2517-6161.1980.tb01126.x 10.1111/j.1467-9892.1995.tb00247.x 10.1016/S0165-1889(02)00123-9 10.1017/S0266466615000237 10.1016/j.csda.2008.05.006 10.1002/jae.659 10.1016/S0378-3758(98)00113-X 10.1080/07350015.2015.1064820 10.1214/08-EJS200 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| DBID | AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 88I 8AO 8C1 8FD 8FE 8FG 8FK 8FL ABJCF ABUWG AFKRA AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG FYUFA F~G GHDGH GNUQQ HCIFZ JQ2 K60 K6~ L.- L6V L7M L~C L~D M0C M2P M7S PHGZM PHGZT PJZUB PKEHL PPXIY PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U |
| DOI | 10.1007/s00362-023-01472-7 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ProQuest ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Science Database (Alumni Edition) ProQuest Pharma Collection Public Health Database (subscription) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni Edition) ProQuest Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Business Premium Collection Technology collection ProQuest One Community College ProQuest Central Business Premium Collection (Alumni) Health Research Premium Collection ABI/INFORM Global (Corporate) Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection ABI/INFORM Professional Advanced ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Science Database Engineering Database ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) One Health & Nursing ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering collection ProQuest Central Basic |
| DatabaseTitle | CrossRef ProQuest Business Collection (Alumni Edition) ProQuest Central Student ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China ABI/INFORM Complete ProQuest One Applied & Life Sciences Health Research Premium Collection Health & Medical Research Collection ProQuest Central (New) Engineering Collection Business Premium Collection ABI/INFORM Global Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection Health Research Premium Collection (Alumni) ProQuest Business Collection ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ABI/INFORM Global (Corporate) ProQuest One Business Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Pharma Collection ProQuest Central ABI/INFORM Professional Advanced ProQuest Health & Medical Research Collection ProQuest Engineering Collection ProQuest Central Korea Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) ProQuest Public Health ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Materials Science & Engineering Collection ProQuest One Business (Alumni) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
| DatabaseTitleList | ProQuest Business Collection (Alumni Edition) |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Economics Statistics |
| EISSN | 1613-9798 |
| EndPage | 3006 |
| ExternalDocumentID | 10_1007_s00362_023_01472_7 |
| GroupedDBID | -52 -5D -5G -BR -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 29Q 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 7WY 88I 8AO 8C1 8FE 8FG 8FL 8TC 8UJ 8V8 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADBBV ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMOZ AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHQJS AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKVCP ALIPV ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BAPOH BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DNIVK DPUIP DU5 DWQXO EBA EBLON EBO EBR EBS EBU EIOEI EJD EMK EOH EPL ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC FYUFA GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K1G K60 K6~ KDC KOV L6V LAS LLZTM M0C M2P M4Y M7S MA- N2Q N9A NB0 NDZJH NF0 NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P9R PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 PTHSS Q2X QOK QOS R89 R9I RHV RIG ROL RPX RSV S16 S1Z S26 S27 S28 S3B SAP SCLPG SDD SDH SDM SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TH9 TSG TSK TSV TUC U2A UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7X Z7Z Z81 Z83 Z87 Z88 Z8M Z8O Z8R Z8T Z8U Z8W Z91 Z92 ZMTXR ZWQNP ~8M ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION PHGZM PHGZT PJZUB PPXIY PQGLB 7SC 7XB 8FD 8FK JQ2 L.- L7M L~C L~D PKEHL PQEST PQUKI PRINS Q9U |
| ID | FETCH-LOGICAL-c303t-df8b79454e62eb56b2c963a8b5fb541e04be0c03b79fca94c0648d07ae8941623 |
| IEDL.DBID | M2P |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001118698800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0932-5026 |
| IngestDate | Wed Nov 05 02:39:20 EST 2025 Sat Nov 29 04:24:57 EST 2025 Fri Feb 21 02:40:25 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Keywords | SETAR Group LASSO Sparsity conditions Karush–Kuhn–Tucker algorithm |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c303t-df8b79454e62eb56b2c963a8b5fb541e04be0c03b79fca94c0648d07ae8941623 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-3883-4986 0000-0002-7690-1097 0000-0003-3349-5006 0000-0001-9423-0218 |
| PQID | 3074252743 |
| PQPubID | 31177 |
| PageCount | 34 |
| ParticipantIDs | proquest_journals_3074252743 crossref_primary_10_1007_s00362_023_01472_7 springer_journals_10_1007_s00362_023_01472_7 |
| PublicationCentury | 2000 |
| PublicationDate | 20240700 2024-07-00 20240701 |
| PublicationDateYYYYMMDD | 2024-07-01 |
| PublicationDate_xml | – month: 7 year: 2024 text: 20240700 |
| PublicationDecade | 2020 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
| PublicationTitle | Statistical papers (Berlin, Germany) |
| PublicationTitleAbbrev | Stat Papers |
| PublicationYear | 2024 |
| Publisher | Springer Berlin Heidelberg Springer Nature B.V |
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
| References | Wang, Leng (CR48) 2008; 52 Bach (CR1) 2008; 9 Huang, Breheny, Ma (CR27) 2012; 27 Yau, Tang, Lee (CR54) 2015; 110 Tibshirani (CR41) 2013; 7 CR34 Wang, Li, Leng (CR49) 2009; 71 Coakley, Fuertes, Pérez (CR18) 2003; 27 Weisberg (CR50) 2005 Chan, Yau, Zhang (CR12) 2015; 189 Chan, Wong, Tong (CR10) 2004; 8 Ciuperca (CR17) 2011; 63 Tsay, Chen (CR47) 2018 Bulmer (CR6) 1974; 43 Chan, Ing, Li, Yau (CR13) 2017; 35 Jiang, Huang (CR28) 2014; 24 Chan (CR7) 1993; 21 Tong (CR43) 1990 Yuan, Lin (CR55) 2006; 68 CR5 Zhao, Yu (CR56) 2006; 7 Chan, Petruccelli, Tong, Woolford (CR9) 1985; 22 Bickel, Ritov, Tsybakov (CR3) 2009; 37 Qian (CR38) 1998; 75 CR40 Pan, Xia, Liu (CR37) 2017; 32 Tsay (CR45) 1989; 84 Li, Tong (CR31) 2016; 26 Osborne, Presnell, Turlach (CR36) 2000; 9 Hansen (CR25) 2000; 68 Tsay (CR46) 1998; 93 Boysen, Kempe, Liebscher, Munk, Wittich (CR4) 2009; 37 Yau, Hui (CR53) 2017; 27 CR16 Bai, Perron (CR2) 2003; 18 CR15 Lopes, Salazar (CR32) 2006; 27 Eddelbuettel, Francois (CR20) 2011; 40 Qian, Su (CR39) 2016; 32 CR52 CR51 Li, Tong, Smelser, Baltes (CR30) 2001 Nardi, Rinaldo (CR33) 2008; 2 Tong, Chen (CR42) 1978 Cryer, Chan (CR19) 2008 Niglio, Vitale (CR35) 2015; 44 Chen (CR14) 1995; 16 Gonzalo, Pitarakis (CR24) 2002; 110 Chan, Yau, Zhang (CR11) 2014; 109 Harchaoui, Lévy-Leduc (CR26) 2010; 105 Tong, Lim (CR44) 1980; 42 CR22 Fan, Yao (CR21) 2003 Geweke, Terui (CR23) 1993; 14 Li, Ling (CR29) 2012; 167 Chan, Tong (CR8) 1990; 52 1472_CR5 RJ Tibshirani (1472_CR41) 2013; 7 J Bai (1472_CR2) 2003; 18 S Weisberg (1472_CR50) 2005 1472_CR34 J Gonzalo (1472_CR24) 2002; 110 R Chen (1472_CR14) 1995; 16 M Yuan (1472_CR55) 2006; 68 KS Chan (1472_CR7) 1993; 21 NH Chan (1472_CR11) 2014; 109 WK Li (1472_CR30) 2001 J Coakley (1472_CR18) 2003; 27 H Wang (1472_CR48) 2008; 52 H Wang (1472_CR49) 2009; 71 1472_CR22 PJ Bickel (1472_CR3) 2009; 37 D Li (1472_CR31) 2016; 26 WS Chan (1472_CR10) 2004; 8 KS Chan (1472_CR8) 1990; 52 P Zhao (1472_CR56) 2006; 7 J Huang (1472_CR27) 2012; 27 D Li (1472_CR29) 2012; 167 L Boysen (1472_CR4) 2009; 37 RS Tsay (1472_CR45) 1989; 84 KS Chan (1472_CR9) 1985; 22 MR Osborne (1472_CR36) 2000; 9 CY Yau (1472_CR53) 2017; 27 1472_CR16 1472_CR15 RS Tsay (1472_CR46) 1998; 93 HF Lopes (1472_CR32) 2006; 27 RS Tsay (1472_CR47) 2018 1472_CR52 1472_CR51 H Tong (1472_CR42) 1978 L Qian (1472_CR38) 1998; 75 J Qian (1472_CR39) 2016; 32 H Tong (1472_CR44) 1980; 42 JD Cryer (1472_CR19) 2008 D Eddelbuettel (1472_CR20) 2011; 40 J Pan (1472_CR37) 2017; 32 MG Bulmer (1472_CR6) 1974; 43 BE Hansen (1472_CR25) 2000; 68 Z Harchaoui (1472_CR26) 2010; 105 J Fan (1472_CR21) 2003 1472_CR40 CY Yau (1472_CR54) 2015; 110 D Jiang (1472_CR28) 2014; 24 H Tong (1472_CR43) 1990 NH Chan (1472_CR12) 2015; 189 M Niglio (1472_CR35) 2015; 44 NH Chan (1472_CR13) 2017; 35 J Geweke (1472_CR23) 1993; 14 FR Bach (1472_CR1) 2008; 9 G Ciuperca (1472_CR17) 2011; 63 Y Nardi (1472_CR33) 2008; 2 |
| References_xml | – ident: CR22 – volume: 109 start-page: 590 issue: 506 year: 2014 end-page: 599 ident: CR11 article-title: Group LASSO for structural break time series publication-title: J Am Stat Assoc – year: 2005 ident: CR50 publication-title: Applied linear regression – volume: 16 start-page: 461 issue: 5 year: 1995 end-page: 481 ident: CR14 article-title: Threshold variable selection in open-loop threshold autoregressive models publication-title: J Time Ser Anal – year: 2008 ident: CR19 publication-title: Time series analysis. With applications in R – volume: 68 start-page: 575 issue: 3 year: 2000 end-page: 603 ident: CR25 article-title: Sample splitting and threshold estimation publication-title: Econometrica – ident: CR16 – volume: 27 start-page: 481 issue: 4 year: 2012 end-page: 499 ident: CR27 article-title: A selective review of group selection in high-dimensional models publication-title: Stat Sci – volume: 14 start-page: 441 issue: 5 year: 1993 end-page: 454 ident: CR23 article-title: Bayesian threshold autoregressive models for nonlinear time series publication-title: J Time Ser Anal – ident: CR51 – volume: 43 start-page: 701 issue: 3 year: 1974 end-page: 718 ident: CR6 article-title: A statistical analysis of the 10-year cycle in Canada publication-title: J Anim Ecol – volume: 37 start-page: 157 issue: 1 year: 2009 end-page: 183 ident: CR4 article-title: Consistencies and rates of convergence of jump-penalized least squares estimators publication-title: Ann Stat – volume: 71 start-page: 671 issue: 3 year: 2009 end-page: 683 ident: CR49 article-title: Shrinkage tuning parameter selection with a diverging number of parameters publication-title: J R Stat Soc Ser B (Stat Methodol) – volume: 18 start-page: 1 issue: 1 year: 2003 end-page: 22 ident: CR2 article-title: Computation and analysis of multiple structural change models publication-title: J Appl Econom – volume: 44 start-page: 2911 issue: 14 year: 2015 end-page: 2923 ident: CR35 article-title: Threshold vector ARMA models publication-title: Commun Stat Theory Methods – volume: 9 start-page: 1179 year: 2008 end-page: 1225 ident: CR1 article-title: Consistency of the group LASSO and multiple kernel learning publication-title: J Mach Learn Res – year: 2003 ident: CR21 publication-title: Nonlinear time series: nonparametric and parametric methods – volume: 42 start-page: 245 issue: 3 year: 1980 end-page: 292 ident: CR44 article-title: Threshold autoregression, limit cycles and cyclical data publication-title: J R Stat Soc Ser B (Stat Methodol) – volume: 105 start-page: 1480 issue: 492 year: 2010 end-page: 1493 ident: CR26 article-title: Multiple change-point estimation with a total variation penalty publication-title: J Am Stat Assoc – volume: 35 start-page: 334 issue: 2 year: 2017 end-page: 345 ident: CR13 article-title: Threshold estimation via group orthogonal greedy algorithm publication-title: J Bus Econ Stat – ident: CR15 – volume: 27 start-page: 99 issue: 1 year: 2006 end-page: 117 ident: CR32 article-title: Bayesian model uncertainty in smooth transition autoregressions publication-title: J Time Ser Anal – volume: 27 start-page: 2219 year: 2003 end-page: 2242 ident: CR18 article-title: Numerical issues in threshold autoregressive modeling of time series publication-title: J Econ Dyn Control – volume: 75 start-page: 21 year: 1998 end-page: 46 ident: CR38 article-title: On maximum likelihood estimators for a threshold autoregression publication-title: J Stat Plan Inference – ident: CR5 – volume: 52 start-page: 5277 issue: 12 year: 2008 end-page: 5286 ident: CR48 article-title: A note on adaptive group LASSO publication-title: Comput Stat Data Anal – volume: 22 start-page: 267 issue: 2 year: 1985 end-page: 279 ident: CR9 article-title: A multiple-threshold AR(1) model publication-title: J Appl Probab – volume: 52 start-page: 469 issue: 3 year: 1990 end-page: 476 ident: CR8 article-title: On likelihood ratio tests for threshold autoregression publication-title: J R Stat Soc Ser B (Stat Methodol) – volume: 68 start-page: 49 issue: 1 year: 2006 end-page: 67 ident: CR55 article-title: Model selection and estimation in regression with grouped variables publication-title: J R Stat Soc Ser B (Stat Methodol) – volume: 110 start-page: 1175 issue: 511 year: 2015 end-page: 1186 ident: CR54 article-title: Estimation of multiple-regime threshold autoregressive models with structural breaks publication-title: J Am Stat Assoc – year: 1990 ident: CR43 publication-title: Non-linear time series. A dynamical system approach – volume: 26 start-page: 1543 issue: 4 year: 2016 end-page: 1554 ident: CR31 article-title: Nested sub-sample search algorithm for estimation of threshold models publication-title: Stat Sin – ident: CR40 – volume: 40 start-page: 1 issue: 8 year: 2011 end-page: 18 ident: CR20 article-title: Rcpp: seamless R and C++ integration publication-title: J Stat Softw – volume: 32 start-page: 1376 year: 2016 end-page: 1433 ident: CR39 article-title: Shrinkage estimation of regression models with multiple structural changes publication-title: Econom Theory – volume: 8 start-page: 37 issue: 4 year: 2004 end-page: 61 ident: CR10 article-title: Some nonlinear threshold autoregressive time series models for actuarial use publication-title: N Am Actuar J – year: 2018 ident: CR47 publication-title: Nonlinear time series analysis – start-page: 101 year: 1978 end-page: 141 ident: CR42 article-title: On a threshold model publication-title: Pattern recognition and signal processing – volume: 37 start-page: 1705 issue: 4 year: 2009 end-page: 1732 ident: CR3 article-title: Simultaneous analysis of LASSO and Dantzig selector publication-title: Ann Stat – volume: 167 start-page: 240 issue: 1 year: 2012 end-page: 253 ident: CR29 article-title: On the least squares estimation of multiple-regime threshold autoregressive models publication-title: J Econom – volume: 9 start-page: 319 issue: 2 year: 2000 end-page: 337 ident: CR36 article-title: On the LASSO and its dual publication-title: J Comput Graph Stat – volume: 24 start-page: 871 issue: 5 year: 2014 end-page: 883 ident: CR28 article-title: Majorization minimization by coordinate descent for concave penalized generalized linear models publication-title: Stat Comput – ident: CR52 – volume: 21 start-page: 520 issue: 1 year: 1993 end-page: 533 ident: CR7 article-title: Consistency and limiting distribution of the least squares estimator of a threshold autoregressive model publication-title: Ann Stat – volume: 7 start-page: 1456 issue: 1 year: 2013 end-page: 1490 ident: CR41 article-title: The LASSO problem and uniqueness publication-title: Electron J Stat – ident: CR34 – start-page: 15699 year: 2001 end-page: 15704 ident: CR30 article-title: Time series: advanced methods publication-title: International encyclopedia of the social & behavioral sciences – volume: 2 start-page: 605 year: 2008 end-page: 633 ident: CR33 article-title: On the asymptotic properties of the group LASSO estimator for linear models publication-title: Electron J Stat – volume: 110 start-page: 319 issue: 2 year: 2002 end-page: 352 ident: CR24 article-title: Estimation and model selection based inference in single and multiple threshold models publication-title: J Econom – volume: 32 start-page: 219 issue: 1 year: 2017 end-page: 237 ident: CR37 article-title: Bayesian analysis of multiple thresholds autoregressive model publication-title: Comput Stat – volume: 27 start-page: 1041 year: 2017 end-page: 1048 ident: CR53 article-title: LARS-type algorithm for group LASSO publication-title: Stat Comput – volume: 84 start-page: 231 issue: 405 year: 1989 end-page: 240 ident: CR45 article-title: Testing and modeling threshold autoregressive processes publication-title: J Am Stat Assoc – volume: 7 start-page: 2541 year: 2006 end-page: 2563 ident: CR56 article-title: On model selection consistency of LASSO publication-title: J Mach Learn Res – volume: 189 start-page: 285 issue: 2 year: 2015 end-page: 296 ident: CR12 article-title: LASSO estimation of threshold autoregressive models publication-title: J Econom – volume: 93 start-page: 1188 issue: 443 year: 1998 end-page: 1202 ident: CR46 article-title: Testing and modeling multivariate threshold models publication-title: J Am Stat Assoc – volume: 63 start-page: 717 issue: 4 year: 2011 end-page: 743 ident: CR17 article-title: Estimating nonlinear regression with and without change-points by the LAD method publication-title: Ann Inst Stat Math – volume: 109 start-page: 590 issue: 506 year: 2014 ident: 1472_CR11 publication-title: J Am Stat Assoc doi: 10.1080/01621459.2013.866566 – volume: 189 start-page: 285 issue: 2 year: 2015 ident: 1472_CR12 publication-title: J Econom doi: 10.1016/j.jeconom.2015.03.023 – ident: 1472_CR40 doi: 10.1145/1390156.1390263 – volume-title: Nonlinear time series analysis year: 2018 ident: 1472_CR47 – ident: 1472_CR52 doi: 10.1007/s11222-014-9498-5 – ident: 1472_CR22 – volume: 110 start-page: 319 issue: 2 year: 2002 ident: 1472_CR24 publication-title: J Econom doi: 10.1016/S0304-4076(02)00098-2 – volume: 71 start-page: 671 issue: 3 year: 2009 ident: 1472_CR49 publication-title: J R Stat Soc Ser B (Stat Methodol) doi: 10.1111/j.1467-9868.2008.00693.x – volume: 8 start-page: 37 issue: 4 year: 2004 ident: 1472_CR10 publication-title: N Am Actuar J doi: 10.1080/10920277.2004.10596170 – ident: 1472_CR34 – ident: 1472_CR16 doi: 10.4310/SII.2011.v4.n2.a12 – volume: 37 start-page: 157 issue: 1 year: 2009 ident: 1472_CR4 publication-title: Ann Stat doi: 10.1214/07-AOS558 – volume: 68 start-page: 575 issue: 3 year: 2000 ident: 1472_CR25 publication-title: Econometrica doi: 10.1111/1468-0262.00124 – volume: 43 start-page: 701 issue: 3 year: 1974 ident: 1472_CR6 publication-title: J Anim Ecol doi: 10.2307/3532 – volume: 9 start-page: 319 issue: 2 year: 2000 ident: 1472_CR36 publication-title: J Comput Graph Stat doi: 10.1080/10618600.2000.10474883 – volume-title: Non-linear time series. A dynamical system approach year: 1990 ident: 1472_CR43 doi: 10.1093/oso/9780198522249.001.0001 – volume: 167 start-page: 240 issue: 1 year: 2012 ident: 1472_CR29 publication-title: J Econom doi: 10.1016/j.jeconom.2011.11.006 – volume: 110 start-page: 1175 issue: 511 year: 2015 ident: 1472_CR54 publication-title: J Am Stat Assoc doi: 10.1080/01621459.2014.954706 – volume: 27 start-page: 481 issue: 4 year: 2012 ident: 1472_CR27 publication-title: Stat Sci doi: 10.1214/12-STS392 – volume: 24 start-page: 871 issue: 5 year: 2014 ident: 1472_CR28 publication-title: Stat Comput doi: 10.1007/s11222-013-9407-3 – start-page: 101 volume-title: Pattern recognition and signal processing year: 1978 ident: 1472_CR42 – volume: 7 start-page: 1456 issue: 1 year: 2013 ident: 1472_CR41 publication-title: Electron J Stat – volume-title: Applied linear regression year: 2005 ident: 1472_CR50 doi: 10.1002/0471704091 – volume: 27 start-page: 1041 year: 2017 ident: 1472_CR53 publication-title: Stat Comput doi: 10.1007/s11222-016-9669-7 – start-page: 15699 volume-title: International encyclopedia of the social & behavioral sciences year: 2001 ident: 1472_CR30 – volume: 84 start-page: 231 issue: 405 year: 1989 ident: 1472_CR45 publication-title: J Am Stat Assoc doi: 10.1080/01621459.1989.10478760 – volume: 93 start-page: 1188 issue: 443 year: 1998 ident: 1472_CR46 publication-title: J Am Stat Assoc doi: 10.1080/01621459.1998.10473779 – volume: 52 start-page: 469 issue: 3 year: 1990 ident: 1472_CR8 publication-title: J R Stat Soc Ser B (Stat Methodol) doi: 10.1111/j.2517-6161.1990.tb01800.x – volume: 32 start-page: 219 issue: 1 year: 2017 ident: 1472_CR37 publication-title: Comput Stat doi: 10.1007/s00180-016-0673-3 – volume-title: Nonlinear time series: nonparametric and parametric methods year: 2003 ident: 1472_CR21 doi: 10.1007/978-0-387-69395-8 – volume: 40 start-page: 1 issue: 8 year: 2011 ident: 1472_CR20 publication-title: J Stat Softw doi: 10.18637/jss.v040.i08 – volume: 63 start-page: 717 issue: 4 year: 2011 ident: 1472_CR17 publication-title: Ann Inst Stat Math doi: 10.1007/s10463-009-0256-y – volume: 9 start-page: 1179 year: 2008 ident: 1472_CR1 publication-title: J Mach Learn Res – volume: 22 start-page: 267 issue: 2 year: 1985 ident: 1472_CR9 publication-title: J Appl Probab doi: 10.2307/3213771 – volume: 14 start-page: 441 issue: 5 year: 1993 ident: 1472_CR23 publication-title: J Time Ser Anal doi: 10.1111/j.1467-9892.1993.tb00156.x – ident: 1472_CR15 doi: 10.1007/s00180-010-0198-0 – ident: 1472_CR51 doi: 10.1080/00949655.2012.695374 – volume: 27 start-page: 99 issue: 1 year: 2006 ident: 1472_CR32 publication-title: J Time Ser Anal doi: 10.1111/j.1467-9892.2005.00455.x – volume: 68 start-page: 49 issue: 1 year: 2006 ident: 1472_CR55 publication-title: J R Stat Soc Ser B (Stat Methodol) doi: 10.1111/j.1467-9868.2005.00532.x – volume: 44 start-page: 2911 issue: 14 year: 2015 ident: 1472_CR35 publication-title: Commun Stat Theory Methods doi: 10.1080/03610926.2013.814785 – volume: 105 start-page: 1480 issue: 492 year: 2010 ident: 1472_CR26 publication-title: J Am Stat Assoc doi: 10.1198/jasa.2010.tm09181 – volume: 37 start-page: 1705 issue: 4 year: 2009 ident: 1472_CR3 publication-title: Ann Stat doi: 10.1214/08-AOS620 – volume: 42 start-page: 245 issue: 3 year: 1980 ident: 1472_CR44 publication-title: J R Stat Soc Ser B (Stat Methodol) doi: 10.1111/j.2517-6161.1980.tb01126.x – volume: 16 start-page: 461 issue: 5 year: 1995 ident: 1472_CR14 publication-title: J Time Ser Anal doi: 10.1111/j.1467-9892.1995.tb00247.x – ident: 1472_CR5 – volume-title: Time series analysis. With applications in R year: 2008 ident: 1472_CR19 – volume: 27 start-page: 2219 year: 2003 ident: 1472_CR18 publication-title: J Econ Dyn Control doi: 10.1016/S0165-1889(02)00123-9 – volume: 32 start-page: 1376 year: 2016 ident: 1472_CR39 publication-title: Econom Theory doi: 10.1017/S0266466615000237 – volume: 7 start-page: 2541 year: 2006 ident: 1472_CR56 publication-title: J Mach Learn Res – volume: 52 start-page: 5277 issue: 12 year: 2008 ident: 1472_CR48 publication-title: Comput Stat Data Anal doi: 10.1016/j.csda.2008.05.006 – volume: 18 start-page: 1 issue: 1 year: 2003 ident: 1472_CR2 publication-title: J Appl Econom doi: 10.1002/jae.659 – volume: 21 start-page: 520 issue: 1 year: 1993 ident: 1472_CR7 publication-title: Ann Stat – volume: 75 start-page: 21 year: 1998 ident: 1472_CR38 publication-title: J Stat Plan Inference doi: 10.1016/S0378-3758(98)00113-X – volume: 35 start-page: 334 issue: 2 year: 2017 ident: 1472_CR13 publication-title: J Bus Econ Stat doi: 10.1080/07350015.2015.1064820 – volume: 2 start-page: 605 year: 2008 ident: 1472_CR33 publication-title: Electron J Stat doi: 10.1214/08-EJS200 – volume: 26 start-page: 1543 issue: 4 year: 2016 ident: 1472_CR31 publication-title: Stat Sin |
| SSID | ssj0018880 |
| Score | 2.3169794 |
| Snippet | Group LASSO (gLASSO) estimator has been recently proposed to estimate thresholds for the
self-exciting
threshold autoregressive model, and a group least angle... Group LASSO (gLASSO) estimator has been recently proposed to estimate thresholds for the self-exciting threshold autoregressive model, and a group least angle... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 2973 |
| SubjectTerms | Algorithms Autoregressive models Economic Theory/Quantitative Economics/Mathematical Methods Economics Finance Group theory Insurance Management Mathematics and Statistics Operations Research/Decision Theory Optimization Performance enhancement Probability Theory and Stochastic Processes Regular Article Statistics Statistics for Business Thresholds |
| SummonAdditionalLinks | – databaseName: SpringerLINK Contemporary 1997-Present dbid: RSV link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwEB1BQaIXlgKibPKBG1jKYmc5VoiKA6oQm3qLvAUiSoqagPh8Jk7SCgQHOMeyLY_t9ybjeQNwoh0To2OV0iBgmjLP0VQaX9NA80C7biyVlLbYRDgaReNxfN0khRXta_c2JGlv6nmym5VOoYgx6P6yEHnhMqwg3EVVwYab24d57ACHtn9WkJlQji5Gkyrzcx9f4WjBMb-FRS3aDDf-N89NWG_YJRnU22ELlkzeg7U2-bjoQbcil7U28zYUA3vZ0cKUpEIzTSRC2zNRU_RIsxxZKNG12hMRk8fpLCufXkiWE5sJQq4qRUiCnJcUZpJS86Gy6gk1KXF3FFVQi4hKH8FYhx6HIbbozg7cDy_uzi9pU4SBKkS3kuo0knhmOTOBZyQPpKfwzIpI8lRy5hqHSeMox8dGqRIxU8hxIu2EwkQxkj3P34VOPs3NHpAwdoRrAiaRVTEkjlJEymA32J5z4aZ9OG1tkbzWWhvJXFXZrmqCq5rYVU3CPhy25kqac1ckfuXqc_S0_T6cteZZfP69t_2_NT-Arofspn63ewidcvZmjmBVvaMJZ8d2P34CebPbEA priority: 102 providerName: Springer Nature |
| Title | Active-set based block coordinate descent algorithm in group LASSO for self-exciting threshold autoregressive model |
| URI | https://link.springer.com/article/10.1007/s00362-023-01472-7 https://www.proquest.com/docview/3074252743 |
| Volume | 65 |
| WOSCitedRecordID | wos001118698800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1613-9798 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0018880 issn: 0932-5026 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB2xHbiwI8pS-cANLLLYWU4IKioOtKpa1lMUL4GKkgIJiM9n7KRUIMGFi6Uolm15bM97nvEMwL5ydIzEKqNBwBRlnqOo0L6igeKBct1YSCFssomw241ub-NefeFW1G6VkzPRHtRqLM0d-ZFvSBxHDuUfP79QkzXKWFfrFBqzMI_IxjUuXR2v92VFwEHYOxbEKJQj2agfzdinczYQC0WNhWSahYgyvyumKdr8YSC1eqe9_N8Rr8BSjTjJSbVEVmFG52uwaEBmFaN5HYoTe-jRQpfEaDVFBKq4RyLHyEyHOaJRoqqoTyQd3WMX5cMTGebEvgghFyYyJEHsSwo9yqj-kEPjSk1KXCWFMW6R1MRJ0JbYYzfEJt_ZgKv22WXrnNbJGKhELVdSlUUC9y5nOvC04IHwJO7dNBI8E5y52mFCO9LxsVIm05hJxDqRcsJURzGCPs_fhLl8nOstIGHspK4OmEB0xRBAijSSGpvB-pynbtaAg4kkkucq5kbyFV3Zyi1BuSVWbknYgN3J9Cf1_iuS6dw34HAiwOnv31vb_ru1HVj0ENVU_rq7MFe-vuk9WJDvKLLXJsyGN3dYRi23CfOnZ91eH786Tqtp16UpwwGW_cH1J6yN574 |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB4hWgkuQHmoC7T1AU5gkWTtPA6oQpTVIpbVHhaJW4jtCV0BWSChLX-K38jY2bCiEr1x6DmWE2c-z3zjxzcAW8bDhBKrnIehMFwEnuEK24aHRobG9xOllXLFJqJ-Pz4_TwYz8NTchbHHKhuf6By1GWu7Rr7XtkmcpByq_f32jtuqUXZ3tSmhUcPiBB9_U8pW7h__IPtuB0HnaHjY5ZOqAlyTu664yWNFIJQCwwCVDFWgCYRZrGSupPDREwo97bWpUa6zRGgK2rHxogzjhNiLFTogl_9BWGUxe1QwGLzsWtCg3ZoOcSIuKbmZXNJxV_Wc8AunCEnJu4iI1b4OhFN2-9eGrItzncX_7Q8twcKEUbODegp8ghkslmHekuhag3oFygPn1HmJFbNR2zBFIfyK6TF95Kggts1MrWrFsutLGlL184aNCuZuvLCeVb5kxO1Zidc5xz96ZI-Ks4pmQWk371hmdSDQLVzQa5grLrQKZ-8y6DWYLcYFfgYWJV7mYygUsUdBBFllsUbqhtpLmfl5C3Yay6e3taZI-qIe7XCSEk5Sh5M0asFmY-504l_KdGrrFuw2gJk-fru39X_39g3musPTXto77p9swHxADK4-m7wJs9X9A36Bj_oXme_-q0M-g4v3BtIzQms-DA |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB5VBaFeylssFPABTmA1ydp5HBCqWlZUrVY9gNRbiO1JWVGybRNef41fx2cn6QokuPXAOZYTZz7PfGPPg-iZi7iAY1XLNFVOqiRy0vDUydTp1MVxYawxodlENp_nx8fF0Rr9HHNhfFjlqBODonZL68_It6feidPwoabb9RAWcbQ3e312Ln0HKX_TOrbT6CFywD--wX1rX-3vQdbPk2T25t3uWzl0GJAWqruTrs4NAKkVpwkbnZrEApBVbnRttIo5UoYjG00xqLZVoSwMeO6irOK8AJPxRQ-g_q9lCmbThw1Gu5c3GPgB4XwH_EhqODpDwk5I2wtFYCSsJRx5lYHh_m4UV0z3j8vZYPNmN__nv3WLNgemLXb6rXGb1ri5QxueXPe1qe9SuxOUvWy5E96aO2Fg2j8Ju8RHLhqwcOH6aleiOj3BkrqPn8WiESETRhz6ipgCnF-0fFpL_m4XPoRcdNgdrb_UE5WvD8HhQAOvEaHp0D16fyWLvk_rzbLhBySyIqpiTpUBq1QgzqbKLWMajNe6iusJvRhRUJ71tUbKy6rSATMlMFMGzJTZhLZG0ZeD3mnLldwn9HIEz-rx32d7-O_ZntIN4Kc83J8fPKKNBMSuD1neovXu4gs_puv2K6R38SRsAkEfrhpHvwAbLkau |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Active-set+based+block+coordinate+descent+algorithm+in+group+LASSO+for+self-exciting+threshold+autoregressive+model&rft.jtitle=Statistical+papers+%28Berlin%2C+Germany%29&rft.au=Nasir%2C+Muhammad+Jaffri+Mohd&rft.au=Khan%2C+Ramzan+Nazim&rft.au=Nair%2C+Gopalan&rft.au=Nur%2C+Darfiana&rft.date=2024-07-01&rft.pub=Springer+Nature+B.V&rft.issn=0932-5026&rft.eissn=1613-9798&rft.volume=65&rft.issue=5&rft.spage=2973&rft.epage=3006&rft_id=info:doi/10.1007%2Fs00362-023-01472-7&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0932-5026&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0932-5026&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0932-5026&client=summon |