Lie symmetry analysis, soliton solutions and qualitative analysis concerning to the generalized q-deformed Sinh-Gordon equation

In this manuscript, the Lie point symmetries, conservation laws, and traveling wave reductions have all been derived. Also, new forms of soliton solutions of generalized q-deformed equation via means of unified method has been extracted. Implementing this approach the results of governing model are...

Full description

Saved in:
Bibliographic Details
Published in:Communications in nonlinear science & numerical simulation Vol. 116; p. 106824
Main Authors: Raza, Nauman, Salman, Farwa, Butt, Asma Rashid, Gandarias, María Luz
Format: Journal Article
Language:English
Published: Elsevier B.V 01.01.2023
Subjects:
ISSN:1007-5704, 1878-7274
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In this manuscript, the Lie point symmetries, conservation laws, and traveling wave reductions have all been derived. Also, new forms of soliton solutions of generalized q-deformed equation via means of unified method has been extracted. Implementing this approach the results of governing model are obtained as rational and polynomial functions. The unified technique is used to analyze solitary solutions, soliton solutions, also periodic rational solutions. Additionally, to illustrate the various solitons’ propagation characteristics, several illustrations are used to display their statistical data. The bifurcation is introduced on the governing equation. The planer system has been extracted. Taking all possible cases for the parameters, the behavior has been shown by portraits in phase plane. The proposed equation has expanded modeling possibilities for complex processes with broken symmetry. •The Lie point symmetries, conservation laws, and traveling wave reductions have been derived for the q-deformed Sinh Gordon model.•New soliton solutions are extracted for q-deformed Sinh Gordon model.•Qualitative analysis of model is studied by planer dynamical system.•All the obtained solutions are depicted graphically.
AbstractList In this manuscript, the Lie point symmetries, conservation laws, and traveling wave reductions have all been derived. Also, new forms of soliton solutions of generalized q-deformed equation via means of unified method has been extracted. Implementing this approach the results of governing model are obtained as rational and polynomial functions. The unified technique is used to analyze solitary solutions, soliton solutions, also periodic rational solutions. Additionally, to illustrate the various solitons’ propagation characteristics, several illustrations are used to display their statistical data. The bifurcation is introduced on the governing equation. The planer system has been extracted. Taking all possible cases for the parameters, the behavior has been shown by portraits in phase plane. The proposed equation has expanded modeling possibilities for complex processes with broken symmetry. •The Lie point symmetries, conservation laws, and traveling wave reductions have been derived for the q-deformed Sinh Gordon model.•New soliton solutions are extracted for q-deformed Sinh Gordon model.•Qualitative analysis of model is studied by planer dynamical system.•All the obtained solutions are depicted graphically.
ArticleNumber 106824
Author Salman, Farwa
Butt, Asma Rashid
Gandarias, María Luz
Raza, Nauman
Author_xml – sequence: 1
  givenname: Nauman
  surname: Raza
  fullname: Raza, Nauman
  email: nauman.math@pu.edu.pk
  organization: Department of Mathematics, University of the Punjab, Quaid-e-Azam Campus, Lahore, Pakistan
– sequence: 2
  givenname: Farwa
  surname: Salman
  fullname: Salman, Farwa
  organization: Department of Mathematics, University of the Punjab, Quaid-e-Azam Campus, Lahore, Pakistan
– sequence: 3
  givenname: Asma Rashid
  surname: Butt
  fullname: Butt, Asma Rashid
  organization: Department of Mathematics, University of Engineering and Technology, Lahore, Pakistan
– sequence: 4
  givenname: María Luz
  surname: Gandarias
  fullname: Gandarias, María Luz
  email: marialuz.gandarias@uca.es
  organization: Department of Mathematics, University of Cadiz, 11510, Puerto Real, Cadiz, Spain
BookMark eNqFkM9OAyEQh4mpiW31CbzwAG5lYf8ePJhGq0kTD-qZsDDb0mxBgTZZL766bGs8eNDTDMN8v2S-CRoZawChy5TMUpIW15uZNN74GSWUxklR0ewEjdOqrJKSltko9oSUSV6S7AxNvN-QSNV5NkafSw3Y99stBNdjYUTXe-2vsLedDtYMdRe0NT7-Kfy-E3Esgt7Dzy6W1khwRpsVDhaHNeAVGHBx8wMikihordvG9lmbdbKwTsVciFFD7jk6bUXn4eK7TtHr_d3L_CFZPi0e57fLRDLCQqIa2pRtUzc1CGCyFHmhqqLICyrzNCtAMNU0qawpbVV8EZpJxlglWatILaFhU8SOudJZ7x20_M3prXA9TwkfHPINPzjkg0N-dBip-hclD-dbE5zQ3T_szZGFeNZeg-NeaoiqlHYgA1dW_8l_AUxElVY
CitedBy_id crossref_primary_10_1016_j_ijleo_2023_171060
crossref_primary_10_1038_s41598_025_13088_y
crossref_primary_10_1038_s41598_025_91397_y
crossref_primary_10_1063_5_0264311
crossref_primary_10_1007_s11082_023_04867_w
crossref_primary_10_1007_s11071_023_08329_6
crossref_primary_10_1007_s11082_024_06357_z
crossref_primary_10_1007_s00033_024_02344_2
crossref_primary_10_3390_sym14112425
crossref_primary_10_1007_s11071_023_08839_3
crossref_primary_10_1016_j_ijleo_2022_170000
crossref_primary_10_1016_j_physleta_2023_129082
crossref_primary_10_1142_S0217984925501519
crossref_primary_10_1142_S0218348X25401012
crossref_primary_10_1016_j_physleta_2024_130203
crossref_primary_10_1016_j_asej_2025_103395
crossref_primary_10_1007_s44198_025_00306_4
crossref_primary_10_1088_1402_4896_ad3859
crossref_primary_10_1038_s41598_024_75494_y
crossref_primary_10_1007_s12346_025_01313_y
crossref_primary_10_1007_s11082_023_06220_7
crossref_primary_10_1038_s41598_025_99654_w
crossref_primary_10_3390_sym16020151
crossref_primary_10_1016_j_cam_2024_116298
crossref_primary_10_1088_1402_4896_ad5ca3
crossref_primary_10_1002_mma_10260
crossref_primary_10_3390_math11224572
crossref_primary_10_3934_math_2025657
crossref_primary_10_1007_s11082_024_06708_w
crossref_primary_10_3390_fractalfract9080487
crossref_primary_10_1016_j_padiff_2025_101284
crossref_primary_10_1016_j_rineng_2025_105630
crossref_primary_10_1007_s11082_023_04925_3
crossref_primary_10_1007_s12596_024_01843_9
crossref_primary_10_1142_S0217984925502379
crossref_primary_10_1088_1402_4896_ad32b9
crossref_primary_10_1007_s11071_024_10139_3
crossref_primary_10_1140_epjp_s13360_025_06302_3
crossref_primary_10_1007_s11082_023_04908_4
crossref_primary_10_1038_s41598_024_68265_2
crossref_primary_10_1016_j_rinp_2023_107224
crossref_primary_10_1016_j_aej_2024_11_057
crossref_primary_10_1134_S0965542525700198
crossref_primary_10_1007_s40435_023_01236_z
crossref_primary_10_1038_s41598_025_12747_4
crossref_primary_10_1063_5_0191869
crossref_primary_10_1038_s41598_024_58796_z
crossref_primary_10_1007_s11082_024_06529_x
crossref_primary_10_1016_j_aej_2025_05_021
crossref_primary_10_1007_s10773_024_05734_4
crossref_primary_10_1002_mma_10612
crossref_primary_10_1063_5_0280496
crossref_primary_10_1088_1402_4896_ad3382
crossref_primary_10_1007_s42417_024_01736_y
crossref_primary_10_1007_s10773_025_05937_3
crossref_primary_10_1007_s11082_023_04978_4
crossref_primary_10_1007_s10773_024_05769_7
crossref_primary_10_1007_s11082_024_06820_x
crossref_primary_10_1016_j_ijleo_2023_171031
crossref_primary_10_1007_s10773_025_05916_8
crossref_primary_10_1080_01495739_2025_2473744
crossref_primary_10_1007_s12596_024_02236_8
crossref_primary_10_1016_j_physleta_2025_130704
crossref_primary_10_1007_s11071_023_08882_0
crossref_primary_10_1038_s41598_024_59832_8
crossref_primary_10_1007_s11082_024_07061_8
crossref_primary_10_1038_s41598_024_79102_x
crossref_primary_10_1016_j_ijleo_2024_171801
crossref_primary_10_3390_math13121912
crossref_primary_10_3390_axioms14080590
crossref_primary_10_1016_j_rineng_2025_104489
crossref_primary_10_1007_s11082_023_05982_4
crossref_primary_10_1007_s11082_022_04319_x
crossref_primary_10_1016_j_ijleo_2022_170115
crossref_primary_10_1038_s41598_024_72744_x
Cites_doi 10.1016/j.physletb.2019.04.033
10.1080/09500340.2018.1442509
10.1088/0253-6102/71/4/362
10.1016/j.ijleo.2017.11.043
10.1016/j.nonrwa.2010.02.006
10.1016/j.ijleo.2016.03.041
10.1080/17455030.2018.1451009
10.1007/s10910-009-9588-3
10.1088/1402-4896/ac0f93
10.1155/2018/5242757
10.1016/S0375-9601(00)00725-8
10.1007/s11071-016-3183-5
10.1016/0022-247X(91)90267-4
10.1142/S0217984920504023
10.1016/j.asej.2020.03.018
10.1016/j.nonrwa.2008.09.029
10.1017/S095679250100465X
10.1007/978-0-387-68028-6
10.1103/PhysRevD.54.2801
10.1103/PhysRevLett.78.2869
10.1016/j.cnsns.2020.105349
10.1016/j.rinp.2021.103979
10.1007/BF01208894
10.1016/j.rinp.2022.105358
10.1080/09500340.2018.1480066
10.1016/j.rinp.2021.104171
10.1016/S0034-4877(13)60031-2
10.1088/0305-4470/34/20/302
10.1007/s11071-018-4571-9
10.1088/1674-1056/22/11/110301
10.1007/s00601-011-0238-5
10.1017/S0956792501004715
10.1016/j.asej.2020.10.030
10.2748/tmj/1215442875
ContentType Journal Article
Copyright 2022 Elsevier B.V.
Copyright_xml – notice: 2022 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.cnsns.2022.106824
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISSN 1878-7274
ExternalDocumentID 10_1016_j_cnsns_2022_106824
S1007570422003252
GroupedDBID --K
--M
-01
-0A
-0I
-0Y
-SA
-S~
.~1
0R~
1B1
1RT
1~.
1~5
29F
4.4
457
4G.
5GY
5VR
5VS
7-5
71M
8P~
92M
9D9
9DA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABAOU
ABFNM
ABJNI
ABMAC
ABNEU
ABXDB
ABYKQ
ACAZW
ACDAQ
ACFVG
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADGUI
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AFUIB
AGHFR
AGUBO
AGYEJ
AHJVU
AIEXJ
AIGVJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CAJEA
CAJUS
CCEZO
CCVFK
CHBEP
CS3
CUBFJ
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FA0
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
JUIAU
KOM
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q--
Q-0
Q38
R-A
R-I
R2-
RIG
ROL
RPZ
RT1
RT9
S..
SDF
SDG
SES
SEW
SPC
SPCBC
SPD
SSQ
SST
SSW
SSZ
T5K
T8Q
T8Y
U1F
U1G
U5A
U5I
U5K
UHS
~G-
~LA
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c303t-db2b7fb9b9eae3c7a56d866562c5146ea3dbb1c922fd6ea024c3338c3fd09ceb3
ISICitedReferencesCount 96
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000862286300002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1007-5704
IngestDate Sat Nov 29 07:10:32 EST 2025
Tue Nov 18 21:15:05 EST 2025
Fri Feb 23 02:39:30 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords q-deformed sinh-Gordon equation
Bifurcation
Symmetries
Invariant solution
Exact solutions
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c303t-db2b7fb9b9eae3c7a56d866562c5146ea3dbb1c922fd6ea024c3338c3fd09ceb3
ParticipantIDs crossref_primary_10_1016_j_cnsns_2022_106824
crossref_citationtrail_10_1016_j_cnsns_2022_106824
elsevier_sciencedirect_doi_10_1016_j_cnsns_2022_106824
PublicationCentury 2000
PublicationDate January 2023
2023-01-00
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: January 2023
PublicationDecade 2020
PublicationTitle Communications in nonlinear science & numerical simulation
PublicationYear 2023
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Eremenko (b6) 2019
Elmandouha, Ibrahim (b40) 2020; 14
Ablowitz, Clarkson (b20) 1991
Bluman, Cheviakov, Anco (b34) 2010; 168
Cseh (b25) 2019; 793
Arshad, Raza, Alansari (b9) 2021; 12
Anco (b35) 2017; 79
Raza, Rafiq, Kaplan, Kumar, chu (b1) 2021; 22
Olver (b33) 1986; vol. 107
Eleuch (b17) 2018
Yilmaz, Demirhan, Büyükkiliç (b28) 2010; 47
Sebawe Abdalla, Eleuch (b30) 2014; 115
Raza, Zubair (b3) 2018; 65
Wazwaz (b37) 2005; 169
Bokhari, Dweik, Zaman, Kara, Mahomed (b47) 2010; 11
Kaplan, Hosseini, Samadani, Raza (b11) 2018; 65
Eshghi, Mehraban (b31) 2012; 52
Arai (b23) 2001; 34
Vinita, Ray (b36) 2020; 34
Chai, Dymarsky, Smolkin (b26) 2021
Ma (b44) 2018; 11
Raza, Javaid (b8) 2019; 29
Tang, Liang (b49) 2017
Ali, Aty (b32) 2022
Anco, Bluman (b42) 2002; 13
Raza, Abdullah, Butt (b12) 2018; 157
Fan (b4) 2000; 277
Anco, Bluman (b41) 1997; 78
Aguilar, Osman, Raza, Zubair, Arshad, Ghoneim, Mahmoud, Haleem, Aty (b2) 2021; 11
Raza, Arshad, Alrebdi, Aty, Eleuch (b18) 2022; 35
Magalakwe, Muatjetjeja, Khalique (b51) 2015; 39A3
Arai (b22) 1991; 158
Raza, Jhangeer, Rehman, Butt, Chu (b15) 2021; 25
Kupershmidt, Wilson (b50) 1981; 81
Raza, Arshad (b7) 2020; 11
Raza, Jhangeer, Arshad, Butt, Chu (b38) 2020; 19
Sjöberg (b46) 2009; 10
Anco, Gandarias (b48) 2020; 91
B (b24) 2006
Sebawe Abdalla, Eleuch, Barakat (b29) 2013; 71
Wolf (b43) 2002; 13
Falaye, Oyewumi, Abbas (b27) 2013; 22
Hauswirth, Earp, Toubiana (b19) 2008; 60
Afzal, Raza, Murtaza (b10) 2019; 95
Raza, Osman, Aty, Khalek, Besbes (b14) 2020; 517
Larsen, Sanchez (b21) 1996; 54
Saha (b39) 2017; 87
Javid, Raza, Osman (b16) 2019; 71
Manafian, Lakestani (b5) 2016; 127
Sjöberg (b45) 2007; 184
Raza, Seadawy, Kaplan, Butt (b13) 2021; 96
Raza (10.1016/j.cnsns.2022.106824_b13) 2021; 96
Raza (10.1016/j.cnsns.2022.106824_b18) 2022; 35
Larsen (10.1016/j.cnsns.2022.106824_b21) 1996; 54
Olver (10.1016/j.cnsns.2022.106824_b33) 1986; vol. 107
Kupershmidt (10.1016/j.cnsns.2022.106824_b50) 1981; 81
Anco (10.1016/j.cnsns.2022.106824_b35) 2017; 79
Sebawe Abdalla (10.1016/j.cnsns.2022.106824_b30) 2014; 115
Vinita (10.1016/j.cnsns.2022.106824_b36) 2020; 34
Ma (10.1016/j.cnsns.2022.106824_b44) 2018; 11
Chai (10.1016/j.cnsns.2022.106824_b26) 2021
Eleuch (10.1016/j.cnsns.2022.106824_b17) 2018
Raza (10.1016/j.cnsns.2022.106824_b8) 2019; 29
Bluman (10.1016/j.cnsns.2022.106824_b34) 2010; 168
Raza (10.1016/j.cnsns.2022.106824_b15) 2021; 25
Eremenko (10.1016/j.cnsns.2022.106824_b6) 2019
Raza (10.1016/j.cnsns.2022.106824_b3) 2018; 65
Raza (10.1016/j.cnsns.2022.106824_b14) 2020; 517
Magalakwe (10.1016/j.cnsns.2022.106824_b51) 2015; 39A3
Cseh (10.1016/j.cnsns.2022.106824_b25) 2019; 793
Aguilar (10.1016/j.cnsns.2022.106824_b2) 2021; 11
Wazwaz (10.1016/j.cnsns.2022.106824_b37) 2005; 169
Tang (10.1016/j.cnsns.2022.106824_b49) 2017
Anco (10.1016/j.cnsns.2022.106824_b42) 2002; 13
Javid (10.1016/j.cnsns.2022.106824_b16) 2019; 71
Falaye (10.1016/j.cnsns.2022.106824_b27) 2013; 22
Kaplan (10.1016/j.cnsns.2022.106824_b11) 2018; 65
Sjöberg (10.1016/j.cnsns.2022.106824_b45) 2007; 184
Arai (10.1016/j.cnsns.2022.106824_b23) 2001; 34
Raza (10.1016/j.cnsns.2022.106824_b1) 2021; 22
Manafian (10.1016/j.cnsns.2022.106824_b5) 2016; 127
Raza (10.1016/j.cnsns.2022.106824_b38) 2020; 19
Fan (10.1016/j.cnsns.2022.106824_b4) 2000; 277
Yilmaz (10.1016/j.cnsns.2022.106824_b28) 2010; 47
Ablowitz (10.1016/j.cnsns.2022.106824_b20) 1991
B (10.1016/j.cnsns.2022.106824_b24) 2006
Anco (10.1016/j.cnsns.2022.106824_b41) 1997; 78
Afzal (10.1016/j.cnsns.2022.106824_b10) 2019; 95
Arshad (10.1016/j.cnsns.2022.106824_b9) 2021; 12
Saha (10.1016/j.cnsns.2022.106824_b39) 2017; 87
Raza (10.1016/j.cnsns.2022.106824_b7) 2020; 11
Bokhari (10.1016/j.cnsns.2022.106824_b47) 2010; 11
Ali (10.1016/j.cnsns.2022.106824_b32) 2022
Arai (10.1016/j.cnsns.2022.106824_b22) 1991; 158
Eshghi (10.1016/j.cnsns.2022.106824_b31) 2012; 52
Sebawe Abdalla (10.1016/j.cnsns.2022.106824_b29) 2013; 71
Sjöberg (10.1016/j.cnsns.2022.106824_b46) 2009; 10
Anco (10.1016/j.cnsns.2022.106824_b48) 2020; 91
Hauswirth (10.1016/j.cnsns.2022.106824_b19) 2008; 60
Elmandouha (10.1016/j.cnsns.2022.106824_b40) 2020; 14
Raza (10.1016/j.cnsns.2022.106824_b12) 2018; 157
Wolf (10.1016/j.cnsns.2022.106824_b43) 2002; 13
References_xml – year: 2021
  ident: b26
  article-title: A model of persistent breaking of discrete symmetry
  publication-title: High Energy Phys
– volume: 22
  year: 2013
  ident: b27
  article-title: Exact solution of Schrödinger equation with q-deformed quantum potentials using Nikiforov-Uvarov method
  publication-title: Chin Phys B
– volume: 14
  start-page: 139
  year: 2020
  end-page: 147
  ident: b40
  article-title: Bifurcation and travelling wave solutions for a (2+1)-dimensional KdV equation
  publication-title: J King Saud Univ-Sci
– volume: 13
  start-page: 545
  year: 2002
  end-page: 566
  ident: b42
  article-title: Direct construction method for conservation laws of partial differential equations. I. Examples of conservation law classifications
  publication-title: European J Appl Math
– volume: 96
  year: 2021
  ident: b13
  article-title: Symbolic computation and sensitivity analysis of nonlinear kudryashov’s dynamical equation with applications
  publication-title: Phys Scr
– year: 2006
  ident: b24
  article-title: Topological defects and their homotopy classifiction
  publication-title: Encyclopedia of mathematical physics
– volume: 47
  start-page: 539
  year: 2010
  ident: b28
  article-title: Solution of the Schrödinger equation for two q-deformed potentials by the SWKB method
  publication-title: J Math Chem
– year: 2018
  ident: b17
  article-title: Some analytical solitary wave solutions for the generalized q-deformed Sinh-Gordon equation
  publication-title: Adv Math Phys
– volume: 19
  year: 2020
  ident: b38
  article-title: Dynamical analysis and phase portraits of two-mode waves in different media
  publication-title: Chaos
– volume: 52
  start-page: 41
  year: 2012
  end-page: 47
  ident: b31
  article-title: Solution of the Dirac equation with position-dependent mass for q-parameter modified pöschl-teller and coulomb-like tensor potential
  publication-title: Few-Body Syst
– volume: 34
  year: 2020
  ident: b36
  article-title: Optical soliton group invariant solutions by optimal system of Lie subalgebra with conservation laws of the resonance nonlinear Schrödinger equation
  publication-title: Mod Phys Lett B
– volume: 91
  year: 2020
  ident: b48
  article-title: Symmetry multi-reduction method for partial differential equations with conservation laws
  publication-title: Commun Nonlinear Sci Numer Simul
– year: 2017
  ident: b49
  article-title: Nonlocal symmetries and conservation laws of the Sinh-Gordon equation
  publication-title: J Nonlinear Math Phys
– volume: 39A3
  start-page: 289
  year: 2015
  end-page: 296
  ident: b51
  article-title: Generalized double sinh-Gordon equation: Symmetry reductions, exact solutions and conservation laws
  publication-title: Iran J Sci Technol
– volume: 12
  start-page: 3091
  year: 2021
  end-page: 3098
  ident: b9
  article-title: Soliton solutions of the generalized Davey–Stewartson equation with full nonlinearities via three integrating schemes
  publication-title: Ain Shams Eng J
– volume: 71
  start-page: 362
  year: 2019
  ident: b16
  article-title: Multi-solitons of thermophoretic motion equation depicting the wrinkle propagation in substrate-supported graphene sheets
  publication-title: Commun Theor Phys
– volume: 54
  start-page: 2801
  year: 1996
  end-page: 2807
  ident: b21
  article-title: Sinh-Gordon, Cosh-Gordon, and Liouville equations for strings and multistrings in constant curvature spacetimes
  publication-title: Phys Rev D
– volume: 79
  start-page: 119
  year: 2017
  end-page: 182
  ident: b35
  article-title: Generalization of Noether’s theorem in modern form to non-variational partial differential equations
  publication-title: Model Comput Sci
– volume: 11
  start-page: 1237
  year: 2020
  end-page: 1241
  ident: b7
  article-title: Chiral bright and dark soliton solutions of Schrödinger’s equation in (1 + 2)-dimensions
  publication-title: Ain Shams Eng J
– volume: 184
  start-page: 608
  year: 2007
  end-page: 616
  ident: b45
  article-title: Double reduction of PDEs from the association of symmetries with conservation laws with applications
  publication-title: Appl Math Comput
– volume: 158
  start-page: 63
  year: 1991
  end-page: 79
  ident: b22
  article-title: Exactly solvable supersymmetric quantum mechanics
  publication-title: J Math Anal Appl
– year: 1991
  ident: b20
  article-title: Solitons, nonlinear evolution equations and inverse scattering
– volume: 71
  start-page: 217
  year: 2013
  end-page: 229
  ident: b29
  article-title: Exact analytical solutions of the wave function for some q-deformed potentials
  publication-title: Rep Math Phys
– year: 2022
  ident: b32
  article-title: An extensive analytical and numerical study of the generalized q-deformed Sinh-Gordon equation
  publication-title: J Ocean Eng Sci
– volume: 78
  start-page: 2869
  year: 1997
  end-page: 2873
  ident: b41
  article-title: Direct construction of conservation laws from field equations
  publication-title: Phys Rev Lett
– volume: 11
  start-page: 3763
  year: 2010
  end-page: 3769
  ident: b47
  article-title: Generalization of the double reduction theory
  publication-title: Nonlinear Anal RWA
– volume: 81
  start-page: 189
  year: 1981
  end-page: 202
  ident: b50
  article-title: Conservation laws and symmetries of generalized Sine–Gordon equations
  publication-title: Comm Math Phys
– volume: 65
  year: 2018
  ident: b11
  article-title: Optical soliton solutions of the cubic-quintic non-linear Schrödinger’s equation including an anti-cubic term
  publication-title: J Modern Opt
– volume: 29
  year: 2019
  ident: b8
  article-title: Optical dark and dark-singular soliton solutions of (1+2)-dimensional chiral nonlinear Schrodinger’s equation
  publication-title: Waves Random Complex Media
– volume: 169
  year: 2005
  ident: b37
  publication-title: Appl Math Comput
– volume: 65
  year: 2018
  ident: b3
  article-title: Bright, dark and dark-singular soliton solutions of nonlinear Schrödinger’s equation with spatio-temporal dispersion
  publication-title: J Modern Opt
– volume: 517
  year: 2020
  ident: b14
  article-title: Optical solitons of space–time fractional Fokas-Lenells equation with two versatile integration architectures
  publication-title: Adv Differ Equ
– volume: 168
  year: 2010
  ident: b34
  article-title: Applications of symmetry methods to partial differential equations
  publication-title: Appl Math Sci
– volume: 34
  start-page: 4281
  year: 2001
  end-page: 4288
  ident: b23
  article-title: Exact solutions of multi-component nonlinear Schrödinger and Klein–Gordon equations in two-dimensional space–time
  publication-title: J Phys A
– volume: 127
  start-page: 5543
  year: 2016
  end-page: 5551
  ident: b5
  article-title: Abundant soliton solutions for the Kundu–Eckhaus equation via
  publication-title: Optik
– volume: 115
  year: 2014
  ident: b30
  article-title: Exact analytic solutions of the Schrödinger equations for some modified q-deformed potentials
  publication-title: J Appl Phys
– volume: vol. 107
  year: 1986
  ident: b33
  publication-title: Applications of lie groups to differential equations
– volume: 10
  start-page: 3472
  year: 2009
  end-page: 3477
  ident: b46
  article-title: On double reduction from symmetries and conservation laws
  publication-title: Nonlinear Anal RWA
– volume: 11
  year: 2021
  ident: b2
  article-title: Optical solitons in birefringent fibers with quadratic-cubic nonlinearity using three integration architectures
  publication-title: AIP Adv
– volume: 11
  start-page: 707
  year: 2018
  end-page: 721
  ident: b44
  article-title: Conservation laws by symmetries and adjoint symmetries
  publication-title: Discrete Contin Dyn Syst
– volume: 60
  start-page: 267
  year: 2008
  end-page: 286
  ident: b19
  article-title: Associate and conjugate minimal immersions in
  publication-title: Tohoku Math J
– volume: 35
  year: 2022
  ident: b18
  article-title: Abundant new optical soliton solutions related to q-deformed Sinh-Gordon model using two innovative integration architectures
  publication-title: Results Phys
– year: 2019
  ident: b6
  article-title: Soliton nature’ book preprint chapter 1, Translation wave of John Scott Russell
– volume: 157
  start-page: 993
  year: 2018
  end-page: 1002
  ident: b12
  article-title: Analytical soliton solutions of Biswas-Milovic equation in Kerr and non-Kerr law media
  publication-title: Optik
– volume: 13
  start-page: 129
  year: 2002
  end-page: 152
  ident: b43
  article-title: A comparison of four approaches to the calculation of conservation laws
  publication-title: European J Appl Math
– volume: 277
  start-page: 212
  year: 2000
  end-page: 218
  ident: b4
  article-title: Extended tanh-function method and its applications to nonlinear equations
  publication-title: Phys Lett A
– volume: 25
  year: 2021
  ident: b15
  article-title: Sensitive visualization of the fractional wazwaz-benjamin-bona-mahony equation with fractional derivatives: A comparative analysis
  publication-title: Results Phys
– volume: 87
  start-page: 2193
  year: 2017
  end-page: 2201
  ident: b39
  article-title: Bifurcation, periodic and chaotic motions of the modified equal width-Burgers (MEW-Burgers) equation with external periodic perturbation
  publication-title: Nonlinear Dynam
– volume: 793
  start-page: 59
  year: 2019
  end-page: 64
  ident: b25
  article-title: Spontaneous symmetry-breaking in Elliott-type models and the nuclear deformation
  publication-title: Phys Lett B
– volume: 95
  start-page: 391
  year: 2019
  end-page: 405
  ident: b10
  article-title: On soliton solutions of time fractional form of Sawada–Kotera equation
  publication-title: Nonlinear Dynam
– volume: 22
  year: 2021
  ident: b1
  article-title: The unified method for abundant soliton solutions of local time fractional nonlinear evolution equations
  publication-title: Results Phys
– year: 2019
  ident: 10.1016/j.cnsns.2022.106824_b6
– volume: 793
  start-page: 59
  year: 2019
  ident: 10.1016/j.cnsns.2022.106824_b25
  article-title: Spontaneous symmetry-breaking in Elliott-type models and the nuclear deformation
  publication-title: Phys Lett B
  doi: 10.1016/j.physletb.2019.04.033
– volume: vol. 107
  year: 1986
  ident: 10.1016/j.cnsns.2022.106824_b33
– volume: 65
  issue: 12
  year: 2018
  ident: 10.1016/j.cnsns.2022.106824_b11
  article-title: Optical soliton solutions of the cubic-quintic non-linear Schrödinger’s equation including an anti-cubic term
  publication-title: J Modern Opt
  doi: 10.1080/09500340.2018.1442509
– volume: 71
  start-page: 362
  issue: 4
  year: 2019
  ident: 10.1016/j.cnsns.2022.106824_b16
  article-title: Multi-solitons of thermophoretic motion equation depicting the wrinkle propagation in substrate-supported graphene sheets
  publication-title: Commun Theor Phys
  doi: 10.1088/0253-6102/71/4/362
– volume: 157
  start-page: 993
  year: 2018
  ident: 10.1016/j.cnsns.2022.106824_b12
  article-title: Analytical soliton solutions of Biswas-Milovic equation in Kerr and non-Kerr law media
  publication-title: Optik
  doi: 10.1016/j.ijleo.2017.11.043
– volume: 19
  year: 2020
  ident: 10.1016/j.cnsns.2022.106824_b38
  article-title: Dynamical analysis and phase portraits of two-mode waves in different media
  publication-title: Chaos
– volume: 11
  start-page: 3763
  issue: 5
  year: 2010
  ident: 10.1016/j.cnsns.2022.106824_b47
  article-title: Generalization of the double reduction theory
  publication-title: Nonlinear Anal RWA
  doi: 10.1016/j.nonrwa.2010.02.006
– volume: 127
  start-page: 5543
  issue: 14
  year: 2016
  ident: 10.1016/j.cnsns.2022.106824_b5
  article-title: Abundant soliton solutions for the Kundu–Eckhaus equation via tan(ϕ(ξ))-expansion method
  publication-title: Optik
  doi: 10.1016/j.ijleo.2016.03.041
– volume: 29
  issue: 3
  year: 2019
  ident: 10.1016/j.cnsns.2022.106824_b8
  article-title: Optical dark and dark-singular soliton solutions of (1+2)-dimensional chiral nonlinear Schrodinger’s equation
  publication-title: Waves Random Complex Media
  doi: 10.1080/17455030.2018.1451009
– volume: 47
  start-page: 539
  year: 2010
  ident: 10.1016/j.cnsns.2022.106824_b28
  article-title: Solution of the Schrödinger equation for two q-deformed potentials by the SWKB method
  publication-title: J Math Chem
  doi: 10.1007/s10910-009-9588-3
– year: 2022
  ident: 10.1016/j.cnsns.2022.106824_b32
  article-title: An extensive analytical and numerical study of the generalized q-deformed Sinh-Gordon equation
  publication-title: J Ocean Eng Sci
– volume: 14
  start-page: 139
  year: 2020
  ident: 10.1016/j.cnsns.2022.106824_b40
  article-title: Bifurcation and travelling wave solutions for a (2+1)-dimensional KdV equation
  publication-title: J King Saud Univ-Sci
– volume: 96
  issue: 10
  year: 2021
  ident: 10.1016/j.cnsns.2022.106824_b13
  article-title: Symbolic computation and sensitivity analysis of nonlinear kudryashov’s dynamical equation with applications
  publication-title: Phys Scr
  doi: 10.1088/1402-4896/ac0f93
– volume: 517
  year: 2020
  ident: 10.1016/j.cnsns.2022.106824_b14
  article-title: Optical solitons of space–time fractional Fokas-Lenells equation with two versatile integration architectures
  publication-title: Adv Differ Equ
– year: 2018
  ident: 10.1016/j.cnsns.2022.106824_b17
  article-title: Some analytical solitary wave solutions for the generalized q-deformed Sinh-Gordon equation
  publication-title: Adv Math Phys
  doi: 10.1155/2018/5242757
– year: 2021
  ident: 10.1016/j.cnsns.2022.106824_b26
  article-title: A model of persistent breaking of discrete symmetry
  publication-title: High Energy Phys
– volume: 277
  start-page: 212
  issue: 4–5
  year: 2000
  ident: 10.1016/j.cnsns.2022.106824_b4
  article-title: Extended tanh-function method and its applications to nonlinear equations
  publication-title: Phys Lett A
  doi: 10.1016/S0375-9601(00)00725-8
– volume: 87
  start-page: 2193
  year: 2017
  ident: 10.1016/j.cnsns.2022.106824_b39
  article-title: Bifurcation, periodic and chaotic motions of the modified equal width-Burgers (MEW-Burgers) equation with external periodic perturbation
  publication-title: Nonlinear Dynam
  doi: 10.1007/s11071-016-3183-5
– volume: 158
  start-page: 63
  issue: 1
  year: 1991
  ident: 10.1016/j.cnsns.2022.106824_b22
  article-title: Exactly solvable supersymmetric quantum mechanics
  publication-title: J Math Anal Appl
  doi: 10.1016/0022-247X(91)90267-4
– volume: 11
  start-page: 707
  issue: 4
  year: 2018
  ident: 10.1016/j.cnsns.2022.106824_b44
  article-title: Conservation laws by symmetries and adjoint symmetries
  publication-title: Discrete Contin Dyn Syst
– volume: 34
  issue: 35
  year: 2020
  ident: 10.1016/j.cnsns.2022.106824_b36
  article-title: Optical soliton group invariant solutions by optimal system of Lie subalgebra with conservation laws of the resonance nonlinear Schrödinger equation
  publication-title: Mod Phys Lett B
  doi: 10.1142/S0217984920504023
– volume: 11
  start-page: 1237
  issue: 4
  year: 2020
  ident: 10.1016/j.cnsns.2022.106824_b7
  article-title: Chiral bright and dark soliton solutions of Schrödinger’s equation in (1 + 2)-dimensions
  publication-title: Ain Shams Eng J
  doi: 10.1016/j.asej.2020.03.018
– volume: 10
  start-page: 3472
  year: 2009
  ident: 10.1016/j.cnsns.2022.106824_b46
  article-title: On double reduction from symmetries and conservation laws
  publication-title: Nonlinear Anal RWA
  doi: 10.1016/j.nonrwa.2008.09.029
– volume: 11
  issue: 2
  year: 2021
  ident: 10.1016/j.cnsns.2022.106824_b2
  article-title: Optical solitons in birefringent fibers with quadratic-cubic nonlinearity using three integration architectures
  publication-title: AIP Adv
– volume: 13
  start-page: 545
  year: 2002
  ident: 10.1016/j.cnsns.2022.106824_b42
  article-title: Direct construction method for conservation laws of partial differential equations. I. Examples of conservation law classifications
  publication-title: European J Appl Math
  doi: 10.1017/S095679250100465X
– volume: 168
  year: 2010
  ident: 10.1016/j.cnsns.2022.106824_b34
  article-title: Applications of symmetry methods to partial differential equations
  publication-title: Appl Math Sci
  doi: 10.1007/978-0-387-68028-6
– year: 2006
  ident: 10.1016/j.cnsns.2022.106824_b24
  article-title: Topological defects and their homotopy classifiction
– volume: 54
  start-page: 2801
  issue: 4
  year: 1996
  ident: 10.1016/j.cnsns.2022.106824_b21
  article-title: Sinh-Gordon, Cosh-Gordon, and Liouville equations for strings and multistrings in constant curvature spacetimes
  publication-title: Phys Rev D
  doi: 10.1103/PhysRevD.54.2801
– volume: 169
  year: 2005
  ident: 10.1016/j.cnsns.2022.106824_b37
  publication-title: Appl Math Comput
– volume: 78
  start-page: 2869
  year: 1997
  ident: 10.1016/j.cnsns.2022.106824_b41
  article-title: Direct construction of conservation laws from field equations
  publication-title: Phys Rev Lett
  doi: 10.1103/PhysRevLett.78.2869
– volume: 91
  year: 2020
  ident: 10.1016/j.cnsns.2022.106824_b48
  article-title: Symmetry multi-reduction method for partial differential equations with conservation laws
  publication-title: Commun Nonlinear Sci Numer Simul
  doi: 10.1016/j.cnsns.2020.105349
– volume: 39A3
  start-page: 289
  year: 2015
  ident: 10.1016/j.cnsns.2022.106824_b51
  article-title: Generalized double sinh-Gordon equation: Symmetry reductions, exact solutions and conservation laws
  publication-title: Iran J Sci Technol
– volume: 115
  issue: 23
  year: 2014
  ident: 10.1016/j.cnsns.2022.106824_b30
  article-title: Exact analytic solutions of the Schrödinger equations for some modified q-deformed potentials
  publication-title: J Appl Phys
– volume: 22
  year: 2021
  ident: 10.1016/j.cnsns.2022.106824_b1
  article-title: The unified method for abundant soliton solutions of local time fractional nonlinear evolution equations
  publication-title: Results Phys
  doi: 10.1016/j.rinp.2021.103979
– volume: 81
  start-page: 189
  year: 1981
  ident: 10.1016/j.cnsns.2022.106824_b50
  article-title: Conservation laws and symmetries of generalized Sine–Gordon equations
  publication-title: Comm Math Phys
  doi: 10.1007/BF01208894
– year: 2017
  ident: 10.1016/j.cnsns.2022.106824_b49
  article-title: Nonlocal symmetries and conservation laws of the Sinh-Gordon equation
  publication-title: J Nonlinear Math Phys
– year: 1991
  ident: 10.1016/j.cnsns.2022.106824_b20
– volume: 35
  year: 2022
  ident: 10.1016/j.cnsns.2022.106824_b18
  article-title: Abundant new optical soliton solutions related to q-deformed Sinh-Gordon model using two innovative integration architectures
  publication-title: Results Phys
  doi: 10.1016/j.rinp.2022.105358
– volume: 184
  start-page: 608
  year: 2007
  ident: 10.1016/j.cnsns.2022.106824_b45
  article-title: Double reduction of PDEs from the association of symmetries with conservation laws with applications
  publication-title: Appl Math Comput
– volume: 65
  issue: 17
  year: 2018
  ident: 10.1016/j.cnsns.2022.106824_b3
  article-title: Bright, dark and dark-singular soliton solutions of nonlinear Schrödinger’s equation with spatio-temporal dispersion
  publication-title: J Modern Opt
  doi: 10.1080/09500340.2018.1480066
– volume: 79
  start-page: 119
  year: 2017
  ident: 10.1016/j.cnsns.2022.106824_b35
  article-title: Generalization of Noether’s theorem in modern form to non-variational partial differential equations
  publication-title: Model Comput Sci
– volume: 25
  year: 2021
  ident: 10.1016/j.cnsns.2022.106824_b15
  article-title: Sensitive visualization of the fractional wazwaz-benjamin-bona-mahony equation with fractional derivatives: A comparative analysis
  publication-title: Results Phys
  doi: 10.1016/j.rinp.2021.104171
– volume: 71
  start-page: 217
  issue: 2
  year: 2013
  ident: 10.1016/j.cnsns.2022.106824_b29
  article-title: Exact analytical solutions of the wave function for some q-deformed potentials
  publication-title: Rep Math Phys
  doi: 10.1016/S0034-4877(13)60031-2
– volume: 34
  start-page: 4281
  issue: 20
  year: 2001
  ident: 10.1016/j.cnsns.2022.106824_b23
  article-title: Exact solutions of multi-component nonlinear Schrödinger and Klein–Gordon equations in two-dimensional space–time
  publication-title: J Phys A
  doi: 10.1088/0305-4470/34/20/302
– volume: 95
  start-page: 391
  year: 2019
  ident: 10.1016/j.cnsns.2022.106824_b10
  article-title: On soliton solutions of time fractional form of Sawada–Kotera equation
  publication-title: Nonlinear Dynam
  doi: 10.1007/s11071-018-4571-9
– volume: 22
  issue: 11
  year: 2013
  ident: 10.1016/j.cnsns.2022.106824_b27
  article-title: Exact solution of Schrödinger equation with q-deformed quantum potentials using Nikiforov-Uvarov method
  publication-title: Chin Phys B
  doi: 10.1088/1674-1056/22/11/110301
– volume: 52
  start-page: 41
  issue: 1–2
  year: 2012
  ident: 10.1016/j.cnsns.2022.106824_b31
  article-title: Solution of the Dirac equation with position-dependent mass for q-parameter modified pöschl-teller and coulomb-like tensor potential
  publication-title: Few-Body Syst
  doi: 10.1007/s00601-011-0238-5
– volume: 13
  start-page: 129
  year: 2002
  ident: 10.1016/j.cnsns.2022.106824_b43
  article-title: A comparison of four approaches to the calculation of conservation laws
  publication-title: European J Appl Math
  doi: 10.1017/S0956792501004715
– volume: 12
  start-page: 3091
  issue: 3
  year: 2021
  ident: 10.1016/j.cnsns.2022.106824_b9
  article-title: Soliton solutions of the generalized Davey–Stewartson equation with full nonlinearities via three integrating schemes
  publication-title: Ain Shams Eng J
  doi: 10.1016/j.asej.2020.10.030
– volume: 60
  start-page: 267
  issue: 2
  year: 2008
  ident: 10.1016/j.cnsns.2022.106824_b19
  article-title: Associate and conjugate minimal immersions in MxR
  publication-title: Tohoku Math J
  doi: 10.2748/tmj/1215442875
SSID ssj0016954
Score 2.6229985
Snippet In this manuscript, the Lie point symmetries, conservation laws, and traveling wave reductions have all been derived. Also, new forms of soliton solutions of...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 106824
SubjectTerms Bifurcation
Exact solutions
Invariant solution
q-deformed sinh-Gordon equation
Symmetries
Title Lie symmetry analysis, soliton solutions and qualitative analysis concerning to the generalized q-deformed Sinh-Gordon equation
URI https://dx.doi.org/10.1016/j.cnsns.2022.106824
Volume 116
WOSCitedRecordID wos000862286300002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1878-7274
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016954
  issn: 1007-5704
  databaseCode: AIEXJ
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9QwFLaGKQcu7IhSQD5wS1Nl7JksxxG0LCoVQkWaW2Q7Dk01E9osbZkL_5FfxHO8JFA0ogcu0UziOJHfF_v5Ld9D6FUsCAsCyX1YOjJ_SgX14zzhPsyDQvCMBnyqi01ER0fxYpF8Go1-2lyYi2VUlvHVVXL2X0UN50DYKnX2BuJ2ncIJ-A1ChyOIHY7_JPjDQnr199VKNpXiVtKcI2okaxXqBsJ2j-8cBzqrUtN_29YqFl1IbTIxuulXTU9drEFBPfczqXRdpasW5Yn_Fjaw0K88b3sxW_KDYf5JF3pbam4OVnk2o0iBr2y152jp1cXKVBTrXVBrphcC5XBwJiG2NMbbA1Zd9maFVnu75vWKeZ9VpajMhRh1RpNCZ7B9ZDpG4A3zDtv10PZB6MD2oadrZWidRbqAsZvPJ8MZGba8sc7SvrZYaLvF6Z4o61IxtxOy17f-nZr7jyXTBTLaGLnTtOskVZ2kupNbaItEsJsbo635-_3FB-fbCpOuNp97d8uF1UUdXnuXv-tLAx3o-D66azYveK5B9wCNZPkQ3TMbGWyWifoR-gEYxBaD2KJqFxsEYodAuJbhAQJdW9wjEDffMCAQDxCIewTiAQKxReBj9OVg__j1O99U-vAFqFCNn3HCo5wnPJFMUhGxWZgpIsaQCFDoQ8loxvlEJITkGfwDvVJQSmNB8yxIhOT0CRoDfOVThGd5PGMERm4i8mnCKSNcTAMiEyZFmJN4GxE7nqkwNPiqGssy3SDLbbTrbjrTLDCbm4dWUKn5lrSCmgL0Nt347GbP2UF3-q_iORo3VStfoNvioinq6qXB3S_8a8jo
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Lie+symmetry+analysis%2C+soliton+solutions+and+qualitative+analysis+concerning+to+the+generalized+q-deformed+Sinh-Gordon+equation&rft.jtitle=Communications+in+nonlinear+science+%26+numerical+simulation&rft.au=Raza%2C+Nauman&rft.au=Salman%2C+Farwa&rft.au=Butt%2C+Asma+Rashid&rft.au=Gandarias%2C+Mar%C3%ADa+Luz&rft.date=2023-01-01&rft.issn=1007-5704&rft.volume=116&rft.spage=106824&rft_id=info:doi/10.1016%2Fj.cnsns.2022.106824&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cnsns_2022_106824
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1007-5704&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1007-5704&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1007-5704&client=summon