Temporal convolutional denoising autoencoder network for air pollution prediction with missing values

In recent years, people are paying more attention to improve air quality levels to mitigate its negative impact on human health. So, effective air pollution control has become one of the hottest environmental issues. Accurate pollution prediction plays a vital role in air pollution control. However,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Urban climate Jg. 38; S. 100872
Hauptverfasser: Samal, K. Krishna Rani, Babu, Korra Sathya, Das, Santos Kumar
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier B.V 01.07.2021
Schlagworte:
ISSN:2212-0955, 2212-0955
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract In recent years, people are paying more attention to improve air quality levels to mitigate its negative impact on human health. So, effective air pollution control has become one of the hottest environmental issues. Accurate pollution prediction plays a vital role in air pollution control. However, air quality modeling faces challenges like long-term pollutant variations due to meteorological variables impact and missing values due to natural disaster or sensor shutdown. These issues make air quality models more complex and challenging to introspect. So, we developed Temporal Convolutional Denoising Autoencoder (TCDA) network, a hybrid PM2.5 prediction framework that can perform rapid extraction of complex dataset's features, handle missing values and improve PM2.5 prediction results. This research paper includes Temporal Convolutional Network (TCN) and Denoising Autoencoder (DAE) network to handle nonlinear multivariate massive datasets. The former utilizes parallel feature processing of Convolutional Neural Network (CNN) and temporal component modeling ability of Recurrent Neural Network (RNN), which helps for features extraction from complex dataset. The latter is to reconstruct the error to fine-tune the prediction results and handle missing values. The proposed model's prediction capability is evaluated by comparing its performance with other baseline models, which shows its performance superiority over other models. •Handling missing values has a significant role in improving pollution prediction results.•Data imputation and forecasting are two major steps towards proper air pollution management.•Temporal Convolutional Denoising Autoencoder can handle different patterns of missing values to predict PM2.5 concentration.
AbstractList In recent years, people are paying more attention to improve air quality levels to mitigate its negative impact on human health. So, effective air pollution control has become one of the hottest environmental issues. Accurate pollution prediction plays a vital role in air pollution control. However, air quality modeling faces challenges like long-term pollutant variations due to meteorological variables impact and missing values due to natural disaster or sensor shutdown. These issues make air quality models more complex and challenging to introspect. So, we developed Temporal Convolutional Denoising Autoencoder (TCDA) network, a hybrid PM2.5 prediction framework that can perform rapid extraction of complex dataset's features, handle missing values and improve PM2.5 prediction results. This research paper includes Temporal Convolutional Network (TCN) and Denoising Autoencoder (DAE) network to handle nonlinear multivariate massive datasets. The former utilizes parallel feature processing of Convolutional Neural Network (CNN) and temporal component modeling ability of Recurrent Neural Network (RNN), which helps for features extraction from complex dataset. The latter is to reconstruct the error to fine-tune the prediction results and handle missing values. The proposed model's prediction capability is evaluated by comparing its performance with other baseline models, which shows its performance superiority over other models. •Handling missing values has a significant role in improving pollution prediction results.•Data imputation and forecasting are two major steps towards proper air pollution management.•Temporal Convolutional Denoising Autoencoder can handle different patterns of missing values to predict PM2.5 concentration.
ArticleNumber 100872
Author Babu, Korra Sathya
Das, Santos Kumar
Samal, K. Krishna Rani
Author_xml – sequence: 1
  givenname: K. Krishna Rani
  surname: Samal
  fullname: Samal, K. Krishna Rani
  email: 517cs6019@nitrkl.ac.in
  organization: Department of Computer Science and Engineering, National Institute of Technology, Rourkela 769008, India
– sequence: 2
  givenname: Korra Sathya
  surname: Babu
  fullname: Babu, Korra Sathya
  organization: Department of Computer Science and Engineering, National Institute of Technology, Rourkela 769008, India
– sequence: 3
  givenname: Santos Kumar
  surname: Das
  fullname: Das, Santos Kumar
  organization: Department of Electronics and Communication Engineering, National Institute of Technology, Rourkela 769008, India
BookMark eNqFkMtOwzAQRS1UJErpF7DxD6TYDkmcBQtU8ZKQ2JS15dgTcHHsyHZa8fekDQvEAlZzZ6Qz0j3naOa8A4QuKVlRQsur7WpQ1nQrRhgdL4RX7ATNGaMsI3VRzH7kM7SMcUsIYYSyuqRzBBvoeh-kxcq7nbdDMt6NmwbnTTTuDcsheXDKawjYQdr78IFbH7A0AffeTgTuA2ijjnFv0jvuTDzSO2kHiBfotJU2wvJ7LtDr_d1m_Zg9vzw8rW-fM5WTPGVatqRgJdUt1ExJoKqVTVlWpW4k1ZRBVRUqB97UnPBCayUpp-qaN5yrGkqeL1A-_VXBxxigFX0wnQyfghJxkCW24ihLHGSJSdZI1b8oZZI8dElBGvsPezOxMNbaGQgiKjPqGm0EUElob_7kvwAY7Yxl
CitedBy_id crossref_primary_10_3390_math11040837
crossref_primary_10_1007_s11356_021_17442_1
crossref_primary_10_3390_app15147884
crossref_primary_10_1016_j_ecoinf_2022_101775
crossref_primary_10_7717_peerj_cs_1852
crossref_primary_10_1038_s41598_023_47492_z
crossref_primary_10_1007_s13349_022_00574_4
crossref_primary_10_1016_j_chemosphere_2022_136252
crossref_primary_10_1016_j_jhydrol_2023_130240
crossref_primary_10_1016_j_asoc_2022_109316
crossref_primary_10_1038_s41598_022_22075_6
crossref_primary_10_1016_j_snb_2022_133010
crossref_primary_10_1038_s41598_024_68793_x
crossref_primary_10_1016_j_isatra_2023_12_031
crossref_primary_10_3390_su16114531
crossref_primary_10_1109_ACCESS_2024_3406502
crossref_primary_10_3390_su151410816
crossref_primary_10_1007_s40201_025_00954_0
crossref_primary_10_1016_j_scitotenv_2023_161744
crossref_primary_10_1016_j_uclim_2021_100943
crossref_primary_10_1145_3634751
crossref_primary_10_1109_ACCESS_2023_3293754
crossref_primary_10_1007_s10462_025_11277_9
crossref_primary_10_1016_j_tust_2022_104504
crossref_primary_10_1109_ACCESS_2022_3174853
crossref_primary_10_1016_j_jhazmat_2022_130335
crossref_primary_10_1109_TAI_2023_3266742
crossref_primary_10_1007_s11356_023_28393_0
Cites_doi 10.3390/atmos10070373
10.1016/j.atmosenv.2016.03.047
10.1023/A:1013833217916
10.1002/clen.201200596
10.1098/rspa.2017.0457
10.1016/j.uclim.2020.100608
10.1016/j.jclepro.2020.121777
10.1016/j.jclepro.2020.123742
10.1109/TSMC.1979.4310090
10.1109/ACCESS.2020.2968536
10.1016/j.jes.2020.06.004
10.1016/j.atmosenv.2014.04.051
10.1109/TITS.2019.2909571
10.1016/j.uclim.2019.100473
10.1016/j.atmosenv.2011.02.001
10.5094/APR.2015.060
10.1016/j.neucom.2018.08.067
10.1109/TBME.2018.2874712
10.1016/j.neucom.2017.03.097
10.1016/j.scs.2021.102923
10.1109/ACCESS.2019.2917277
10.1016/j.envres.2016.03.011
10.1016/j.neucom.2019.12.129
10.1038/s41598-018-24271-9
10.1016/j.envpol.2020.114517
10.1063/1.4934342
10.1186/2196-0739-1-4
10.1016/j.neucom.2020.06.001
10.1109/ACCESS.2019.2921578
10.1080/10473289.2002.10470836
10.1016/j.scitotenv.2018.04.040
10.1038/s41598-020-77757-w
10.1016/j.envsoft.2019.104600
10.1016/S0098-3004(01)00020-6
10.1016/j.atmosenv.2004.02.026
10.1016/j.uclim.2021.100800
10.1186/s12911-016-0318-z
10.1016/j.asoc.2019.105524
10.1016/j.envsoft.2019.104567
10.1109/TGRS.2011.2168823
10.1016/j.uclim.2018.11.005
10.3390/ijerph17062025
10.1109/ACCESS.2019.2941732
ContentType Journal Article
Copyright 2021 Elsevier B.V.
Copyright_xml – notice: 2021 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.uclim.2021.100872
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
EISSN 2212-0955
ExternalDocumentID 10_1016_j_uclim_2021_100872
S2212095521001024
GroupedDBID --M
.~1
0R~
1~.
1~5
4.4
457
4G.
5VS
7-5
8P~
AACTN
AAEDT
AAEDW
AAFJI
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXUO
ABFYP
ABLST
ABMAC
ABMMH
ABQEM
ABQYD
ABXDB
ABYKQ
ACDAQ
ACGFS
ACLVX
ACRLP
ACSBN
ADBBV
ADEZE
AEBSH
AEKER
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHIDL
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
AKYCK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOMHK
ATOGT
AVARZ
AXJTR
BELTK
BKOJK
BLECG
BLXMC
EBS
EFJIC
EFLBG
EJD
FDB
FEDTE
FIRID
FNPLU
FYGXN
GBLVA
HVGLF
HZ~
IMUCA
JARJE
KCYFY
KOM
M41
MO0
O-L
O9-
OAUVE
P-8
P-9
PC.
PRBVW
Q38
RIG
ROL
SDF
SPC
SPCBC
SSB
SSE
SSJ
SSO
SSR
SSZ
T5K
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ACLOT
ACVFH
ADCNI
AEIPS
AEUPX
AFJKZ
AFPUW
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c303t-daf05261dfe92cae1cfab6676dba1d12e775c3e8b98085ddca181c48b88c9e683
ISICitedReferencesCount 35
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000679341600002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2212-0955
IngestDate Wed Nov 05 20:53:04 EST 2025
Tue Nov 18 21:00:24 EST 2025
Fri Feb 23 02:42:56 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Time series prediction
LSTM
Temporal convolutional network
Autoencoder
PM2.5
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c303t-daf05261dfe92cae1cfab6676dba1d12e775c3e8b98085ddca181c48b88c9e683
ParticipantIDs crossref_primary_10_1016_j_uclim_2021_100872
crossref_citationtrail_10_1016_j_uclim_2021_100872
elsevier_sciencedirect_doi_10_1016_j_uclim_2021_100872
PublicationCentury 2000
PublicationDate July 2021
2021-07-00
PublicationDateYYYYMMDD 2021-07-01
PublicationDate_xml – month: 07
  year: 2021
  text: July 2021
PublicationDecade 2020
PublicationTitle Urban climate
PublicationYear 2021
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Song, Xue, Pan, Ma, Li (bb0215) 2020; 8
Zhai, Chen (bb0285) 2018; 635
Zhang, Guo, Dong, He, Xu, Chen (bb0290) 2017; 473
Samal, Babu, Das (bb0200) 2021; 36
Kim, Moon (bb0090) 2019
Pan (bb0130) 2018
Batista, Monard (bb0020) 2002; 87
Voynikova, Gocheva-Ilieva, Ivanov, Iliev (bb0230) 2015
Rumaling, Chee, Dayou, Hian Wui Chang, Soon Kai Kong, Sentian (bb0160) 2020
Samal, Panda, Babu, Das (bb0205) 2021
Elangasinghe, Singhal, Dirks, Salmond, Samarasinghe (bb0050) 2014; 94
Pokrovsky, Kwok, Ng (bb0150) 2002; 28
Samal, Babu, Acharya, Das (bb0180) 2020
Russo, Lind, Raischel, Trigo, Mendes (bb0165) 2015; 6
Gondara, Wang (bb0060) 2018
Du, Li, Yang, Horng (bb0045) 2018
Fu, Zhang, Li (bb0055) 2016
Bai, Kolter, Koltun (bb0010) 2018
Yang, Chiang (bb0260) 2020
Murillo-Escobar, Sepulveda-Suescun, Correa, Orrego-Metaute (bb0120) 2019; 29
Mustafa, Tolpekin, Stein (bb0125) 2011; 50
Guo, Yuan (bb0070) 2020; 410
Malarvizhi, Thanamani (bb0105) 2012; 5
Wang, Kong, Guan, Xiong (bb0240) 2019; 7
Pandey, Wang (bb0135) 2019
Tian, Zhang, Li, Lin, Yang (bb0225) 2018; 318
Xue, Zhang, Zhong, Li, Wei (bb0255) 2021; 279
Beretta, Santaniello (bb0025) 2016; 16
Junninen, Niska, Tuppurainen, Ruuskanen, Kolehmainen (bb0085) 2004; 38
Zamani Joharestani, Cao, Ni, Bashir, Talebiesfandarani (bb0280) 2019; 10
Goulier, Paas, Ehrnsperger, Klemm (bb0065) 2020; 17
Guttikunda, Nishadh, Jawahar (bb0075) 2019; 27
Yoon, Zame, van der Schaar (bb0270) 2018; 66
Samal, Babu, Das (bb0195) 2021
Xiao, Yang, Fan, Fan, Al-Qaness (bb0245) 2020; 10
Xie, Ji, Wang, Jia (bb0250) 2019
Bouhlila, Sellaouti (bb0030) 2013; 1
Wang, Maeda, Hayashi, Hsiao, Liu (bb0235) 2001; 130
Saide, Carmichael, Spak, Gallardo, Osses, Mena-Carrasco, Pagowski (bb0170) 2011; 45
Huang, Tang, Zhang, Liu, Liu, Zhang, Cong, Cheng, Yan, Gao (bb0080) 2021; 100
McKendry (bb0110) 2002; 52
Miao, Han, Yao, Lu, Chen, Wang, Zhang (bb0115) 2020; 408
Zhao, Huang, He, He, Ren (bb0305) 2019; 7
Tao, Liu, Li, Sidorov (bb0220) 2019; 7
Liu, Chen (bb0100) 2020
Zahedi, Saba, Elkamel, Bahadori (bb0275) 2014; 42
Zková, Wang, Yang, Li, Tian, Hopke (bb0315) 2016; 134
Qi, Zhou, Lu, Luo, Pham, Yaseen (bb0155) 2020; 263
Samal, Babu, Das, Acharaya (bb0175) 2019
Samal, Babu, Panda, Das (bb0190) 2020
Singh, Singh (bb0210) 2020; 97
Lai, Chang, Yang, Liu (bb0095) 2018
Che, Purushotham, Cho, Sontag, Liu (bb0035) 2018; 8
Zhang, Zhang, Zhao, Lian (bb0300) 2020; 124
Zhang, Liu, Zheng (bb0295) 2019; 21
Pant, Guttikunda, Peltier (bb0140) 2016; 147
Perez, Menares, Ramrez (bb0145) 2020; 32
Yenidoğan, Çayir, Kozan, Dağ, Arslan (bb0265) 2018
Dixon (bb0040) 1979; 9
Araujo, Belotti, Alves, de Souza Tadano, Siqueira (bb0005) 2020; 123
Zhou, Li, Qiao (bb0310) 2017
Bashir, Wei (bb0015) 2018; 276
Samal, Babu, Das (bb0185) 2020
Du (10.1016/j.uclim.2021.100872_bb0045) 2018
Samal (10.1016/j.uclim.2021.100872_bb0205) 2021
Zhang (10.1016/j.uclim.2021.100872_bb0300) 2020; 124
Xiao (10.1016/j.uclim.2021.100872_bb0245) 2020; 10
Lai (10.1016/j.uclim.2021.100872_bb0095) 2018
Araujo (10.1016/j.uclim.2021.100872_bb0005) 2020; 123
Bouhlila (10.1016/j.uclim.2021.100872_bb0030) 2013; 1
Kim (10.1016/j.uclim.2021.100872_bb0090) 2019
Zahedi (10.1016/j.uclim.2021.100872_bb0275) 2014; 42
McKendry (10.1016/j.uclim.2021.100872_bb0110) 2002; 52
Pan (10.1016/j.uclim.2021.100872_bb0130) 2018
Zhang (10.1016/j.uclim.2021.100872_bb0295) 2019; 21
Qi (10.1016/j.uclim.2021.100872_bb0155) 2020; 263
Fu (10.1016/j.uclim.2021.100872_bb0055) 2016
Zková (10.1016/j.uclim.2021.100872_bb0315) 2016; 134
Russo (10.1016/j.uclim.2021.100872_bb0165) 2015; 6
Yoon (10.1016/j.uclim.2021.100872_bb0270) 2018; 66
Zamani Joharestani (10.1016/j.uclim.2021.100872_bb0280) 2019; 10
Junninen (10.1016/j.uclim.2021.100872_bb0085) 2004; 38
Tao (10.1016/j.uclim.2021.100872_bb0220) 2019; 7
Rumaling (10.1016/j.uclim.2021.100872_bb0160) 2020
Voynikova (10.1016/j.uclim.2021.100872_bb0230) 2015
Bashir (10.1016/j.uclim.2021.100872_bb0015) 2018; 276
Mustafa (10.1016/j.uclim.2021.100872_bb0125) 2011; 50
Zhai (10.1016/j.uclim.2021.100872_bb0285) 2018; 635
Malarvizhi (10.1016/j.uclim.2021.100872_bb0105) 2012; 5
Samal (10.1016/j.uclim.2021.100872_bb0185) 2020
Perez (10.1016/j.uclim.2021.100872_bb0145) 2020; 32
Samal (10.1016/j.uclim.2021.100872_bb0190) 2020
Wang (10.1016/j.uclim.2021.100872_bb0235) 2001; 130
Xie (10.1016/j.uclim.2021.100872_bb0250) 2019
Dixon (10.1016/j.uclim.2021.100872_bb0040) 1979; 9
Song (10.1016/j.uclim.2021.100872_bb0215) 2020; 8
Xue (10.1016/j.uclim.2021.100872_bb0255) 2021; 279
Miao (10.1016/j.uclim.2021.100872_bb0115) 2020; 408
Pandey (10.1016/j.uclim.2021.100872_bb0135) 2019
Saide (10.1016/j.uclim.2021.100872_bb0170) 2011; 45
Beretta (10.1016/j.uclim.2021.100872_bb0025) 2016; 16
Yenidoğan (10.1016/j.uclim.2021.100872_bb0265) 2018
Guo (10.1016/j.uclim.2021.100872_bb0070) 2020; 410
Singh (10.1016/j.uclim.2021.100872_bb0210) 2020; 97
Yang (10.1016/j.uclim.2021.100872_bb0260) 2020
Wang (10.1016/j.uclim.2021.100872_bb0240) 2019; 7
Zhao (10.1016/j.uclim.2021.100872_bb0305) 2019; 7
Elangasinghe (10.1016/j.uclim.2021.100872_bb0050) 2014; 94
Liu (10.1016/j.uclim.2021.100872_bb0100) 2020
Huang (10.1016/j.uclim.2021.100872_bb0080) 2021; 100
Gondara (10.1016/j.uclim.2021.100872_bb0060) 2018
Goulier (10.1016/j.uclim.2021.100872_bb0065) 2020; 17
Batista (10.1016/j.uclim.2021.100872_bb0020) 2002; 87
Pant (10.1016/j.uclim.2021.100872_bb0140) 2016; 147
Samal (10.1016/j.uclim.2021.100872_bb0175) 2019
Samal (10.1016/j.uclim.2021.100872_bb0200) 2021; 36
Bai (10.1016/j.uclim.2021.100872_bb0010) 2018
Murillo-Escobar (10.1016/j.uclim.2021.100872_bb0120) 2019; 29
Che (10.1016/j.uclim.2021.100872_bb0035) 2018; 8
Tian (10.1016/j.uclim.2021.100872_bb0225) 2018; 318
Zhou (10.1016/j.uclim.2021.100872_bb0310) 2017
Samal (10.1016/j.uclim.2021.100872_bb0195) 2021
Zhang (10.1016/j.uclim.2021.100872_bb0290) 2017; 473
Samal (10.1016/j.uclim.2021.100872_bb0180) 2020
Guttikunda (10.1016/j.uclim.2021.100872_bb0075) 2019; 27
Pokrovsky (10.1016/j.uclim.2021.100872_bb0150) 2002; 28
References_xml – volume: 97
  start-page: 105524
  year: 2020
  ident: bb0210
  article-title: Investigating the impact of data normalization on classification performance
  publication-title: Appl. Soft Comput.
– start-page: 324
  year: 2016
  end-page: 328
  ident: bb0055
  article-title: Using lstm and gru neural network methods for traffic flow prediction
  publication-title: 31st Youth Academic Annual Conference of Chinese Association of Automation (YAC)
– volume: 87
  start-page: 48
  year: 2002
  ident: bb0020
  article-title: A study of k-nearest neighbour as an imputation method
  publication-title: His
– volume: 147
  start-page: 480
  year: 2016
  end-page: 496
  ident: bb0140
  article-title: Exposure to particulate matter in India: a synthesis of findings and future directions
  publication-title: Environ. Res.
– volume: 66
  start-page: 1477
  year: 2018
  end-page: 1490
  ident: bb0270
  article-title: Estimating missing data in temporal data streams using multi-directional recurrent neural networks
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 8
  start-page: 1
  year: 2018
  end-page: 12
  ident: bb0035
  article-title: Recurrent neural networks for multivariate time series with missing values
  publication-title: Sci. Rep.
– start-page: 260
  year: 2018
  end-page: 272
  ident: bb0060
  article-title: Mida: multiple imputation using denoising autoencoders
  publication-title: Pacific-Asia Conference on Knowledge Discovery and Data Mining
– start-page: 80
  year: 2019
  end-page: 85
  ident: bb0175
  article-title: Time series based air pollution forecasting using sarima and prophet model
  publication-title: Proceedings of the 2019 International Conference on Information Technology and Computer Communications
– volume: 45
  start-page: 2769
  year: 2011
  end-page: 2780
  ident: bb0170
  article-title: Forecasting urban pm10 and pm2. 5 pollution episodes in very stable nocturnal conditions and complex terrain using wrf–chem co tracer model
  publication-title: Atmos. Environ.
– volume: 9
  start-page: 617
  year: 1979
  end-page: 621
  ident: bb0040
  article-title: Pattern recognition with partly missing data
  publication-title: IEEE Trans. Syst. Man Cybernetics
– start-page: 95
  year: 2018
  end-page: 104
  ident: bb0095
  article-title: Modeling long-and short-term temporal patterns with deep neural networks
  publication-title: The 41st International ACM SIGIR Conference on Research & Development in Information Retrieval
– volume: 21
  start-page: 1480
  year: 2019
  end-page: 1490
  ident: bb0295
  article-title: Short-term prediction of passenger demand in multi-zone level: temporal convolutional neural network with multi-task learning
  publication-title: IEEE Trans. Intell. Transp. Syst.
– volume: 473
  start-page: 20170457
  year: 2017
  ident: bb0290
  article-title: Cautionary tales on air-quality improvement in Beijing
  publication-title: Proc. R. Soc. A: Math. Phys. Eng. Sci.
– volume: 276
  start-page: 23
  year: 2018
  end-page: 30
  ident: bb0015
  article-title: Handling missing data in multivariate time series using a vector autoregressive model-imputation (var-im) algorithm
  publication-title: Neurocomputing
– volume: 52
  start-page: 1096
  year: 2002
  end-page: 1101
  ident: bb0110
  article-title: Evaluation of artificial neural networks for fine particulate pollution (pm10 and pm2. 5) forecasting
  publication-title: J. Air Waste Manage. Assoc.
– volume: 1
  start-page: 4
  year: 2013
  ident: bb0030
  article-title: Multiple imputation using chained equations for missing data in timss: a case study
  publication-title: Large-scale Assess. Educ.
– volume: 410
  start-page: 387
  year: 2020
  end-page: 393
  ident: bb0070
  article-title: Short-term traffic speed forecasting based on graph attention temporal convolutional networks
  publication-title: Neurocomputing
– volume: 130
  start-page: 391
  year: 2001
  end-page: 396
  ident: bb0235
  article-title: A nested air quality prediction modeling system for urban and regional scales: application for high-ozone episode in Taiwan
  publication-title: Water Air Soil Pollut.
– volume: 7
  start-page: 76690
  year: 2019
  end-page: 76698
  ident: bb0220
  article-title: Air pollution forecasting using a deep learning model based on 1d convnets and bidirectional gru
  publication-title: IEEE Access
– start-page: 14
  year: 2020
  ident: bb0160
  article-title: Missing value imputation for pm 10 concentration in sabah using nearest neighbour method (nnm) and expectation-maximization (em) algorithm
  publication-title: Asian J. Atmos. Environ. (AJAE)
– volume: 134
  start-page: 84
  year: 2016
  end-page: 95
  ident: bb0315
  article-title: On the source contribution to Beijing pm2. 5 concentrations
  publication-title: Atmos. Environ.
– start-page: 177
  year: 2020
  end-page: 186
  ident: bb0185
  article-title: The optimal routing solution for smart city users
  publication-title: Electronic Systems and Intelligent Computing
– year: 2018
  ident: bb0010
  article-title: An Empirical Evaluation of Generic Convolutional and Recurrent Networks for Sequence Modeling
– start-page: 121777
  year: 2020
  ident: bb0100
  article-title: Spatial air quality index prediction model based on decomposition, adaptive boosting, and three-stage feature selection: a case study in China
  publication-title: J. Clean. Prod.
– volume: 100
  start-page: 1
  year: 2021
  end-page: 10
  ident: bb0080
  article-title: Characteristics of pm2. 5 pollution in Beijing after the improvement of air quality
  publication-title: J. Environ. Sci.
– start-page: 1
  year: 2020
  end-page: 6
  ident: bb0180
  article-title: Long term forecasting of ambient air quality using deep learning approach
  publication-title: 2020 IEEE 17th India Council International Conference (INDICON)
– volume: 6
  start-page: 540
  year: 2015
  end-page: 549
  ident: bb0165
  article-title: Neural network forecast of daily pollution concentration using optimal meteorological data at synoptic and local scales
  publication-title: Atmos. Pollut. Res.
– volume: 27
  start-page: 124
  year: 2019
  end-page: 141
  ident: bb0075
  article-title: Air pollution knowledge assessments (apna) for 20 indian cities
  publication-title: Urban Clim.
– year: 2018
  ident: bb0045
  article-title: Deep Air Quality Forecasting using Hybrid Deep Learning Framework
– start-page: 6875
  year: 2019
  end-page: 6879
  ident: bb0135
  article-title: Tcnn: Temporal convolutional neural network for real-time speech enhancement in the time domain
  publication-title: ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
– volume: 50
  start-page: 1821
  year: 2011
  end-page: 1831
  ident: bb0125
  article-title: Application of the expectation maximization algorithm to estimate missing values in gaussian bayesian network modeling for forest growth
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 38
  start-page: 2895
  year: 2004
  end-page: 2907
  ident: bb0085
  article-title: Methods for imputation of missing values in air quality data sets
  publication-title: Atmos. Environ.
– volume: 408
  start-page: 285
  year: 2020
  end-page: 291
  ident: bb0115
  article-title: Application of lstm for short term fog forecasting based on meteorological elements
  publication-title: Neurocomputing.
– volume: 635
  start-page: 644
  year: 2018
  end-page: 658
  ident: bb0285
  article-title: Development of a stacked ensemble model for forecasting and analyzing daily average pm2. 5 concentrations in Beijing, China
  publication-title: Sci. Total Environ.
– start-page: 3920
  year: 2017
  end-page: 3924
  ident: bb0310
  article-title: Prediction of
  publication-title: 2017 36th Chinese Control Conference (CCC)
– volume: 279
  start-page: 123742
  year: 2021
  ident: bb0255
  article-title: Spatiotemporal
  publication-title: J. Clean. Prod.
– volume: 10
  start-page: 1
  year: 2020
  end-page: 11
  ident: bb0245
  article-title: An improved deep learning model for predicting daily pm2. 5 concentration
  publication-title: Sci. Rep.
– volume: 7
  start-page: 69524
  year: 2019
  end-page: 69534
  ident: bb0240
  article-title: Air quality forecasting based on gated recurrent long short term memory model in internet of things
  publication-title: IEEE Access
– start-page: 032073
  year: 2019
  ident: bb0250
  article-title: Research of
  publication-title: IOP Conference Series: Earth and Environmental Science
– volume: 16
  start-page: 74
  year: 2016
  ident: bb0025
  article-title: Nearest neighbor imputation algorithms: a critical evaluation
  publication-title: BMC Med. Inform. Decision Making
– volume: 263
  start-page: 114517
  year: 2020
  ident: bb0155
  article-title: Particulate matter concentration from open-cut coal mines: a hybrid machine learning estimation
  publication-title: Environ. Pollut.
– start-page: 107
  year: 2020
  end-page: 111
  ident: bb0260
  article-title: Use case and performance analyses for missing data imputation methods in big data analytics
  publication-title: Proceedings of 2020 the 6th International Conference on Computing and Data Engineering
– start-page: 621
  year: 2018
  end-page: 624
  ident: bb0265
  article-title: Bitcoin forecasting using Arima and prophet
  publication-title: Proc. IEEE 3rd Int. Conf. on Computer Science and Engineering (UBMK)
– start-page: 1
  year: 2020
  end-page: 6
  ident: bb0190
  article-title: Data driven multivariate air quality forecasting using dynamic fine tuning autoencoder layer
  publication-title: 2020 IEEE 17th India Council International Conference (INDICON)
– volume: 94
  start-page: 106
  year: 2014
  end-page: 116
  ident: bb0050
  article-title: Complex time series analysis of pm10 and pm2. 5 for a coastal site using artificial neural network modelling and k-means clustering
  publication-title: Atmos. Environ.
– volume: 7
  start-page: 134903
  year: 2019
  end-page: 134919
  ident: bb0305
  article-title: Regional spatiotemporal collaborative prediction model for air quality
  publication-title: IEEE Access
– volume: 5
  start-page: 5
  year: 2012
  end-page: 7
  ident: bb0105
  article-title: K-nearest neighbor in missing data imputation
  publication-title: Int. J. Eng. Res. Dev.
– volume: 10
  start-page: 373
  year: 2019
  ident: bb0280
  article-title: prediction based on random forest, xgboost, and deep learning using multisource remote sensing data
  publication-title: Atmosphere
– volume: 124
  start-page: 104600
  year: 2020
  ident: bb0300
  article-title: Constructing a
  publication-title: Environ. Model. Softw.
– year: 2021
  ident: bb0195
  article-title: Spatio-Temporal Prediction of Air Quality Using Distance Based Interpolation and Deep Learning Techniques
– volume: 28
  start-page: 119
  year: 2002
  end-page: 127
  ident: bb0150
  article-title: Fuzzy logic approach for description of meteorological impacts on urban air pollution species: a Hong Kong case study
  publication-title: Comput. Geosci.
– volume: 17
  start-page: 2025
  year: 2020
  ident: bb0065
  article-title: Modelling of urban air pollutant concentrations with artificial neural networks using novel input variables
  publication-title: Int. J. Environ. Res. Public Health
– volume: 32
  year: 2020
  ident: bb0145
  article-title: Pm2. 5 forecasting in Coyhaique, the most polluted city in the americas
  publication-title: Urban Clim.
– volume: 8
  start-page: 16726
  year: 2020
  end-page: 16741
  ident: bb0215
  article-title: Hourly heat load prediction model based on temporal convolutional neural network
  publication-title: IEEE Access
– volume: 36
  year: 2021
  ident: bb0200
  article-title: Multi-directional temporal convolutional artificial neural network for
  publication-title: Urban Clim.
– volume: 123
  start-page: 104567
  year: 2020
  ident: bb0005
  article-title: Ensemble method based on artificial neural networks to estimate air pollution health risks
  publication-title: Environ. Model. Softw.
– start-page: 1
  year: 2019
  end-page: 10
  ident: bb0090
  article-title: Bilstm model based on multivariate time series data in multiple field for forecasting trading area
  publication-title: J. Ambient. Intell. Humaniz. Comput.
– start-page: 102923
  year: 2021
  ident: bb0205
  article-title: An improved pollution forecasting model with meteorological impact using multiple imputation and fine-tuning approach
  publication-title: Sustain. Cities Soc.
– volume: 29
  start-page: 100473
  year: 2019
  ident: bb0120
  article-title: Forecasting concentrations of air pollutants using support vector regression improved with particle swarm optimization: case study in aburrá valley, Colombia
  publication-title: Urban Clim.
– volume: 318
  start-page: 297
  year: 2018
  end-page: 305
  ident: bb0225
  article-title: Lstm-based traffic flow prediction with missing data
  publication-title: Neurocomputing
– start-page: 100005
  year: 2015
  ident: bb0230
  article-title: Studying the effect of meteorological factors on the so2 and pm10 pollution levels with refined versions of the sarima model
  publication-title: AIP Conference Proceedings
– volume: 42
  start-page: 871
  year: 2014
  end-page: 879
  ident: bb0275
  article-title: Ozone pollution prediction around industrial areas using fuzzy neural network approach
  publication-title: CLEAN–Soil, Air, Water
– start-page: 012127
  year: 2018
  ident: bb0130
  article-title: Application of xgboost algorithm in hourly
  publication-title: IOP Conference Series: Earth and Environmental Science
– start-page: 260
  year: 2018
  ident: 10.1016/j.uclim.2021.100872_bb0060
  article-title: Mida: multiple imputation using denoising autoencoders
– volume: 10
  start-page: 373
  year: 2019
  ident: 10.1016/j.uclim.2021.100872_bb0280
  article-title: PM2.5 prediction based on random forest, xgboost, and deep learning using multisource remote sensing data
  publication-title: Atmosphere
  doi: 10.3390/atmos10070373
– volume: 134
  start-page: 84
  year: 2016
  ident: 10.1016/j.uclim.2021.100872_bb0315
  article-title: On the source contribution to Beijing pm2. 5 concentrations
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2016.03.047
– volume: 130
  start-page: 391
  year: 2001
  ident: 10.1016/j.uclim.2021.100872_bb0235
  article-title: A nested air quality prediction modeling system for urban and regional scales: application for high-ozone episode in Taiwan
  publication-title: Water Air Soil Pollut.
  doi: 10.1023/A:1013833217916
– start-page: 177
  year: 2020
  ident: 10.1016/j.uclim.2021.100872_bb0185
  article-title: The optimal routing solution for smart city users
– start-page: 621
  year: 2018
  ident: 10.1016/j.uclim.2021.100872_bb0265
  article-title: Bitcoin forecasting using Arima and prophet
– volume: 42
  start-page: 871
  year: 2014
  ident: 10.1016/j.uclim.2021.100872_bb0275
  article-title: Ozone pollution prediction around industrial areas using fuzzy neural network approach
  publication-title: CLEAN–Soil, Air, Water
  doi: 10.1002/clen.201200596
– volume: 473
  start-page: 20170457
  year: 2017
  ident: 10.1016/j.uclim.2021.100872_bb0290
  article-title: Cautionary tales on air-quality improvement in Beijing
  publication-title: Proc. R. Soc. A: Math. Phys. Eng. Sci.
  doi: 10.1098/rspa.2017.0457
– volume: 32
  year: 2020
  ident: 10.1016/j.uclim.2021.100872_bb0145
  article-title: Pm2. 5 forecasting in Coyhaique, the most polluted city in the americas
  publication-title: Urban Clim.
  doi: 10.1016/j.uclim.2020.100608
– start-page: 121777
  year: 2020
  ident: 10.1016/j.uclim.2021.100872_bb0100
  article-title: Spatial air quality index prediction model based on decomposition, adaptive boosting, and three-stage feature selection: a case study in China
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2020.121777
– volume: 279
  start-page: 123742
  year: 2021
  ident: 10.1016/j.uclim.2021.100872_bb0255
  article-title: Spatiotemporal PM2.5 variations and its response to the industrial structure from 2000 to 2018 in the Beijing-Tianjin-Hebei region
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2020.123742
– volume: 9
  start-page: 617
  year: 1979
  ident: 10.1016/j.uclim.2021.100872_bb0040
  article-title: Pattern recognition with partly missing data
  publication-title: IEEE Trans. Syst. Man Cybernetics
  doi: 10.1109/TSMC.1979.4310090
– volume: 8
  start-page: 16726
  year: 2020
  ident: 10.1016/j.uclim.2021.100872_bb0215
  article-title: Hourly heat load prediction model based on temporal convolutional neural network
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2968536
– volume: 100
  start-page: 1
  year: 2021
  ident: 10.1016/j.uclim.2021.100872_bb0080
  article-title: Characteristics of pm2. 5 pollution in Beijing after the improvement of air quality
  publication-title: J. Environ. Sci.
  doi: 10.1016/j.jes.2020.06.004
– volume: 5
  start-page: 5
  year: 2012
  ident: 10.1016/j.uclim.2021.100872_bb0105
  article-title: K-nearest neighbor in missing data imputation
  publication-title: Int. J. Eng. Res. Dev.
– start-page: 032073
  year: 2019
  ident: 10.1016/j.uclim.2021.100872_bb0250
  article-title: Research of PM2.5 prediction system based on cnns-gru in Wuxi urban area
– volume: 94
  start-page: 106
  year: 2014
  ident: 10.1016/j.uclim.2021.100872_bb0050
  article-title: Complex time series analysis of pm10 and pm2. 5 for a coastal site using artificial neural network modelling and k-means clustering
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2014.04.051
– volume: 21
  start-page: 1480
  year: 2019
  ident: 10.1016/j.uclim.2021.100872_bb0295
  article-title: Short-term prediction of passenger demand in multi-zone level: temporal convolutional neural network with multi-task learning
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2019.2909571
– start-page: 012127
  year: 2018
  ident: 10.1016/j.uclim.2021.100872_bb0130
  article-title: Application of xgboost algorithm in hourly PM2.5 concentration prediction
– volume: 29
  start-page: 100473
  year: 2019
  ident: 10.1016/j.uclim.2021.100872_bb0120
  article-title: Forecasting concentrations of air pollutants using support vector regression improved with particle swarm optimization: case study in aburrá valley, Colombia
  publication-title: Urban Clim.
  doi: 10.1016/j.uclim.2019.100473
– start-page: 80
  year: 2019
  ident: 10.1016/j.uclim.2021.100872_bb0175
  article-title: Time series based air pollution forecasting using sarima and prophet model
– volume: 45
  start-page: 2769
  year: 2011
  ident: 10.1016/j.uclim.2021.100872_bb0170
  article-title: Forecasting urban pm10 and pm2. 5 pollution episodes in very stable nocturnal conditions and complex terrain using wrf–chem co tracer model
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2011.02.001
– volume: 6
  start-page: 540
  year: 2015
  ident: 10.1016/j.uclim.2021.100872_bb0165
  article-title: Neural network forecast of daily pollution concentration using optimal meteorological data at synoptic and local scales
  publication-title: Atmos. Pollut. Res.
  doi: 10.5094/APR.2015.060
– volume: 318
  start-page: 297
  year: 2018
  ident: 10.1016/j.uclim.2021.100872_bb0225
  article-title: Lstm-based traffic flow prediction with missing data
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.08.067
– volume: 66
  start-page: 1477
  year: 2018
  ident: 10.1016/j.uclim.2021.100872_bb0270
  article-title: Estimating missing data in temporal data streams using multi-directional recurrent neural networks
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2018.2874712
– start-page: 324
  year: 2016
  ident: 10.1016/j.uclim.2021.100872_bb0055
  article-title: Using lstm and gru neural network methods for traffic flow prediction
– volume: 276
  start-page: 23
  year: 2018
  ident: 10.1016/j.uclim.2021.100872_bb0015
  article-title: Handling missing data in multivariate time series using a vector autoregressive model-imputation (var-im) algorithm
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.03.097
– start-page: 1
  year: 2020
  ident: 10.1016/j.uclim.2021.100872_bb0180
  article-title: Long term forecasting of ambient air quality using deep learning approach
– start-page: 1
  year: 2020
  ident: 10.1016/j.uclim.2021.100872_bb0190
  article-title: Data driven multivariate air quality forecasting using dynamic fine tuning autoencoder layer
– start-page: 102923
  year: 2021
  ident: 10.1016/j.uclim.2021.100872_bb0205
  article-title: An improved pollution forecasting model with meteorological impact using multiple imputation and fine-tuning approach
  publication-title: Sustain. Cities Soc.
  doi: 10.1016/j.scs.2021.102923
– volume: 7
  start-page: 69524
  year: 2019
  ident: 10.1016/j.uclim.2021.100872_bb0240
  article-title: Air quality forecasting based on gated recurrent long short term memory model in internet of things
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2917277
– volume: 147
  start-page: 480
  year: 2016
  ident: 10.1016/j.uclim.2021.100872_bb0140
  article-title: Exposure to particulate matter in India: a synthesis of findings and future directions
  publication-title: Environ. Res.
  doi: 10.1016/j.envres.2016.03.011
– year: 2018
  ident: 10.1016/j.uclim.2021.100872_bb0045
– volume: 408
  start-page: 285
  year: 2020
  ident: 10.1016/j.uclim.2021.100872_bb0115
  article-title: Application of lstm for short term fog forecasting based on meteorological elements
  publication-title: Neurocomputing.
  doi: 10.1016/j.neucom.2019.12.129
– volume: 8
  start-page: 1
  year: 2018
  ident: 10.1016/j.uclim.2021.100872_bb0035
  article-title: Recurrent neural networks for multivariate time series with missing values
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-24271-9
– volume: 263
  start-page: 114517
  year: 2020
  ident: 10.1016/j.uclim.2021.100872_bb0155
  article-title: Particulate matter concentration from open-cut coal mines: a hybrid machine learning estimation
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2020.114517
– start-page: 6875
  year: 2019
  ident: 10.1016/j.uclim.2021.100872_bb0135
  article-title: Tcnn: Temporal convolutional neural network for real-time speech enhancement in the time domain
– start-page: 100005
  year: 2015
  ident: 10.1016/j.uclim.2021.100872_bb0230
  article-title: Studying the effect of meteorological factors on the so2 and pm10 pollution levels with refined versions of the sarima model
  doi: 10.1063/1.4934342
– volume: 1
  start-page: 4
  year: 2013
  ident: 10.1016/j.uclim.2021.100872_bb0030
  article-title: Multiple imputation using chained equations for missing data in timss: a case study
  publication-title: Large-scale Assess. Educ.
  doi: 10.1186/2196-0739-1-4
– volume: 410
  start-page: 387
  year: 2020
  ident: 10.1016/j.uclim.2021.100872_bb0070
  article-title: Short-term traffic speed forecasting based on graph attention temporal convolutional networks
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2020.06.001
– volume: 7
  start-page: 76690
  year: 2019
  ident: 10.1016/j.uclim.2021.100872_bb0220
  article-title: Air pollution forecasting using a deep learning model based on 1d convnets and bidirectional gru
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2921578
– volume: 87
  start-page: 48
  year: 2002
  ident: 10.1016/j.uclim.2021.100872_bb0020
  article-title: A study of k-nearest neighbour as an imputation method
  publication-title: His
– volume: 52
  start-page: 1096
  year: 2002
  ident: 10.1016/j.uclim.2021.100872_bb0110
  article-title: Evaluation of artificial neural networks for fine particulate pollution (pm10 and pm2. 5) forecasting
  publication-title: J. Air Waste Manage. Assoc.
  doi: 10.1080/10473289.2002.10470836
– year: 2021
  ident: 10.1016/j.uclim.2021.100872_bb0195
– volume: 635
  start-page: 644
  year: 2018
  ident: 10.1016/j.uclim.2021.100872_bb0285
  article-title: Development of a stacked ensemble model for forecasting and analyzing daily average pm2. 5 concentrations in Beijing, China
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2018.04.040
– volume: 10
  start-page: 1
  year: 2020
  ident: 10.1016/j.uclim.2021.100872_bb0245
  article-title: An improved deep learning model for predicting daily pm2. 5 concentration
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-77757-w
– volume: 124
  start-page: 104600
  year: 2020
  ident: 10.1016/j.uclim.2021.100872_bb0300
  article-title: Constructing a PM2.5 concentration prediction model by combining auto-encoder with bi-lstm neural networks
  publication-title: Environ. Model. Softw.
  doi: 10.1016/j.envsoft.2019.104600
– volume: 28
  start-page: 119
  year: 2002
  ident: 10.1016/j.uclim.2021.100872_bb0150
  article-title: Fuzzy logic approach for description of meteorological impacts on urban air pollution species: a Hong Kong case study
  publication-title: Comput. Geosci.
  doi: 10.1016/S0098-3004(01)00020-6
– start-page: 3920
  year: 2017
  ident: 10.1016/j.uclim.2021.100872_bb0310
  article-title: Prediction of PM2.5 concentration based on recurrent fuzzy neural network
– volume: 38
  start-page: 2895
  year: 2004
  ident: 10.1016/j.uclim.2021.100872_bb0085
  article-title: Methods for imputation of missing values in air quality data sets
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2004.02.026
– volume: 36
  year: 2021
  ident: 10.1016/j.uclim.2021.100872_bb0200
  article-title: Multi-directional temporal convolutional artificial neural network for PM2.5 forecasting with missing values: a deep learning approach
  publication-title: Urban Clim.
  doi: 10.1016/j.uclim.2021.100800
– start-page: 107
  year: 2020
  ident: 10.1016/j.uclim.2021.100872_bb0260
  article-title: Use case and performance analyses for missing data imputation methods in big data analytics
– volume: 16
  start-page: 74
  year: 2016
  ident: 10.1016/j.uclim.2021.100872_bb0025
  article-title: Nearest neighbor imputation algorithms: a critical evaluation
  publication-title: BMC Med. Inform. Decision Making
  doi: 10.1186/s12911-016-0318-z
– volume: 97
  start-page: 105524
  year: 2020
  ident: 10.1016/j.uclim.2021.100872_bb0210
  article-title: Investigating the impact of data normalization on classification performance
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2019.105524
– volume: 123
  start-page: 104567
  year: 2020
  ident: 10.1016/j.uclim.2021.100872_bb0005
  article-title: Ensemble method based on artificial neural networks to estimate air pollution health risks
  publication-title: Environ. Model. Softw.
  doi: 10.1016/j.envsoft.2019.104567
– start-page: 1
  year: 2019
  ident: 10.1016/j.uclim.2021.100872_bb0090
  article-title: Bilstm model based on multivariate time series data in multiple field for forecasting trading area
  publication-title: J. Ambient. Intell. Humaniz. Comput.
– start-page: 14
  year: 2020
  ident: 10.1016/j.uclim.2021.100872_bb0160
  article-title: Missing value imputation for pm 10 concentration in sabah using nearest neighbour method (nnm) and expectation-maximization (em) algorithm
  publication-title: Asian J. Atmos. Environ. (AJAE)
– start-page: 95
  year: 2018
  ident: 10.1016/j.uclim.2021.100872_bb0095
  article-title: Modeling long-and short-term temporal patterns with deep neural networks
– volume: 50
  start-page: 1821
  year: 2011
  ident: 10.1016/j.uclim.2021.100872_bb0125
  article-title: Application of the expectation maximization algorithm to estimate missing values in gaussian bayesian network modeling for forest growth
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2011.2168823
– volume: 27
  start-page: 124
  year: 2019
  ident: 10.1016/j.uclim.2021.100872_bb0075
  article-title: Air pollution knowledge assessments (apna) for 20 indian cities
  publication-title: Urban Clim.
  doi: 10.1016/j.uclim.2018.11.005
– year: 2018
  ident: 10.1016/j.uclim.2021.100872_bb0010
– volume: 17
  start-page: 2025
  year: 2020
  ident: 10.1016/j.uclim.2021.100872_bb0065
  article-title: Modelling of urban air pollutant concentrations with artificial neural networks using novel input variables
  publication-title: Int. J. Environ. Res. Public Health
  doi: 10.3390/ijerph17062025
– volume: 7
  start-page: 134903
  year: 2019
  ident: 10.1016/j.uclim.2021.100872_bb0305
  article-title: Regional spatiotemporal collaborative prediction model for air quality
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2941732
SSID ssj0002012961
Score 2.3716435
Snippet In recent years, people are paying more attention to improve air quality levels to mitigate its negative impact on human health. So, effective air pollution...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 100872
SubjectTerms Autoencoder
LSTM
PM2.5
Temporal convolutional network
Time series prediction
Title Temporal convolutional denoising autoencoder network for air pollution prediction with missing values
URI https://dx.doi.org/10.1016/j.uclim.2021.100872
Volume 38
WOSCitedRecordID wos000679341600002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 2212-0955
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002012961
  issn: 2212-0955
  databaseCode: AIEXJ
  dateStart: 20121101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Pb9MwFLZg48AFgQCxMSYfuJVUxEsb-zjth4DDDnSTeoucZ0dkKu6Utmj893vPdtxCpwmQuESV2xe3fl9fXl4-f4-x9yaHQhgosjFefLLCmjyrLZEcbWlHAKqB5qNvNlFeXMjpVPVPdBe-nUDpnLy9VTf_1dU4hs6mrbN_4e50UhzA1-h0PKLb8fhnjg9iUzNPKI8z0ZMY6-atLwzo1XJO8pWkIuECCzxwKduOejYECxIPMG3oI-5rtYgHb03q4JF3GHPaq67GIAGzFpPfBJOJ_q7Dxp-hDyTfnB581a5dV07rlX973nV6MME89Ge6QJyGTWYT6m-8GHgS-GZxQuSJyBorZlu7ZiiwCUF0EBXkeYf2nrEYmYPuy1aQD_WG6-GKftmQpiWuhwwtgH5Tz57Qiem8IvfyecVjtivKkcIAuHv8-Wz6JRXkBJXkvL5u-i69SpXnA27Ndn8ms5GdXD5nz-JtBT8OcHjBHln3ktkeCvwXKPAEBb4BBR6hwBEKHKHAExT4GgqcoMAjFHiAwit2dX52efIpi201MsB8ZZkZ3ZDIT24a_FOCtjk0uiaqs6l1bnJhy3IER1bWSmI-bgxozAKhkLWUoOxYHr1mO27u7BvGLUglpVamLFQBwkiS_0cDJc0Ih8QeE_0SVRA156n1yazqyYXXlV_Xita1Cuu6xz4ko5sgufLwx8f92lcxawzZYIV4echw_18N37Kna6wfsJ1lt7Lv2BP4sWwX3WHE1R3En5e5
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Temporal+convolutional+denoising+autoencoder+network+for+air+pollution+prediction+with+missing+values&rft.jtitle=Urban+climate&rft.au=Samal%2C+K.+Krishna+Rani&rft.au=Babu%2C+Korra+Sathya&rft.au=Das%2C+Santos+Kumar&rft.date=2021-07-01&rft.pub=Elsevier+B.V&rft.issn=2212-0955&rft.eissn=2212-0955&rft.volume=38&rft_id=info:doi/10.1016%2Fj.uclim.2021.100872&rft.externalDocID=S2212095521001024
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2212-0955&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2212-0955&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2212-0955&client=summon