A reference vector based multiobjective evolutionary algorithm with Q-learning for operator adaptation

Maintaining a balance between convergence and diversity is a challenge for multiobjective evolutionary optimization. As crossover operators can affect the offspring distribution, an adaptive operator selection and reference vector based evolutionary algorithm (OVEA) for multiobjective optimization i...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Swarm and evolutionary computation Ročník 76; s. 101225
Hlavní autori: Jiao, Keming, Chen, Jie, Xin, Bin, Li, Li
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier B.V 01.02.2023
Predmet:
ISSN:2210-6502
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Maintaining a balance between convergence and diversity is a challenge for multiobjective evolutionary optimization. As crossover operators can affect the offspring distribution, an adaptive operator selection and reference vector based evolutionary algorithm (OVEA) for multiobjective optimization is proposed, where adaptive operator selection (AOS) adopts Q-learning to choose crossover operators, and the reference vector assists individual selection. To make the objective vectors as close to the true Pareto Front (PF) as possible and distributed uniformly along with PF, the different crossover operators and the association between reference vectors and individuals are used to drive the population evolution. The selection range of each reference vector is controlled by the associated population subset, from which an elite individual is selected. Observing the performance of offspring, the appropriate crossover operator is picked up by Q-learning. Finally, the proposed algorithm is evaluated on the benchmark problems with different objective number ranging from 2 to 10 and compared against the state-of-the-art algorithms. The experimental results show that OVEA has remarked advantages over the compared algorithms.
AbstractList Maintaining a balance between convergence and diversity is a challenge for multiobjective evolutionary optimization. As crossover operators can affect the offspring distribution, an adaptive operator selection and reference vector based evolutionary algorithm (OVEA) for multiobjective optimization is proposed, where adaptive operator selection (AOS) adopts Q-learning to choose crossover operators, and the reference vector assists individual selection. To make the objective vectors as close to the true Pareto Front (PF) as possible and distributed uniformly along with PF, the different crossover operators and the association between reference vectors and individuals are used to drive the population evolution. The selection range of each reference vector is controlled by the associated population subset, from which an elite individual is selected. Observing the performance of offspring, the appropriate crossover operator is picked up by Q-learning. Finally, the proposed algorithm is evaluated on the benchmark problems with different objective number ranging from 2 to 10 and compared against the state-of-the-art algorithms. The experimental results show that OVEA has remarked advantages over the compared algorithms.
ArticleNumber 101225
Author Jiao, Keming
Xin, Bin
Li, Li
Chen, Jie
Author_xml – sequence: 1
  givenname: Keming
  orcidid: 0000-0003-0635-9578
  surname: Jiao
  fullname: Jiao, Keming
  organization: School of Electronics and Information Engineering, Tongji University, Shanghai 201804, China
– sequence: 2
  givenname: Jie
  surname: Chen
  fullname: Chen, Jie
  organization: School of Electronics and Information Engineering, Tongji University, Shanghai 201804, China
– sequence: 3
  givenname: Bin
  surname: Xin
  fullname: Xin, Bin
  email: brucebin@bit.edu.cn
  organization: School of Automation, Beijing Institute of Technology, Beijing 100081, China
– sequence: 4
  givenname: Li
  surname: Li
  fullname: Li, Li
  organization: School of Electronics and Information Engineering, Tongji University, Shanghai 201804, China
BookMark eNqFkMtOwzAQRb0oEqX0C9j4B1LscZwmCxZVxUuqhJBgbTl-FEdpXNlpKv4eh7BiAV6MpSudq5lzhWad7wxCN5SsKKHFbbOKZzP4FRCAMQHgMzQHoCQrOIFLtIyxIekVBDiv5shucDDWBNMpgwejeh9wLaPR-HBqe-frJmVuMDi1tqcUdDJ8YtnufXD9xwGf08SvWWtk6Fy3xzbx_miCHIuklsdejtA1urCyjWb58y_Q-8P92_Yp2708Pm83u0wxwvpMa6mgNpxrKNdKMsXKWitQUNY0t_m6YBYYLawsc16BriWsLeSVojmzmtacLRCbelXwMabLxDG4Q1pZUCJGQ6IR34bEaEhMhhJV_aKUm_bug3TtP-zdxJp01uBMEFG50aZ2IakT2rs_-S8sIIoX
CitedBy_id crossref_primary_10_1016_j_matcom_2025_01_007
crossref_primary_10_1007_s11227_024_06258_8
crossref_primary_10_1038_s41598_024_52083_7
crossref_primary_10_1007_s10489_024_05906_z
crossref_primary_10_26599_TST_2025_9010012
crossref_primary_10_1016_j_aej_2025_09_015
crossref_primary_10_1155_int_5521043
crossref_primary_10_1016_j_eswa_2024_125607
crossref_primary_10_1080_00207543_2024_2357740
crossref_primary_10_1109_TEVC_2023_3250350
crossref_primary_10_1109_TITS_2025_3538573
crossref_primary_10_1007_s10586_024_04381_y
crossref_primary_10_3934_era_2025248
crossref_primary_10_1016_j_asoc_2025_112764
crossref_primary_10_1016_j_apenergy_2023_121332
crossref_primary_10_1007_s11227_024_06547_2
crossref_primary_10_1016_j_ins_2024_121397
crossref_primary_10_1016_j_swevo_2023_101397
crossref_primary_10_1109_TAI_2025_3545792
Cites_doi 10.1016/j.ins.2020.08.101
10.1109/TEVC.2018.2866854
10.1109/TEVC.2018.2848921
10.1109/TCYB.2018.2856208
10.1109/TEVC.2016.2549267
10.1109/4235.996017
10.1109/TSMC.2018.2818175
10.1109/TEVC.2012.2227145
10.1109/TCYB.2020.2977661
10.1109/TEVC.2015.2420112
10.1016/j.asoc.2018.10.028
10.3390/sym9100203
10.1137/S1052623496307510
10.1109/TEVC.2007.892759
10.1016/j.knosys.2015.12.022
10.1109/TEVC.2012.2204264
10.1016/j.ins.2017.10.037
10.3390/en9090678
10.1016/j.swevo.2019.06.009
10.1109/TEVC.2013.2281535
10.1109/TEVC.2020.3013290
10.1109/TEVC.2018.2865590
10.1016/j.swevo.2020.100669
10.1016/j.asoc.2022.108532
10.1109/TEVC.2017.2671462
10.1109/TEVC.2005.861417
10.1109/MCI.2019.2919398
10.1109/TEVC.2018.2882166
10.1109/TEVC.2016.2519378
10.1109/TEVC.2018.2836912
10.1145/3376916
10.1023/A:1008202821328
10.1016/j.knosys.2017.07.024
10.1109/TEVC.2013.2258025
10.1109/TCYB.2016.2638902
10.1109/TEVC.2019.2899030
10.1007/s10586-017-0793-8
10.1109/TEVC.2017.2749619
10.1007/s13748-018-0155-7
10.1162/EVCO_a_00109
10.1109/TEVC.2016.2587808
10.1016/j.ins.2021.06.054
ContentType Journal Article
Copyright 2022
Copyright_xml – notice: 2022
DBID AAYXX
CITATION
DOI 10.1016/j.swevo.2022.101225
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
ExternalDocumentID 10_1016_j_swevo_2022_101225
S2210650222001912
GroupedDBID --K
--M
.~1
0R~
1~.
1~5
4.4
457
4G.
5VS
7-5
8P~
AAAKF
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AATLK
AAXUO
AAYFN
ABAOU
ABBOA
ABGRD
ABMAC
ABUCO
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADMUD
ADQTV
ADTZH
AEBSH
AECPX
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
ARUGR
AXJTR
BJAXD
BKOJK
BLXMC
CBWCG
EBS
EFJIC
EFLBG
EJD
FDB
FEDTE
FIRID
FNPLU
FYGXN
GBLVA
GBOLZ
HAMUX
HVGLF
HZ~
J1W
JJJVA
KOM
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
P-8
P-9
PC.
Q38
RIG
ROL
SDF
SES
SPC
SPCBC
SSA
SSB
SSD
SST
SSV
SSW
SSZ
T5K
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c303t-ddac2be55d287ca3c38bdc2c28b14f4763f2316fa84592dba27f249c143fd1b53
ISICitedReferencesCount 20
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000917443400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2210-6502
IngestDate Wed Nov 05 20:43:33 EST 2025
Tue Nov 18 22:30:36 EST 2025
Fri Feb 23 02:39:54 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Q-learning
Adaptive operator selection
Multiobjective evolutionary algorithm
Reference vector
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c303t-ddac2be55d287ca3c38bdc2c28b14f4763f2316fa84592dba27f249c143fd1b53
ORCID 0000-0003-0635-9578
ParticipantIDs crossref_primary_10_1016_j_swevo_2022_101225
crossref_citationtrail_10_1016_j_swevo_2022_101225
elsevier_sciencedirect_doi_10_1016_j_swevo_2022_101225
PublicationCentury 2000
PublicationDate February 2023
2023-02-00
PublicationDateYYYYMMDD 2023-02-01
PublicationDate_xml – month: 02
  year: 2023
  text: February 2023
PublicationDecade 2020
PublicationTitle Swarm and evolutionary computation
PublicationYear 2023
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Deb, Pratap, Agarwal, Meyarivan (bib0006) 2002; 6
Das, Dennis (bib0046) 1998; 8
Zou, Yen, Zhao (bib0029) 2021; 575
(ITEEE), DEStech Publications, 2019, pp. 67-76T. Truong Thanh, R. Wang, Li. Jia Hua, Multi-indicators multi-objective evolutionary algorithm with q-learning for real-world network optimization, DEStech Trans. Comput. Sci. Eng. (2019) (iteee).
Wu, Wang, Zhang (bib0033) 2019
Mirjalili (bib0039) 2016; 96
Cheng, Jin, Olhofer, Sendhoff (bib0049) 2016; 20
Pamulapati, Mallipeddi, Suganthan (bib0016) 2018; 23
Santiago, Huacuja, Dorronsoro, Pecero, Santillan, Barbosa, Monterrubio (bib0048) 2014
Ke Shang, Hisao Ishibuchi, Linjun He, and Lie Meng Pang. A survey on the hypervolume indicator in evolutionary multi-objective optimization.
Poap, Wozniak (bib0036) 2021; 166
Habib, Singh, Chugh, Ray, Miettinen (bib0050) 2019; 23
Kang, Song, Zhou, Li (bib0021) 2018; 49
Sun, Xue, Zhang, Yen (bib0001) 2018; 23
Chen, Li, Xin (bib0020) 2017; 21
Li, Zhang, Wang (bib0032) 2020; 51
Ning, Guo, Guo, Li, Yan (bib0027) 2018; 7
Deb, Joshi, Anand (bib0041) 2002; 1
Li, Chen, Li, Chen (bib0014) 2020; 55
Deb, Jain (bib0055) 2013; 18
Qiao, Zhou, Yang, Yang (bib0025) 2019; 74
Liu, Gong, Sun, Jin (bib0057) 2017; 47
Watkins, Dayan (bib0045) 1992; 8
Qi, Ma, Liu, Jiao, Sun, Wu (bib0023) 2014; 22
Deb (bib0058) 2001
Ma, Cheng, Wang, Huang, Shen, He, Shi (bib0030) 2017; 133
Yang, Li, Liu, Zheng (bib0009) 2013; 17
He, Zhou, Chen, Zhang (bib0062) 2018; 23
Li, Tang, Li, Yao (bib0061) 2016; 20
Zapotecas-Martinez, Coello, Aguirre, Tanaka (bib0051) 2018; 23
Khan, Zhang (bib0024) 2010
Chen, Wang (bib0042) 2017; 20
Tian, Cheng, Zhang, Li, Jin (bib0060) 2019; 14
Tian, Cheng, Zhang, Su, Jin (bib0011) 2018; 23
Xiang, Zhou, Li, Chen (bib0056) 2016; 21
Deb, Agrawal (bib0040) 1995; 9
Deb (bib0005) 2014
Wang, Li, Zhang, Hu, Shen (bib0047) 2019; 49
Storn, Price (bib0044) 1997; 11
Xu, Zeng, Zeng, Yen (bib0002) 2018; 49
25(1): 1-20, 2020.
Tung Truong Thanh, Rui Wang, Jiahua Li, and Lianbo Ma. Multi-indicators multi-objective evolutionary algorithm with q-learning for real-world network optimization.
Zeng, Gao, Li (bib0037) 2017
Zou, Yen, Tang, Wang (bib0028) 2021; 546
Huband, Hingston, Barone, While (bib0053) 2006; 10
Deb, Thiele, Laumanns, Zitzler (bib0052) 2002; 1
Zhang, Li (bib0019) 2007; 11
Zhang, Wu, Zhang, Wang (bib0034) 2022
Kukkonen, Lampinen (bib0003) 2007
Trivedi, Srinivasan, Sanyal, Ghosh (bib0022) 2016; 21
Chand, Wagner (bib0004) 2015; 20
He, Yen, Zhang (bib0008) 2013; 18
Zitzler, Laumanns, Thiele (bib0007) 2001; 103
Warid, Hizam, Mariun, Abdul-Wahab (bib0038) 2016; 9
Tsutsui, Yamamura, Higuchi (bib0043) 1999; 1
Falcón-Cardona, Coello (bib0013) 2020; 53
Tian, Cheng, Zhang, Cheng, Jin (bib0018) 2017; 22
Menchaca-Mendez, Coello (bib0015) 2015
Liu, Lu, Cheng, Shi (bib0026) 2019
Zhang, Zheng, Cheng, Qiu, Jin (bib0059) 2018; 427
Cui, Meng, Qiao (bib0017) 2022; 119
Yuan, Xu, Wang, Yao (bib0010) 2015; 20
Poap, Wozniak (bib0035) 2017; 9
Wang, Purshouse, Fleming (bib0054) 2012; 17
Zapotecas-Martinez (10.1016/j.swevo.2022.101225_bib0051) 2018; 23
Huband (10.1016/j.swevo.2022.101225_bib0053) 2006; 10
Khan (10.1016/j.swevo.2022.101225_bib0024) 2010
Yang (10.1016/j.swevo.2022.101225_bib0009) 2013; 17
Zeng (10.1016/j.swevo.2022.101225_bib0037) 2017
Zhang (10.1016/j.swevo.2022.101225_bib0019) 2007; 11
Chen (10.1016/j.swevo.2022.101225_bib0020) 2017; 21
Deb (10.1016/j.swevo.2022.101225_bib0006) 2002; 6
Cui (10.1016/j.swevo.2022.101225_bib0017) 2022; 119
Deb (10.1016/j.swevo.2022.101225_bib0040) 1995; 9
Ma (10.1016/j.swevo.2022.101225_bib0030) 2017; 133
Li (10.1016/j.swevo.2022.101225_bib0014) 2020; 55
Zou (10.1016/j.swevo.2022.101225_bib0029) 2021; 575
Zhang (10.1016/j.swevo.2022.101225_bib0059) 2018; 427
Tian (10.1016/j.swevo.2022.101225_bib0060) 2019; 14
Zou (10.1016/j.swevo.2022.101225_bib0028) 2021; 546
Qiao (10.1016/j.swevo.2022.101225_bib0025) 2019; 74
Deb (10.1016/j.swevo.2022.101225_bib0052) 2002; 1
Sun (10.1016/j.swevo.2022.101225_bib0001) 2018; 23
Habib (10.1016/j.swevo.2022.101225_bib0050) 2019; 23
Li (10.1016/j.swevo.2022.101225_bib0032) 2020; 51
Deb (10.1016/j.swevo.2022.101225_bib0055) 2013; 18
Zitzler (10.1016/j.swevo.2022.101225_bib0007) 2001; 103
Yuan (10.1016/j.swevo.2022.101225_bib0010) 2015; 20
10.1016/j.swevo.2022.101225_bib0012
Kukkonen (10.1016/j.swevo.2022.101225_bib0003) 2007
Falcón-Cardona (10.1016/j.swevo.2022.101225_bib0013) 2020; 53
Storn (10.1016/j.swevo.2022.101225_bib0044) 1997; 11
Watkins (10.1016/j.swevo.2022.101225_bib0045) 1992; 8
Poap (10.1016/j.swevo.2022.101225_bib0036) 2021; 166
Chen (10.1016/j.swevo.2022.101225_bib0042) 2017; 20
Liu (10.1016/j.swevo.2022.101225_bib0057) 2017; 47
Tsutsui (10.1016/j.swevo.2022.101225_bib0043) 1999; 1
Xu (10.1016/j.swevo.2022.101225_bib0002) 2018; 49
Wang (10.1016/j.swevo.2022.101225_bib0054) 2012; 17
Warid (10.1016/j.swevo.2022.101225_bib0038) 2016; 9
Santiago (10.1016/j.swevo.2022.101225_bib0048) 2014
Cheng (10.1016/j.swevo.2022.101225_bib0049) 2016; 20
Deb (10.1016/j.swevo.2022.101225_bib0041) 2002; 1
He (10.1016/j.swevo.2022.101225_bib0062) 2018; 23
Trivedi (10.1016/j.swevo.2022.101225_bib0022) 2016; 21
Liu (10.1016/j.swevo.2022.101225_bib0026) 2019
Deb (10.1016/j.swevo.2022.101225_bib0005) 2014
Tian (10.1016/j.swevo.2022.101225_bib0018) 2017; 22
Ning (10.1016/j.swevo.2022.101225_bib0027) 2018; 7
Poap (10.1016/j.swevo.2022.101225_bib0035) 2017; 9
Tian (10.1016/j.swevo.2022.101225_bib0011) 2018; 23
Wu (10.1016/j.swevo.2022.101225_bib0033) 2019
Pamulapati (10.1016/j.swevo.2022.101225_bib0016) 2018; 23
Li (10.1016/j.swevo.2022.101225_bib0061) 2016; 20
Menchaca-Mendez (10.1016/j.swevo.2022.101225_bib0015) 2015
Deb (10.1016/j.swevo.2022.101225_bib0058) 2001
Mirjalili (10.1016/j.swevo.2022.101225_bib0039) 2016; 96
Kang (10.1016/j.swevo.2022.101225_bib0021) 2018; 49
He (10.1016/j.swevo.2022.101225_bib0008) 2013; 18
Wang (10.1016/j.swevo.2022.101225_bib0047) 2019; 49
Qi (10.1016/j.swevo.2022.101225_bib0023) 2014; 22
Chand (10.1016/j.swevo.2022.101225_bib0004) 2015; 20
10.1016/j.swevo.2022.101225_bib0031
Xiang (10.1016/j.swevo.2022.101225_bib0056) 2016; 21
Zhang (10.1016/j.swevo.2022.101225_bib0034) 2022
Das (10.1016/j.swevo.2022.101225_bib0046) 1998; 8
References_xml – start-page: 3983
  year: 2007
  end-page: 3990
  ident: bib0003
  article-title: Ranking-dominance and many-objective optimization
  publication-title: Proceedings of the IEEE Congress on Evolutionary Computation
– volume: 1
  start-page: 825
  year: 2002
  end-page: 830
  ident: bib0052
  article-title: Scalable multi-objective optimization test problems
  publication-title: Proceedings of the Congress on Evolutionary Computation
– volume: 18
  start-page: 269
  year: 2013
  end-page: 285
  ident: bib0008
  article-title: Fuzzy-based pareto optimality for many-objective evolutionary algorithms
  publication-title: IEEE Trans. Evol. Comput.
– volume: 20
  start-page: 16
  year: 2015
  end-page: 37
  ident: bib0010
  article-title: A new dominance relation-based evolutionary algorithm for many-objective optimization
  publication-title: IEEE Trans. Evol. Comput.
– volume: 8
  start-page: 631
  year: 1998
  end-page: 657
  ident: bib0046
  article-title: Normal-boundary intersection: A new method for generating the pareto surface in nonlinear multicriteria optimization problems
  publication-title: SIAM J. Optim.
– volume: 1
  start-page: 657
  year: 1999
  end-page: 664
  ident: bib0043
  article-title: Multi-parent recombination with simplex crossover in real coded genetic algorithms
  publication-title: Proceedings of the 1st Annual Conference on Genetic and Evolutionary Computation
– volume: 11
  start-page: 712
  year: 2007
  end-page: 731
  ident: bib0019
  article-title: MOEA/D: a multiobjective evolutionary algorithm based on decomposition
  publication-title: IEEE Trans. Evol. Comput.
– volume: 22
  start-page: 231
  year: 2014
  end-page: 264
  ident: bib0023
  article-title: MOEA/D with adaptive weight adjustment
  publication-title: Evol. Comput.
– volume: 11
  start-page: 341
  year: 1997
  end-page: 359
  ident: bib0044
  article-title: Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces
  publication-title: J. Glob. Optim.
– start-page: 403
  year: 2014
  end-page: 449
  ident: bib0005
  article-title: Multi-objective optimization
  publication-title: Search Methodologies
– volume: 17
  start-page: 474
  year: 2012
  end-page: 494
  ident: bib0054
  article-title: Preference-inspired coevolutionary algorithms for many-objective optimization
  publication-title: IEEE Trans. Evol. Comput.
– volume: 166
  year: 2021
  ident: bib0036
  article-title: Red fox optimization algorithm
  publication-title: Expert Syst. Appl.
– year: 2001
  ident: bib0058
  article-title: Multiobjective Optimization Using Evolutionary Algorithms
– reference: Ke Shang, Hisao Ishibuchi, Linjun He, and Lie Meng Pang. A survey on the hypervolume indicator in evolutionary multi-objective optimization.
– reference: Tung Truong Thanh, Rui Wang, Jiahua Li, and Lianbo Ma. Multi-indicators multi-objective evolutionary algorithm with q-learning for real-world network optimization.
– volume: 21
  start-page: 131
  year: 2016
  end-page: 152
  ident: bib0056
  article-title: A vector angle-based evolutionary algorithm for unconstrained many-objective optimization
  publication-title: IEEE Trans. Evol. Comput.
– volume: 14
  start-page: 61
  year: 2019
  end-page: 74
  ident: bib0060
  article-title: Diversity assessment of multi-objective evolutionary algorithms: Performance metric and benchmark problems
  publication-title: IEEE Comput. Intell. Mag.
– volume: 53
  start-page: 1
  year: 2020
  end-page: 35
  ident: bib0013
  article-title: Indicator-based multi-objective evolutionary algorithms: a comprehensive survey
  publication-title: ACM Comput. Surv. (CSUR)
– volume: 10
  start-page: 477
  year: 2006
  end-page: 506
  ident: bib0053
  article-title: A review of multiobjective test problems and a scalable test problem toolkit
  publication-title: IEEE Trans. Evol. Comput.
– volume: 49
  start-page: 3968
  year: 2018
  end-page: 3979
  ident: bib0002
  article-title: An evolutionary algorithm based on minkowski distance for many-objective optimization
  publication-title: IEEE Trans. Cybern.
– volume: 23
  start-page: 331
  year: 2018
  end-page: 345
  ident: bib0011
  article-title: A strengthened dominance relation considering convergence and diversity for evolutionary many-objective optimization
  publication-title: IEEE Trans. Evol. Comput.
– start-page: 1
  year: 2010
  end-page: 6
  ident: bib0024
  article-title: MOEA/D-DRA with two crossover operators
  publication-title: Proceedings of the UK Workshop On Computational Intelligence (UKCI)
– volume: 546
  start-page: 815
  year: 2021
  end-page: 834
  ident: bib0028
  article-title: A reinforcement learning approach for dynamic multi-objective optimization
  publication-title: Inf. Sci.
– start-page: 624
  year: 2017
  end-page: 639
  ident: bib0037
  article-title: Whale swarm algorithm for function optimization
  publication-title: Proceedings of the International Conference on Intelligent Computing
– volume: 9
  start-page: 203
  year: 2017
  ident: bib0035
  article-title: Polar bear optimization algorithm: Meta-heuristic with fast population movement and dynamic birth and death mechanism
  publication-title: Symmetry
– volume: 103
  year: 2001
  ident: bib0007
  article-title: SPEA2: improving the strength pareto evolutionary algorithm
  publication-title: TIK Rep.
– volume: 9
  start-page: 115
  year: 1995
  end-page: 148
  ident: bib0040
  article-title: Simulated binary crossover for continuous search space
  publication-title: Complex Syst.
– volume: 7
  start-page: 385
  year: 2018
  end-page: 398
  ident: bib0027
  article-title: Reinforcement learning aided parameter control in multi-objective evolutionary algorithm based on decomposition
  publication-title: Prog. Artif. Intell.
– start-page: 575
  year: 2019
  end-page: 589
  ident: bib0033
  article-title: MODRL/D-AM: Multiobjective deep reinforcement learning algorithm using decomposition and attention model for multiobjective optimization
  publication-title: Proceedings of the International Symposium on Intelligence Computation and Applications
– volume: 23
  start-page: 130
  year: 2018
  end-page: 142
  ident: bib0051
  article-title: A review of features and limitations of existing scalable multiobjective test suites
  publication-title: IEEE Trans. Evol. Comput.
– volume: 55
  year: 2020
  ident: bib0014
  article-title: An enhanced-indicator based many-objective evolutionary algorithm with adaptive reference point
  publication-title: Swarm Evol. Comput.
– volume: 17
  start-page: 721
  year: 2013
  end-page: 736
  ident: bib0009
  article-title: A grid-based evolutionary algorithm for many-objective optimization
  publication-title: IEEE Trans. Evol. Comput.
– volume: 9
  start-page: 678
  year: 2016
  ident: bib0038
  article-title: Optimal power flow using the jaya algorithm
  publication-title: Energies
– volume: 51
  start-page: 3103
  year: 2020
  end-page: 3114
  ident: bib0032
  article-title: Deep reinforcement learning for multiobjective optimization
  publication-title: IEEE Trans. Cybern.
– volume: 20
  start-page: 924
  year: 2016
  end-page: 938
  ident: bib0061
  article-title: Stochastic ranking algorithm for many-objective optimization based on multiple indicators
  publication-title: IEEE Trans. Evol. Comput.
– volume: 20
  start-page: 773
  year: 2016
  end-page: 791
  ident: bib0049
  article-title: A reference vector guided evolutionary algorithm for many-objective optimization
  publication-title: IEEE Trans. Evol. Comput.
– volume: 18
  start-page: 577
  year: 2013
  end-page: 601
  ident: bib0055
  article-title: An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part I: solving problems with box constraints
  publication-title: IEEE Trans. Evol. Comput.
– volume: 23
  start-page: 748
  year: 2018
  end-page: 761
  ident: bib0001
  article-title: A new two-stage evolutionary algorithm for many-objective optimization
  publication-title: IEEE Trans. Evol. Comput.
– volume: 21
  start-page: 440
  year: 2016
  end-page: 462
  ident: bib0022
  article-title: A survey of multiobjective evolutionary algorithms based on decomposition
  publication-title: IEEE Trans. Evol. Comput.
– volume: 575
  start-page: 468
  year: 2021
  end-page: 484
  ident: bib0029
  article-title: Dynamic multiobjective optimization driven by inverse reinforcement learning
  publication-title: Inf. Sci.
– volume: 1
  start-page: 61
  year: 2002
  end-page: 66
  ident: bib0041
  article-title: Real-coded evolutionary algorithms with parent-centric recombination
  publication-title: Proceedings of the Congress on Evolutionary Computation
– volume: 8
  start-page: 279
  year: 1992
  end-page: 292
  ident: bib0045
  article-title: Q-learning
  publication-title: Int. J. Mach. Learn. Cybern.
– volume: 23
  start-page: 361
  year: 2018
  end-page: 375
  ident: bib0062
  article-title: Evolutionary many-objective optimization based on dynamical decomposition
  publication-title: IEEE Trans. Evol. Comput.
– volume: 22
  start-page: 609
  year: 2017
  end-page: 622
  ident: bib0018
  article-title: An indicator-based multiobjective evolutionary algorithm with reference point adaptation for better versatility
  publication-title: IEEE Trans. Evol. Comput.
– volume: 21
  start-page: 714
  year: 2017
  end-page: 730
  ident: bib0020
  article-title: DMOEA-ε: decomposition-based multiobjective evolutionary algorithm with the ε-constraint framework
  publication-title: IEEE Trans. Evol. Comput.
– start-page: 815
  year: 2019
  end-page: 822
  ident: bib0026
  article-title: An adaptive online parameter control algorithm for particle swarm optimization based on reinforcement learning
  publication-title: Proceedings of the IEEE Congress on Evolutionary Computation (CEC)
– volume: 49
  start-page: 2416
  year: 2018
  end-page: 2423
  ident: bib0021
  article-title: A collaborative resource allocation strategy for decomposition-based multiobjective evolutionary algorithms
  publication-title: IEEE Trans. Syst. Man Cybern. Syst.
– volume: 133
  start-page: 278
  year: 2017
  end-page: 293
  ident: bib0030
  article-title: Cooperative two-engine multi-objective bee foraging algorithm with reinforcement learning
  publication-title: Knowl. Based Syst.
– volume: 49
  start-page: 220
  year: 2019
  end-page: 233
  ident: bib0047
  article-title: An adaptive weight vector guided evolutionary algorithm for preference-based multi-objective optimization
  publication-title: Swarm Evol. Comput.
– volume: 20
  start-page: 1247
  year: 2017
  end-page: 1257
  ident: bib0042
  article-title: Ant colony optimization with different crossover schemes for global optimization
  publication-title: Clust. Comput.
– start-page: 453
  year: 2014
  end-page: 465
  ident: bib0048
  article-title: A survey of decomposition methods for multi-objective optimization
  publication-title: Recent Advances on Hybrid Approaches For Designing Intelligent Systems
– reference: , 25(1): 1-20, 2020.
– volume: 47
  start-page: 2689
  year: 2017
  end-page: 2702
  ident: bib0057
  article-title: A many-objective evolutionary algorithm using a one-by-one selection strategy
  publication-title: IEEE Trans. Cybern.
– year: 2022
  ident: bib0034
  article-title: Meta-learning-based deep reinforcement learning for multiobjective optimization problems
  publication-title: Proceedings of the Transactions on Neural Networks and Learning Systems
– volume: 23
  start-page: 1000
  year: 2019
  end-page: 1014
  ident: bib0050
  article-title: A multiple surrogate assisted decomposition-based evolutionary algorithm for expensive Multi/Many-objective optimization
  publication-title: IEEE Trans. Evol. Comput.
– volume: 6
  start-page: 182
  year: 2002
  end-page: 197
  ident: bib0006
  article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II
  publication-title: IEEE Trans. Evol. Comput.
– start-page: 947
  year: 2015
  end-page: 955
  ident: bib0015
  article-title: GDE-MOEA: A new moea based on the generational distance indicator and ε-dominance
  publication-title: Proceedings of the IEEE Congress on Evolutionary Computation
– volume: 119
  year: 2022
  ident: bib0017
  article-title: A multi-objective particle swarm optimization algorithm based on two-archive mechanism
  publication-title: Appl. Soft Comput.
– volume: 74
  start-page: 190
  year: 2019
  end-page: 205
  ident: bib0025
  article-title: A decomposition-based multiobjective evolutionary algorithm with angle-based adaptive penalty
  publication-title: Appl. Soft Comput.
– volume: 96
  start-page: 120
  year: 2016
  end-page: 133
  ident: bib0039
  article-title: SCA: a sine cosine algorithm for solving optimization problems
  publication-title: Knowl. Based Syst.
– volume: 20
  start-page: 35
  year: 2015
  end-page: 42
  ident: bib0004
  article-title: Evolutionary many-objective optimization: a quick-start guide
  publication-title: Surv. Oper. Res. Manag. Sci.
– volume: 23
  start-page: 346
  year: 2018
  end-page: 352
  ident: bib0016
  article-title: ISDE+ an indicator for multi and many-objective optimization
  publication-title: IEEE Trans. Evol. Comput.
– reference: (ITEEE), DEStech Publications, 2019, pp. 67-76T. Truong Thanh, R. Wang, Li. Jia Hua, Multi-indicators multi-objective evolutionary algorithm with q-learning for real-world network optimization, DEStech Trans. Comput. Sci. Eng. (2019) (iteee).
– volume: 427
  start-page: 63
  year: 2018
  end-page: 76
  ident: bib0059
  article-title: A competitive mechanism based multi-objective particle swarm optimizer with fast convergence
  publication-title: Inf. Sci.
– start-page: 403
  year: 2014
  ident: 10.1016/j.swevo.2022.101225_bib0005
  article-title: Multi-objective optimization
– volume: 546
  start-page: 815
  year: 2021
  ident: 10.1016/j.swevo.2022.101225_bib0028
  article-title: A reinforcement learning approach for dynamic multi-objective optimization
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2020.08.101
– volume: 23
  start-page: 331
  issue: 2
  year: 2018
  ident: 10.1016/j.swevo.2022.101225_bib0011
  article-title: A strengthened dominance relation considering convergence and diversity for evolutionary many-objective optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2018.2866854
– volume: 20
  start-page: 35
  issue: 2
  year: 2015
  ident: 10.1016/j.swevo.2022.101225_bib0004
  article-title: Evolutionary many-objective optimization: a quick-start guide
  publication-title: Surv. Oper. Res. Manag. Sci.
– volume: 23
  start-page: 346
  issue: 2
  year: 2018
  ident: 10.1016/j.swevo.2022.101225_bib0016
  article-title: ISDE+ an indicator for multi and many-objective optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2018.2848921
– volume: 49
  start-page: 3968
  issue: 11
  year: 2018
  ident: 10.1016/j.swevo.2022.101225_bib0002
  article-title: An evolutionary algorithm based on minkowski distance for many-objective optimization
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2018.2856208
– volume: 20
  start-page: 924
  issue: 6
  year: 2016
  ident: 10.1016/j.swevo.2022.101225_bib0061
  article-title: Stochastic ranking algorithm for many-objective optimization based on multiple indicators
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2016.2549267
– start-page: 3983
  year: 2007
  ident: 10.1016/j.swevo.2022.101225_bib0003
  article-title: Ranking-dominance and many-objective optimization
– volume: 8
  start-page: 279
  issue: 3-4
  year: 1992
  ident: 10.1016/j.swevo.2022.101225_bib0045
  article-title: Q-learning
  publication-title: Int. J. Mach. Learn. Cybern.
– volume: 9
  start-page: 115
  issue: 2
  year: 1995
  ident: 10.1016/j.swevo.2022.101225_bib0040
  article-title: Simulated binary crossover for continuous search space
  publication-title: Complex Syst.
– volume: 6
  start-page: 182
  issue: 2
  year: 2002
  ident: 10.1016/j.swevo.2022.101225_bib0006
  article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/4235.996017
– volume: 21
  start-page: 440
  issue: 3
  year: 2016
  ident: 10.1016/j.swevo.2022.101225_bib0022
  article-title: A survey of multiobjective evolutionary algorithms based on decomposition
  publication-title: IEEE Trans. Evol. Comput.
– volume: 1
  start-page: 825
  year: 2002
  ident: 10.1016/j.swevo.2022.101225_bib0052
  article-title: Scalable multi-objective optimization test problems
– volume: 49
  start-page: 2416
  issue: 12
  year: 2018
  ident: 10.1016/j.swevo.2022.101225_bib0021
  article-title: A collaborative resource allocation strategy for decomposition-based multiobjective evolutionary algorithms
  publication-title: IEEE Trans. Syst. Man Cybern. Syst.
  doi: 10.1109/TSMC.2018.2818175
– volume: 17
  start-page: 721
  issue: 5
  year: 2013
  ident: 10.1016/j.swevo.2022.101225_bib0009
  article-title: A grid-based evolutionary algorithm for many-objective optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2012.2227145
– year: 2022
  ident: 10.1016/j.swevo.2022.101225_bib0034
  article-title: Meta-learning-based deep reinforcement learning for multiobjective optimization problems
– volume: 51
  start-page: 3103
  issue: 6
  year: 2020
  ident: 10.1016/j.swevo.2022.101225_bib0032
  article-title: Deep reinforcement learning for multiobjective optimization
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2020.2977661
– volume: 20
  start-page: 16
  issue: 1
  year: 2015
  ident: 10.1016/j.swevo.2022.101225_bib0010
  article-title: A new dominance relation-based evolutionary algorithm for many-objective optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2015.2420112
– volume: 74
  start-page: 190
  year: 2019
  ident: 10.1016/j.swevo.2022.101225_bib0025
  article-title: A decomposition-based multiobjective evolutionary algorithm with angle-based adaptive penalty
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2018.10.028
– volume: 9
  start-page: 203
  issue: 10
  year: 2017
  ident: 10.1016/j.swevo.2022.101225_bib0035
  article-title: Polar bear optimization algorithm: Meta-heuristic with fast population movement and dynamic birth and death mechanism
  publication-title: Symmetry
  doi: 10.3390/sym9100203
– volume: 8
  start-page: 631
  issue: 3
  year: 1998
  ident: 10.1016/j.swevo.2022.101225_bib0046
  article-title: Normal-boundary intersection: A new method for generating the pareto surface in nonlinear multicriteria optimization problems
  publication-title: SIAM J. Optim.
  doi: 10.1137/S1052623496307510
– volume: 11
  start-page: 712
  issue: 6
  year: 2007
  ident: 10.1016/j.swevo.2022.101225_bib0019
  article-title: MOEA/D: a multiobjective evolutionary algorithm based on decomposition
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2007.892759
– volume: 96
  start-page: 120
  year: 2016
  ident: 10.1016/j.swevo.2022.101225_bib0039
  article-title: SCA: a sine cosine algorithm for solving optimization problems
  publication-title: Knowl. Based Syst.
  doi: 10.1016/j.knosys.2015.12.022
– start-page: 453
  year: 2014
  ident: 10.1016/j.swevo.2022.101225_bib0048
  article-title: A survey of decomposition methods for multi-objective optimization
– volume: 17
  start-page: 474
  issue: 4
  year: 2012
  ident: 10.1016/j.swevo.2022.101225_bib0054
  article-title: Preference-inspired coevolutionary algorithms for many-objective optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2012.2204264
– volume: 427
  start-page: 63
  year: 2018
  ident: 10.1016/j.swevo.2022.101225_bib0059
  article-title: A competitive mechanism based multi-objective particle swarm optimizer with fast convergence
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2017.10.037
– volume: 9
  start-page: 678
  issue: 9
  year: 2016
  ident: 10.1016/j.swevo.2022.101225_bib0038
  article-title: Optimal power flow using the jaya algorithm
  publication-title: Energies
  doi: 10.3390/en9090678
– volume: 1
  start-page: 657
  year: 1999
  ident: 10.1016/j.swevo.2022.101225_bib0043
  article-title: Multi-parent recombination with simplex crossover in real coded genetic algorithms
– volume: 49
  start-page: 220
  year: 2019
  ident: 10.1016/j.swevo.2022.101225_bib0047
  article-title: An adaptive weight vector guided evolutionary algorithm for preference-based multi-objective optimization
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2019.06.009
– volume: 18
  start-page: 577
  issue: 4
  year: 2013
  ident: 10.1016/j.swevo.2022.101225_bib0055
  article-title: An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part I: solving problems with box constraints
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2013.2281535
– ident: 10.1016/j.swevo.2022.101225_bib0012
  doi: 10.1109/TEVC.2020.3013290
– year: 2001
  ident: 10.1016/j.swevo.2022.101225_bib0058
– volume: 23
  start-page: 361
  issue: 3
  year: 2018
  ident: 10.1016/j.swevo.2022.101225_bib0062
  article-title: Evolutionary many-objective optimization based on dynamical decomposition
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2018.2865590
– volume: 55
  year: 2020
  ident: 10.1016/j.swevo.2022.101225_bib0014
  article-title: An enhanced-indicator based many-objective evolutionary algorithm with adaptive reference point
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2020.100669
– volume: 119
  year: 2022
  ident: 10.1016/j.swevo.2022.101225_bib0017
  article-title: A multi-objective particle swarm optimization algorithm based on two-archive mechanism
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2022.108532
– volume: 21
  start-page: 714
  issue: 5
  year: 2017
  ident: 10.1016/j.swevo.2022.101225_bib0020
  article-title: DMOEA-ε: decomposition-based multiobjective evolutionary algorithm with the ε-constraint framework
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2017.2671462
– start-page: 575
  year: 2019
  ident: 10.1016/j.swevo.2022.101225_bib0033
  article-title: MODRL/D-AM: Multiobjective deep reinforcement learning algorithm using decomposition and attention model for multiobjective optimization
– volume: 10
  start-page: 477
  issue: 5
  year: 2006
  ident: 10.1016/j.swevo.2022.101225_bib0053
  article-title: A review of multiobjective test problems and a scalable test problem toolkit
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2005.861417
– volume: 14
  start-page: 61
  issue: 3
  year: 2019
  ident: 10.1016/j.swevo.2022.101225_bib0060
  article-title: Diversity assessment of multi-objective evolutionary algorithms: Performance metric and benchmark problems
  publication-title: IEEE Comput. Intell. Mag.
  doi: 10.1109/MCI.2019.2919398
– volume: 23
  start-page: 748
  issue: 5
  year: 2018
  ident: 10.1016/j.swevo.2022.101225_bib0001
  article-title: A new two-stage evolutionary algorithm for many-objective optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2018.2882166
– start-page: 947
  year: 2015
  ident: 10.1016/j.swevo.2022.101225_bib0015
  article-title: GDE-MOEA: A new moea based on the generational distance indicator and ε-dominance
– volume: 166
  year: 2021
  ident: 10.1016/j.swevo.2022.101225_bib0036
  article-title: Red fox optimization algorithm
  publication-title: Expert Syst. Appl.
– volume: 20
  start-page: 773
  issue: 5
  year: 2016
  ident: 10.1016/j.swevo.2022.101225_bib0049
  article-title: A reference vector guided evolutionary algorithm for many-objective optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2016.2519378
– start-page: 1
  year: 2010
  ident: 10.1016/j.swevo.2022.101225_bib0024
  article-title: MOEA/D-DRA with two crossover operators
– volume: 23
  start-page: 130
  issue: 1
  year: 2018
  ident: 10.1016/j.swevo.2022.101225_bib0051
  article-title: A review of features and limitations of existing scalable multiobjective test suites
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2018.2836912
– volume: 103
  year: 2001
  ident: 10.1016/j.swevo.2022.101225_bib0007
  article-title: SPEA2: improving the strength pareto evolutionary algorithm
  publication-title: TIK Rep.
– start-page: 624
  year: 2017
  ident: 10.1016/j.swevo.2022.101225_bib0037
  article-title: Whale swarm algorithm for function optimization
– volume: 53
  start-page: 1
  issue: 2
  year: 2020
  ident: 10.1016/j.swevo.2022.101225_bib0013
  article-title: Indicator-based multi-objective evolutionary algorithms: a comprehensive survey
  publication-title: ACM Comput. Surv. (CSUR)
  doi: 10.1145/3376916
– volume: 11
  start-page: 341
  issue: 4
  year: 1997
  ident: 10.1016/j.swevo.2022.101225_bib0044
  article-title: Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces
  publication-title: J. Glob. Optim.
  doi: 10.1023/A:1008202821328
– volume: 133
  start-page: 278
  year: 2017
  ident: 10.1016/j.swevo.2022.101225_bib0030
  article-title: Cooperative two-engine multi-objective bee foraging algorithm with reinforcement learning
  publication-title: Knowl. Based Syst.
  doi: 10.1016/j.knosys.2017.07.024
– volume: 18
  start-page: 269
  issue: 2
  year: 2013
  ident: 10.1016/j.swevo.2022.101225_bib0008
  article-title: Fuzzy-based pareto optimality for many-objective evolutionary algorithms
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2013.2258025
– volume: 47
  start-page: 2689
  issue: 9
  year: 2017
  ident: 10.1016/j.swevo.2022.101225_bib0057
  article-title: A many-objective evolutionary algorithm using a one-by-one selection strategy
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2016.2638902
– volume: 23
  start-page: 1000
  issue: 6
  year: 2019
  ident: 10.1016/j.swevo.2022.101225_bib0050
  article-title: A multiple surrogate assisted decomposition-based evolutionary algorithm for expensive Multi/Many-objective optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2019.2899030
– volume: 20
  start-page: 1247
  issue: 2
  year: 2017
  ident: 10.1016/j.swevo.2022.101225_bib0042
  article-title: Ant colony optimization with different crossover schemes for global optimization
  publication-title: Clust. Comput.
  doi: 10.1007/s10586-017-0793-8
– ident: 10.1016/j.swevo.2022.101225_bib0031
– volume: 22
  start-page: 609
  issue: 4
  year: 2017
  ident: 10.1016/j.swevo.2022.101225_bib0018
  article-title: An indicator-based multiobjective evolutionary algorithm with reference point adaptation for better versatility
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2017.2749619
– volume: 7
  start-page: 385
  issue: 4
  year: 2018
  ident: 10.1016/j.swevo.2022.101225_bib0027
  article-title: Reinforcement learning aided parameter control in multi-objective evolutionary algorithm based on decomposition
  publication-title: Prog. Artif. Intell.
  doi: 10.1007/s13748-018-0155-7
– volume: 22
  start-page: 231
  issue: 2
  year: 2014
  ident: 10.1016/j.swevo.2022.101225_bib0023
  article-title: MOEA/D with adaptive weight adjustment
  publication-title: Evol. Comput.
  doi: 10.1162/EVCO_a_00109
– start-page: 815
  year: 2019
  ident: 10.1016/j.swevo.2022.101225_bib0026
  article-title: An adaptive online parameter control algorithm for particle swarm optimization based on reinforcement learning
– volume: 1
  start-page: 61
  year: 2002
  ident: 10.1016/j.swevo.2022.101225_bib0041
  article-title: Real-coded evolutionary algorithms with parent-centric recombination
– volume: 21
  start-page: 131
  issue: 1
  year: 2016
  ident: 10.1016/j.swevo.2022.101225_bib0056
  article-title: A vector angle-based evolutionary algorithm for unconstrained many-objective optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2016.2587808
– volume: 575
  start-page: 468
  year: 2021
  ident: 10.1016/j.swevo.2022.101225_bib0029
  article-title: Dynamic multiobjective optimization driven by inverse reinforcement learning
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2021.06.054
SSID ssj0000602559
Score 2.3907943
Snippet Maintaining a balance between convergence and diversity is a challenge for multiobjective evolutionary optimization. As crossover operators can affect the...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 101225
SubjectTerms Adaptive operator selection
Multiobjective evolutionary algorithm
Q-learning
Reference vector
Title A reference vector based multiobjective evolutionary algorithm with Q-learning for operator adaptation
URI https://dx.doi.org/10.1016/j.swevo.2022.101225
Volume 76
WOSCitedRecordID wos000917443400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 2210-6502
  databaseCode: AIEXJ
  dateStart: 20110301
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0000602559
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEF5VoQcutDyqUijaAzdjlOzasX2MEFXhgFollXKz9mXqKNhREgI_n9mXkzQIQSUuVmRl187Ol9mZ2Zn5EDoVYKUK8JNDpZvcRZFqh6wTFWHBue7WTinpSEM2kdzcpMNh9stVl8wMnUBSVenjYzZ5V1HDPRC2Lp19g7ibSeEGfAahwxXEDtdXCb4XNNQhwcLE5AO9VUmbO1jzkVVxgVq419B5c2x8W0_L-d87G5j9HY59yESnIdYTZU7jAybZZOXs3hm1_Qc2tUwba3MKQxixdtJ_XbLaVgPd-S3TpBa4CpGyQdnQ0ciXy4whW8ZdroYpCPWZzT52tlE_o1UcAYczBBtxTR9bPpgN1W6jDKPz2QP8FnDsCdH3iC2b_qdndl9PrOclOmUs0yzUWySJM1B7W72ry-F1E4Zrd41TpSkI_bv43lQmC3Djac_bLys2yeAz2nHOBO5ZEOyiD6raQ588UQd2ensfFT3cYAJbTGCDCbyOCbwqP9xgAmtM4CUmMGACe0zgJSYO0J8fl4OLn6Ej2AgFWC7zUEomCFdxLMFvFowKmnIpiCAph_9rBFtPAeZ_t2BpFGdEckaSAtx1ATZ2ITs8pl9Qq6or9RXBs2hBBUskbApg4rAUFrUrOGWUyDij6hARv2y5cN3nNQnKOPdphqPcrHWu1zq3a32IzppBE9t85eWvd708cmc_WrswBwy9NPDb_w48QttLrB-j1nx6r76jj2IxL2fTE4e1JynRmi8
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+reference+vector+based+multiobjective+evolutionary+algorithm+with+Q-learning+for+operator+adaptation&rft.jtitle=Swarm+and+evolutionary+computation&rft.au=Jiao%2C+Keming&rft.au=Chen%2C+Jie&rft.au=Xin%2C+Bin&rft.au=Li%2C+Li&rft.date=2023-02-01&rft.pub=Elsevier+B.V&rft.issn=2210-6502&rft.volume=76&rft_id=info:doi/10.1016%2Fj.swevo.2022.101225&rft.externalDocID=S2210650222001912
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2210-6502&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2210-6502&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2210-6502&client=summon