An inertial Mann forward-backward splitting algorithm of variational inclusion problems and its applications
In this paper, we introduce the inertial Mann forward-backward splitting algorithm for solving variational inclusion problem of the sum of two operators, the one is maximally monotone and the other is monotone and Lipschitz continuous. Under standard assumptions, we prove the weak convergence theore...
Gespeichert in:
| Veröffentlicht in: | Chaos, solitons and fractals Jg. 158; S. 112048 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier Ltd
01.05.2022
|
| Schlagworte: | |
| ISSN: | 0960-0779, 1873-2887 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | In this paper, we introduce the inertial Mann forward-backward splitting algorithm for solving variational inclusion problem of the sum of two operators, the one is maximally monotone and the other is monotone and Lipschitz continuous. Under standard assumptions, we prove the weak convergence theorem of the proposed algorithm. We show that the algorithm is flexible to use by choosing the variable stepsizes and two different algorithms are shown by choosing constant stepsize and update stepsize. Moreover, we apply our algorithms to solve data classification using the Wisconsin original breast cancer data set as a training set. We also compare our algorithms with the other two algorithms to show the efficiency of the algorithm and show suitably learns the training dataset and generalizes well to a hold-out dataset of the algorithm by considering overfitting. Finally, we apply our algorithms to solve signal recovery and show the efficiency of the algorithm by compare with the other two algorithms. The results of data classification and signal recovery showed that choosing the right stepsizes of the algorithm would be a good efficient for the different problems.
46T99, 47B02, 47H05, 47J25, 49M37.
•The paper proposed an advanced forward-backward splitting algorithm in combination with an inertial technique and Mann algorithm for solving variational inclusion problems.•The weak convergence result has been established in Hilbert spaces subject to certain conditions.•It developed an application to predict breast cancer through the proposed algorithm.•It used breast cancer Wisconsin original data set as a training set to show efficiency of the newly developed algorithm by comparing with two other algorithms in term of three key parameters viz. accuracy, recall and precision.•It developed an application to signal recovery and showed the efficiency of the algorithm by comparing with the other two algorithms. |
|---|---|
| AbstractList | In this paper, we introduce the inertial Mann forward-backward splitting algorithm for solving variational inclusion problem of the sum of two operators, the one is maximally monotone and the other is monotone and Lipschitz continuous. Under standard assumptions, we prove the weak convergence theorem of the proposed algorithm. We show that the algorithm is flexible to use by choosing the variable stepsizes and two different algorithms are shown by choosing constant stepsize and update stepsize. Moreover, we apply our algorithms to solve data classification using the Wisconsin original breast cancer data set as a training set. We also compare our algorithms with the other two algorithms to show the efficiency of the algorithm and show suitably learns the training dataset and generalizes well to a hold-out dataset of the algorithm by considering overfitting. Finally, we apply our algorithms to solve signal recovery and show the efficiency of the algorithm by compare with the other two algorithms. The results of data classification and signal recovery showed that choosing the right stepsizes of the algorithm would be a good efficient for the different problems.
46T99, 47B02, 47H05, 47J25, 49M37.
•The paper proposed an advanced forward-backward splitting algorithm in combination with an inertial technique and Mann algorithm for solving variational inclusion problems.•The weak convergence result has been established in Hilbert spaces subject to certain conditions.•It developed an application to predict breast cancer through the proposed algorithm.•It used breast cancer Wisconsin original data set as a training set to show efficiency of the newly developed algorithm by comparing with two other algorithms in term of three key parameters viz. accuracy, recall and precision.•It developed an application to signal recovery and showed the efficiency of the algorithm by comparing with the other two algorithms. |
| ArticleNumber | 112048 |
| Author | Peeyada, Pronpat Suparatulatorn, Raweerote Cholamjiak, Watcharaporn |
| Author_xml | – sequence: 1 givenname: Pronpat surname: Peeyada fullname: Peeyada, Pronpat organization: School of Science, University of Phayao, Phayao 56000, Thailand – sequence: 2 givenname: Raweerote surname: Suparatulatorn fullname: Suparatulatorn, Raweerote organization: Department of Mathematics, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand – sequence: 3 givenname: Watcharaporn surname: Cholamjiak fullname: Cholamjiak, Watcharaporn email: watcharaporn.ch@up.ac.th organization: School of Science, University of Phayao, Phayao 56000, Thailand |
| BookMark | eNqFkD1PwzAQhi1UJNrCL2DxH0g4J2liDwxVxZdUxAKzdXHs1iW1K9sU8e9JWyYGmN53uOd090zIyHmnCblmkDNg9c0mV2v0MS-gKHLGCqj4GRkz3pRZwXkzImMQNWTQNOKCTGLcAACDuhiTfu6odTokiz19Rueo8eETQ5e1qN4PhcZdb1OybkWxX_lg03pLvaF7DBaT9W4ArVP9Rxw63QXf9nobKbqO2jTkbsDVcTBeknODfdRXPzklb_d3r4vHbPny8LSYLzNVQpmyDsuKF7yrAAU3RmFVz6BhJQPTCBTKGK0L5MNjqqsbMG0Js8bwrhUghBnoKSlPe1XwMQZt5C7YLYYvyUAehMmNPAqTB2HyJGygxC9K2XQ8PAW0_T_s7YnVw1t7q4OMymqndGeDVkl23v7JfwPLrI0M |
| CitedBy_id | crossref_primary_10_1155_2023_1910411 crossref_primary_10_1016_j_cam_2023_115702 crossref_primary_10_3390_sym16081091 crossref_primary_10_3390_axioms13110740 crossref_primary_10_1007_s40314_025_03318_4 crossref_primary_10_1007_s12215_025_01186_9 crossref_primary_10_3390_math13172783 crossref_primary_10_3390_math11030641 |
| Cites_doi | 10.1007/s10483-008-0502-y 10.1155/2012/259813 10.1007/s10092-018-0292-1 10.1016/j.compbiomed.2012.10.003 10.1016/j.ins.2019.12.045 10.1137/050626090 10.1007/s10898-011-9772-4 10.1088/0266-5611/29/2/025011 10.1137/080716542 10.1016/j.neucom.2008.01.003 10.1007/s11075-018-0504-4 10.1137/S0036144593251710 10.1016/0041-5553(64)90137-5 10.1155/2012/109236 10.1016/j.asoc.2019.105740 10.1016/S0377-0427(02)00906-8 10.1111/j.2517-6161.1996.tb02080.x 10.1007/s11075-020-00999-2 10.1007/s10489-017-1110-1 10.3934/cpaa.2004.3.791 10.1007/s10851-014-0523-2 |
| ContentType | Journal Article |
| Copyright | 2022 Elsevier Ltd |
| Copyright_xml | – notice: 2022 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.chaos.2022.112048 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Sciences (General) Mathematics |
| EISSN | 1873-2887 |
| ExternalDocumentID | 10_1016_j_chaos_2022_112048 S0960077922002582 |
| GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29B 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABMAC ABNEU ABTAH ABXDB ABYKQ ACDAQ ACFVG ACGFS ACNNM ACRLP ADBBV ADEZE ADMUD AEBSH AEKER AENEX AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BBWZM BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HLZ HMV HVGLF HZ~ IHE J1W KOM LG9 M38 M41 MO0 N9A NDZJH O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SBC SDF SDG SDP SES SEW SPC SPCBC SPD SPG SSQ SSZ T5K WUQ XPP ZY4 ~G- 9DU AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c303t-da34828d40a98ffca465071310f79a9cffee2a8887cd670fb3057f8db9099fda3 |
| ISICitedReferencesCount | 21 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000798778300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0960-0779 |
| IngestDate | Sat Nov 29 07:09:42 EST 2025 Tue Nov 18 21:32:38 EST 2025 Fri Feb 23 02:38:54 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Variational inclusion problem Data classification Signal recovery Forward-backward splitting algorithm Inertial methods Machine learning |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c303t-da34828d40a98ffca465071310f79a9cffee2a8887cd670fb3057f8db9099fda3 |
| ParticipantIDs | crossref_primary_10_1016_j_chaos_2022_112048 crossref_citationtrail_10_1016_j_chaos_2022_112048 elsevier_sciencedirect_doi_10_1016_j_chaos_2022_112048 |
| PublicationCentury | 2000 |
| PublicationDate | May 2022 2022-05-00 |
| PublicationDateYYYYMMDD | 2022-05-01 |
| PublicationDate_xml | – month: 05 year: 2022 text: May 2022 |
| PublicationDecade | 2020 |
| PublicationTitle | Chaos, solitons and fractals |
| PublicationYear | 2022 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Polyak (bb0100) 1964; 4 Parikh, Boyd (bb0085) 2013; 3 Plawiak, Abdar, Plawiak, Makarenkov, Acharya (bb0095) 2020; 516 Moudafi, Oliny (bb0075) 2003; 155 Nesterov (bb0080) 1983; 269 Zhang, Lee, Chan (bb0155) 2008; 29 Lorenz, Pock (bb0065) 2015; 51 Sahu, Cho, Dong, Kashyap, Li (bb0105) 2021; 87 Bauschke, Borwein (bb0010) 1996; 38 Beck, Teboulle (bb0020) 2009; 2 Yao, Kang, Jigang, Yang (bb0145) 2012 López, Martn-Mrquez, Wang, Xu (bb0060) 2012; 2012 Verma, Sahu, Shukla (bb0130) 2018; 48 Tibshirani (bb0120) 1996; 58 Combettes, Wajs (bb0040) 2005; 4 Szaleniec, Tadeusiewicz, Witko (bb0115) 2008; 72 Thomas, Pradhan, Dhaka (bb0125) 2020, February Bruck, Reich (bb0030) 1977; 3 Liang, Schonlieb (bb0055) 2018 Marino, Xu (bb0070) 2004; 3 Szaleniec, Wiatr, Szaleniec, Skladzien, Tomik, Oles, Tadeusiewicz (bb0110) 2013; 43 Bauschke, Combettes (bb0015) 2011 Chen, Huang, Zhang (bb0035) 2013; 29 Plawiak, Abdar, Acharya (bb0090) 2019; 84 Auslender, Teboulle, Ben-Tiba (bb0005) 1999 Goebel, Kirk (bb0050) 1990 Yang, Liu (bb0150) 2019; 80 bb0025 Gibali, Thong (bb0045) 2018; 55 Wang, Cui (bb0135) 2012; 54 Xiu, Wang, Kong (bb0140) 2007; 221–230 Szaleniec (10.1016/j.chaos.2022.112048_bb0110) 2013; 43 Lorenz (10.1016/j.chaos.2022.112048_bb0065) 2015; 51 Szaleniec (10.1016/j.chaos.2022.112048_bb0115) 2008; 72 Sahu (10.1016/j.chaos.2022.112048_bb0105) 2021; 87 Thomas (10.1016/j.chaos.2022.112048_bb0125) 2020 López (10.1016/j.chaos.2022.112048_bb0060) 2012; 2012 Bauschke (10.1016/j.chaos.2022.112048_bb0010) 1996; 38 Chen (10.1016/j.chaos.2022.112048_bb0035) 2013; 29 Moudafi (10.1016/j.chaos.2022.112048_bb0075) 2003; 155 Polyak (10.1016/j.chaos.2022.112048_bb0100) 1964; 4 Combettes (10.1016/j.chaos.2022.112048_bb0040) 2005; 4 Yang (10.1016/j.chaos.2022.112048_bb0150) 2019; 80 Bruck (10.1016/j.chaos.2022.112048_bb0030) 1977; 3 Wang (10.1016/j.chaos.2022.112048_bb0135) 2012; 54 Auslender (10.1016/j.chaos.2022.112048_bb0005) 1999 Verma (10.1016/j.chaos.2022.112048_bb0130) 2018; 48 Bauschke (10.1016/j.chaos.2022.112048_bb0015) 2011 Plawiak (10.1016/j.chaos.2022.112048_bb0095) 2020; 516 Liang (10.1016/j.chaos.2022.112048_bb0055) 2018 Zhang (10.1016/j.chaos.2022.112048_bb0155) 2008; 29 Xiu (10.1016/j.chaos.2022.112048_bb0140) 2007; 221–230 Nesterov (10.1016/j.chaos.2022.112048_bb0080) 1983; 269 Gibali (10.1016/j.chaos.2022.112048_bb0045) 2018; 55 Marino (10.1016/j.chaos.2022.112048_bb0070) 2004; 3 Tibshirani (10.1016/j.chaos.2022.112048_bb0120) 1996; 58 Yao (10.1016/j.chaos.2022.112048_bb0145) 2012 Beck (10.1016/j.chaos.2022.112048_bb0020) 2009; 2 Goebel (10.1016/j.chaos.2022.112048_bb0050) 1990 Plawiak (10.1016/j.chaos.2022.112048_bb0090) 2019; 84 Parikh (10.1016/j.chaos.2022.112048_bb0085) 2013; 3 |
| References_xml | – year: 2011 ident: bb0015 article-title: Convex Analysis and Monotone Operator Theory in Hilbert Spaces. CMS Books in Mathematics – volume: 3 start-page: 459 year: 1977 end-page: 470 ident: bb0030 article-title: Nonexpansive projections and resolvents of accretive operators in Banach spaces publication-title: Houst J Math – volume: 4 start-page: 1 year: 1964 end-page: 17 ident: bb0100 article-title: Some methods of speeding up the convergence of iteration methods publication-title: U.S.S.R. Comput Math Math Phys – volume: 80 start-page: 741 year: 2019 end-page: 752 ident: bb0150 article-title: Strong convergence result for solving monotone variational inequalities in hilbert space publication-title: Numer Algorithms – volume: 269 start-page: 543 year: 1983 end-page: 547 ident: bb0080 article-title: A method for solving the convex programming problem with convergence rate publication-title: Dokl Akad Nauk SSSR – volume: 84 start-page: 105 year: 2019 end-page: 740 ident: bb0090 article-title: Application of new deep genetic cascade ensemble of SVM classifiers to predict the australian credit scoring publication-title: Appl Soft Comput – volume: 72 start-page: 241 year: 2008 end-page: 256 ident: bb0115 article-title: How to select an optimal neural model of chemical reactivity publication-title: Neurocomputing – volume: 3 year: 2013 ident: bb0085 article-title: Proximal algorithms publication-title: Found Trends Optim – volume: 221–230 year: 2007 ident: bb0140 article-title: A note on the gradient projection method with exact stepsize rule publication-title: J Comput Math – volume: 87 start-page: 1075 year: 2021 end-page: 1095 ident: bb0105 article-title: Inertial relaxed CQ algorithms for solving a split feasibility problem in hilbert spaces publication-title: Numer Algorithms – volume: 43 start-page: 16 year: 2013 end-page: 22 ident: bb0110 article-title: Artificial neural network modelling of the results of tympanoplasty in chronic suppurative otitis media patients publication-title: Comput Biol Med – volume: 55 start-page: 1 year: 2018 end-page: 22 ident: bb0045 article-title: Tseng type methods for solving inclusion problems and its applications publication-title: Calcolo – volume: 58 start-page: 267 year: 1996 end-page: 288 ident: bb0120 article-title: Regression shrinkage and selection via the lasso publication-title: J R Stat Soc B Methodol – volume: 4 start-page: 1168 year: 2005 end-page: 1200 ident: bb0040 article-title: Signal recovery by proximal forward-backward splitting publication-title: Multiscale Model Simul – start-page: 31 year: 1999 end-page: -40 ident: bb0005 article-title: A logarithmic-quadratic proximal method for variational inequalities publication-title: Computational optimization – volume: 2 start-page: 183 year: 2009 end-page: 202 ident: bb0020 article-title: A fast iterative shrinkage-thresholding algorithm for linear inverse problems publication-title: SIAM J Imag Sci – volume: 51 start-page: 311 year: 2015 end-page: 325 ident: bb0065 article-title: An inertial forward-backward algorithm for monotone inclusions publication-title: J Math Imaging Vision – year: 1990 ident: bb0050 article-title: Topics in metric fixed point theory – volume: 29 start-page: 571 year: 2008 end-page: 581 ident: bb0155 article-title: Algorithms of common solutions to quasi variational inclusion and fixed point problems publication-title: Appl Math Mech – ident: bb0025 article-title: Breast cancer Wisconsin (original) data set, [online] – volume: 54 start-page: 485 year: 2012 end-page: 491 ident: bb0135 article-title: On the contraction-proximal point algorithms with multi-parameters publication-title: J Glob Optim – year: 2018 ident: bb0055 article-title: Improving fista: faster, smarter and greedier – volume: 2012 year: 2012 ident: bb0060 article-title: Forward-backward splitting methods for accretive operators in Banach spaces publication-title: Abstr Appl Anal – volume: 516 start-page: 401 year: 2020 end-page: 418 ident: bb0095 article-title: DGHNL: a new deep genetic hierarchical network of learners for prediction of credit scoring publication-title: Inform Sci – volume: 38 start-page: 367 year: 1996 end-page: 426 ident: bb0010 article-title: On projection algorithms for solving convex feasibility problems publication-title: SIAM Rev – start-page: 192 year: 2020, February end-page: 196 ident: bb0125 article-title: Comparative analysis to predict breast cancer using machine learning algorithms: a survey publication-title: 2020 international conference on inventive computation technologies (ICICT) – volume: 3 start-page: 791 year: 2004 ident: bb0070 article-title: Convergence of generalized proximal point algorithms publication-title: Commun Pure Appl Anal – volume: 29 year: 2013 ident: bb0035 article-title: A primal-dual fixed point algorithm for convex separable minimization with applications to image restoration publication-title: Inverse Prob – volume: 48 start-page: 2613 year: 2018 end-page: 2627 ident: bb0130 article-title: VAGA a novel viscosity-based accelerated gradient algorithm publication-title: Appl Intell – year: 2012 ident: bb0145 article-title: A regularized gradient projection method for the minimization problem publication-title: J Appl Math – volume: 155 start-page: 447 year: 2003 end-page: 454 ident: bb0075 article-title: Convergence of a splitting inertial proximal method for monotone operators publication-title: J Comput Appl Math – year: 1990 ident: 10.1016/j.chaos.2022.112048_bb0050 – volume: 29 start-page: 571 issue: 5 year: 2008 ident: 10.1016/j.chaos.2022.112048_bb0155 article-title: Algorithms of common solutions to quasi variational inclusion and fixed point problems publication-title: Appl Math Mech doi: 10.1007/s10483-008-0502-y – volume: 3 start-page: 459 issue: 4 year: 1977 ident: 10.1016/j.chaos.2022.112048_bb0030 article-title: Nonexpansive projections and resolvents of accretive operators in Banach spaces publication-title: Houst J Math – year: 2012 ident: 10.1016/j.chaos.2022.112048_bb0145 article-title: A regularized gradient projection method for the minimization problem publication-title: J Appl Math doi: 10.1155/2012/259813 – volume: 55 start-page: 1 issue: 4 year: 2018 ident: 10.1016/j.chaos.2022.112048_bb0045 article-title: Tseng type methods for solving inclusion problems and its applications publication-title: Calcolo doi: 10.1007/s10092-018-0292-1 – volume: 43 start-page: 16 issue: 1 year: 2013 ident: 10.1016/j.chaos.2022.112048_bb0110 article-title: Artificial neural network modelling of the results of tympanoplasty in chronic suppurative otitis media patients publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2012.10.003 – year: 2011 ident: 10.1016/j.chaos.2022.112048_bb0015 – volume: 516 start-page: 401 year: 2020 ident: 10.1016/j.chaos.2022.112048_bb0095 article-title: DGHNL: a new deep genetic hierarchical network of learners for prediction of credit scoring publication-title: Inform Sci doi: 10.1016/j.ins.2019.12.045 – volume: 4 start-page: 1168 issue: 4 year: 2005 ident: 10.1016/j.chaos.2022.112048_bb0040 article-title: Signal recovery by proximal forward-backward splitting publication-title: Multiscale Model Simul doi: 10.1137/050626090 – volume: 54 start-page: 485 issue: 3 year: 2012 ident: 10.1016/j.chaos.2022.112048_bb0135 article-title: On the contraction-proximal point algorithms with multi-parameters publication-title: J Glob Optim doi: 10.1007/s10898-011-9772-4 – start-page: 31 year: 1999 ident: 10.1016/j.chaos.2022.112048_bb0005 article-title: A logarithmic-quadratic proximal method for variational inequalities – year: 2018 ident: 10.1016/j.chaos.2022.112048_bb0055 – volume: 29 issue: 2 year: 2013 ident: 10.1016/j.chaos.2022.112048_bb0035 article-title: A primal-dual fixed point algorithm for convex separable minimization with applications to image restoration publication-title: Inverse Prob doi: 10.1088/0266-5611/29/2/025011 – volume: 2 start-page: 183 issue: 1 year: 2009 ident: 10.1016/j.chaos.2022.112048_bb0020 article-title: A fast iterative shrinkage-thresholding algorithm for linear inverse problems publication-title: SIAM J Imag Sci doi: 10.1137/080716542 – volume: 72 start-page: 241 issue: 1–3 year: 2008 ident: 10.1016/j.chaos.2022.112048_bb0115 article-title: How to select an optimal neural model of chemical reactivity publication-title: Neurocomputing doi: 10.1016/j.neucom.2008.01.003 – volume: 80 start-page: 741 issue: 3 year: 2019 ident: 10.1016/j.chaos.2022.112048_bb0150 article-title: Strong convergence result for solving monotone variational inequalities in hilbert space publication-title: Numer Algorithms doi: 10.1007/s11075-018-0504-4 – volume: 3 year: 2013 ident: 10.1016/j.chaos.2022.112048_bb0085 article-title: Proximal algorithms publication-title: Found Trends Optim – start-page: 192 year: 2020 ident: 10.1016/j.chaos.2022.112048_bb0125 article-title: Comparative analysis to predict breast cancer using machine learning algorithms: a survey – volume: 38 start-page: 367 issue: 3 year: 1996 ident: 10.1016/j.chaos.2022.112048_bb0010 article-title: On projection algorithms for solving convex feasibility problems publication-title: SIAM Rev doi: 10.1137/S0036144593251710 – volume: 4 start-page: 1 issue: 5 year: 1964 ident: 10.1016/j.chaos.2022.112048_bb0100 article-title: Some methods of speeding up the convergence of iteration methods publication-title: U.S.S.R. Comput Math Math Phys doi: 10.1016/0041-5553(64)90137-5 – volume: 2012 year: 2012 ident: 10.1016/j.chaos.2022.112048_bb0060 article-title: Forward-backward splitting methods for accretive operators in Banach spaces publication-title: Abstr Appl Anal doi: 10.1155/2012/109236 – volume: 84 start-page: 105 year: 2019 ident: 10.1016/j.chaos.2022.112048_bb0090 article-title: Application of new deep genetic cascade ensemble of SVM classifiers to predict the australian credit scoring publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2019.105740 – volume: 155 start-page: 447 year: 2003 ident: 10.1016/j.chaos.2022.112048_bb0075 article-title: Convergence of a splitting inertial proximal method for monotone operators publication-title: J Comput Appl Math doi: 10.1016/S0377-0427(02)00906-8 – volume: 221–230 year: 2007 ident: 10.1016/j.chaos.2022.112048_bb0140 article-title: A note on the gradient projection method with exact stepsize rule publication-title: J Comput Math – volume: 269 start-page: 543 year: 1983 ident: 10.1016/j.chaos.2022.112048_bb0080 article-title: A method for solving the convex programming problem with convergence rate publication-title: Dokl Akad Nauk SSSR – volume: 58 start-page: 267 year: 1996 ident: 10.1016/j.chaos.2022.112048_bb0120 article-title: Regression shrinkage and selection via the lasso publication-title: J R Stat Soc B Methodol doi: 10.1111/j.2517-6161.1996.tb02080.x – volume: 87 start-page: 1075 year: 2021 ident: 10.1016/j.chaos.2022.112048_bb0105 article-title: Inertial relaxed CQ algorithms for solving a split feasibility problem in hilbert spaces publication-title: Numer Algorithms doi: 10.1007/s11075-020-00999-2 – volume: 48 start-page: 2613 issue: 9 year: 2018 ident: 10.1016/j.chaos.2022.112048_bb0130 article-title: VAGA a novel viscosity-based accelerated gradient algorithm publication-title: Appl Intell doi: 10.1007/s10489-017-1110-1 – volume: 3 start-page: 791 issue: 4 year: 2004 ident: 10.1016/j.chaos.2022.112048_bb0070 article-title: Convergence of generalized proximal point algorithms publication-title: Commun Pure Appl Anal doi: 10.3934/cpaa.2004.3.791 – volume: 51 start-page: 311 year: 2015 ident: 10.1016/j.chaos.2022.112048_bb0065 article-title: An inertial forward-backward algorithm for monotone inclusions publication-title: J Math Imaging Vision doi: 10.1007/s10851-014-0523-2 |
| SSID | ssj0001062 |
| Score | 2.4695222 |
| Snippet | In this paper, we introduce the inertial Mann forward-backward splitting algorithm for solving variational inclusion problem of the sum of two operators, the... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 112048 |
| SubjectTerms | Data classification Forward-backward splitting algorithm Inertial methods Machine learning Signal recovery Variational inclusion problem |
| Title | An inertial Mann forward-backward splitting algorithm of variational inclusion problems and its applications |
| URI | https://dx.doi.org/10.1016/j.chaos.2022.112048 |
| Volume | 158 |
| WOSCitedRecordID | wos000798778300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection customDbUrl: eissn: 1873-2887 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001062 issn: 0960-0779 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Pb9MwFLbKxgEOaBsgxmDygQMIUmVdfvlYTZsGEtMEQ_QWOY7NWmVO1bTd-Dv4h3nPjt2woYoduERVFLtp35fn914-f4-QN0LGMWcZpKmRKIIoEnEA67wKkrQ4DCVAIOHCNJtIz86y0Yid93q_3F6YZZVqnd3csOl_NTWcA2Pj1tl7mNtPCifgMxgdjmB2OP6T4YfIXUS2NO665doQCQ01tsBSHVYNGgg8Ld2ZVz_q2Xh-eYUx4xLSZlcaHGtRLbCQ9r7tONP4twzdV97d0PboklvKXoOUOmTg4AiFu7B41axcsPzJSxOxns9qPeWedvN1YWTIsZ1YbRnGX_i1lKgjseIgQCJ-NRlz48K_wyqCctOQQehu8QLyXk8VdFXIJAzC1PaT8Q7Zirm3LhUCwtCKcd7x9rbwMOkL_IF9nL-_uvpPbe1ba55nIjqS2yQ3k-Q4SW4neUA2B2nMwFVuDj8ejz75BR6yaPNyyt27E7MytME79_L3gKcTxFxskSdt9kGHFjXbpCf1Dnn82Uv3Njtku_X2DX3bSpK_e0qqoaYOVBRBRW-DinpQUQ8qWivaARX1oKIOVBQgQgFUtAuqZ-TbyfHF0WnQ9ukIBARA86DkqJCUlVEIT71SgkcJZhmQOKiUcSaUknLAM1jORJmkoQIvEKcqKwsG6YmC0c_Jhq61fEFonPBIQlgq1UEYyaJgxYHMZBwOWFzIQxbtkoH7M3PRithjL5UqX2PIXfLBD5paDZf1lyfOSnkbhtrwMgfcrRv48n7fs0cerR6JV2RjPlvI1-ShWM7HzWy_Bd1v1Z2wBw |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+inertial+Mann+forward-backward+splitting+algorithm+of+variational+inclusion+problems+and+its+applications&rft.jtitle=Chaos%2C+solitons+and+fractals&rft.au=Peeyada%2C+Pronpat&rft.au=Suparatulatorn%2C+Raweerote&rft.au=Cholamjiak%2C+Watcharaporn&rft.date=2022-05-01&rft.issn=0960-0779&rft.volume=158&rft.spage=112048&rft_id=info:doi/10.1016%2Fj.chaos.2022.112048&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_chaos_2022_112048 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-0779&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-0779&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-0779&client=summon |