An inertial Mann forward-backward splitting algorithm of variational inclusion problems and its applications

In this paper, we introduce the inertial Mann forward-backward splitting algorithm for solving variational inclusion problem of the sum of two operators, the one is maximally monotone and the other is monotone and Lipschitz continuous. Under standard assumptions, we prove the weak convergence theore...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chaos, solitons and fractals Jg. 158; S. 112048
Hauptverfasser: Peeyada, Pronpat, Suparatulatorn, Raweerote, Cholamjiak, Watcharaporn
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Ltd 01.05.2022
Schlagworte:
ISSN:0960-0779, 1873-2887
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract In this paper, we introduce the inertial Mann forward-backward splitting algorithm for solving variational inclusion problem of the sum of two operators, the one is maximally monotone and the other is monotone and Lipschitz continuous. Under standard assumptions, we prove the weak convergence theorem of the proposed algorithm. We show that the algorithm is flexible to use by choosing the variable stepsizes and two different algorithms are shown by choosing constant stepsize and update stepsize. Moreover, we apply our algorithms to solve data classification using the Wisconsin original breast cancer data set as a training set. We also compare our algorithms with the other two algorithms to show the efficiency of the algorithm and show suitably learns the training dataset and generalizes well to a hold-out dataset of the algorithm by considering overfitting. Finally, we apply our algorithms to solve signal recovery and show the efficiency of the algorithm by compare with the other two algorithms. The results of data classification and signal recovery showed that choosing the right stepsizes of the algorithm would be a good efficient for the different problems. 46T99, 47B02, 47H05, 47J25, 49M37. •The paper proposed an advanced forward-backward splitting algorithm in combination with an inertial technique and Mann algorithm for solving variational inclusion problems.•The weak convergence result has been established in Hilbert spaces subject to certain conditions.•It developed an application to predict breast cancer through the proposed algorithm.•It used breast cancer Wisconsin original data set as a training set to show efficiency of the newly developed algorithm by comparing with two other algorithms in term of three key parameters viz. accuracy, recall and precision.•It developed an application to signal recovery and showed the efficiency of the algorithm by comparing with the other two algorithms.
AbstractList In this paper, we introduce the inertial Mann forward-backward splitting algorithm for solving variational inclusion problem of the sum of two operators, the one is maximally monotone and the other is monotone and Lipschitz continuous. Under standard assumptions, we prove the weak convergence theorem of the proposed algorithm. We show that the algorithm is flexible to use by choosing the variable stepsizes and two different algorithms are shown by choosing constant stepsize and update stepsize. Moreover, we apply our algorithms to solve data classification using the Wisconsin original breast cancer data set as a training set. We also compare our algorithms with the other two algorithms to show the efficiency of the algorithm and show suitably learns the training dataset and generalizes well to a hold-out dataset of the algorithm by considering overfitting. Finally, we apply our algorithms to solve signal recovery and show the efficiency of the algorithm by compare with the other two algorithms. The results of data classification and signal recovery showed that choosing the right stepsizes of the algorithm would be a good efficient for the different problems. 46T99, 47B02, 47H05, 47J25, 49M37. •The paper proposed an advanced forward-backward splitting algorithm in combination with an inertial technique and Mann algorithm for solving variational inclusion problems.•The weak convergence result has been established in Hilbert spaces subject to certain conditions.•It developed an application to predict breast cancer through the proposed algorithm.•It used breast cancer Wisconsin original data set as a training set to show efficiency of the newly developed algorithm by comparing with two other algorithms in term of three key parameters viz. accuracy, recall and precision.•It developed an application to signal recovery and showed the efficiency of the algorithm by comparing with the other two algorithms.
ArticleNumber 112048
Author Peeyada, Pronpat
Suparatulatorn, Raweerote
Cholamjiak, Watcharaporn
Author_xml – sequence: 1
  givenname: Pronpat
  surname: Peeyada
  fullname: Peeyada, Pronpat
  organization: School of Science, University of Phayao, Phayao 56000, Thailand
– sequence: 2
  givenname: Raweerote
  surname: Suparatulatorn
  fullname: Suparatulatorn, Raweerote
  organization: Department of Mathematics, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
– sequence: 3
  givenname: Watcharaporn
  surname: Cholamjiak
  fullname: Cholamjiak, Watcharaporn
  email: watcharaporn.ch@up.ac.th
  organization: School of Science, University of Phayao, Phayao 56000, Thailand
BookMark eNqFkD1PwzAQhi1UJNrCL2DxH0g4J2liDwxVxZdUxAKzdXHs1iW1K9sU8e9JWyYGmN53uOd090zIyHmnCblmkDNg9c0mV2v0MS-gKHLGCqj4GRkz3pRZwXkzImMQNWTQNOKCTGLcAACDuhiTfu6odTokiz19Rueo8eETQ5e1qN4PhcZdb1OybkWxX_lg03pLvaF7DBaT9W4ArVP9Rxw63QXf9nobKbqO2jTkbsDVcTBeknODfdRXPzklb_d3r4vHbPny8LSYLzNVQpmyDsuKF7yrAAU3RmFVz6BhJQPTCBTKGK0L5MNjqqsbMG0Js8bwrhUghBnoKSlPe1XwMQZt5C7YLYYvyUAehMmNPAqTB2HyJGygxC9K2XQ8PAW0_T_s7YnVw1t7q4OMymqndGeDVkl23v7JfwPLrI0M
CitedBy_id crossref_primary_10_1155_2023_1910411
crossref_primary_10_1016_j_cam_2023_115702
crossref_primary_10_3390_sym16081091
crossref_primary_10_3390_axioms13110740
crossref_primary_10_1007_s40314_025_03318_4
crossref_primary_10_1007_s12215_025_01186_9
crossref_primary_10_3390_math13172783
crossref_primary_10_3390_math11030641
Cites_doi 10.1007/s10483-008-0502-y
10.1155/2012/259813
10.1007/s10092-018-0292-1
10.1016/j.compbiomed.2012.10.003
10.1016/j.ins.2019.12.045
10.1137/050626090
10.1007/s10898-011-9772-4
10.1088/0266-5611/29/2/025011
10.1137/080716542
10.1016/j.neucom.2008.01.003
10.1007/s11075-018-0504-4
10.1137/S0036144593251710
10.1016/0041-5553(64)90137-5
10.1155/2012/109236
10.1016/j.asoc.2019.105740
10.1016/S0377-0427(02)00906-8
10.1111/j.2517-6161.1996.tb02080.x
10.1007/s11075-020-00999-2
10.1007/s10489-017-1110-1
10.3934/cpaa.2004.3.791
10.1007/s10851-014-0523-2
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright_xml – notice: 2022 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.chaos.2022.112048
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Mathematics
EISSN 1873-2887
ExternalDocumentID 10_1016_j_chaos_2022_112048
S0960077922002582
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29B
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABMAC
ABNEU
ABTAH
ABXDB
ABYKQ
ACDAQ
ACFVG
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HLZ
HMV
HVGLF
HZ~
IHE
J1W
KOM
LG9
M38
M41
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SPD
SPG
SSQ
SSZ
T5K
WUQ
XPP
ZY4
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c303t-da34828d40a98ffca465071310f79a9cffee2a8887cd670fb3057f8db9099fda3
ISICitedReferencesCount 21
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000798778300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0960-0779
IngestDate Sat Nov 29 07:09:42 EST 2025
Tue Nov 18 21:32:38 EST 2025
Fri Feb 23 02:38:54 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Variational inclusion problem
Data classification
Signal recovery
Forward-backward splitting algorithm
Inertial methods
Machine learning
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c303t-da34828d40a98ffca465071310f79a9cffee2a8887cd670fb3057f8db9099fda3
ParticipantIDs crossref_primary_10_1016_j_chaos_2022_112048
crossref_citationtrail_10_1016_j_chaos_2022_112048
elsevier_sciencedirect_doi_10_1016_j_chaos_2022_112048
PublicationCentury 2000
PublicationDate May 2022
2022-05-00
PublicationDateYYYYMMDD 2022-05-01
PublicationDate_xml – month: 05
  year: 2022
  text: May 2022
PublicationDecade 2020
PublicationTitle Chaos, solitons and fractals
PublicationYear 2022
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Polyak (bb0100) 1964; 4
Parikh, Boyd (bb0085) 2013; 3
Plawiak, Abdar, Plawiak, Makarenkov, Acharya (bb0095) 2020; 516
Moudafi, Oliny (bb0075) 2003; 155
Nesterov (bb0080) 1983; 269
Zhang, Lee, Chan (bb0155) 2008; 29
Lorenz, Pock (bb0065) 2015; 51
Sahu, Cho, Dong, Kashyap, Li (bb0105) 2021; 87
Bauschke, Borwein (bb0010) 1996; 38
Beck, Teboulle (bb0020) 2009; 2
Yao, Kang, Jigang, Yang (bb0145) 2012
López, Martn-Mrquez, Wang, Xu (bb0060) 2012; 2012
Verma, Sahu, Shukla (bb0130) 2018; 48
Tibshirani (bb0120) 1996; 58
Combettes, Wajs (bb0040) 2005; 4
Szaleniec, Tadeusiewicz, Witko (bb0115) 2008; 72
Thomas, Pradhan, Dhaka (bb0125) 2020, February
Bruck, Reich (bb0030) 1977; 3
Liang, Schonlieb (bb0055) 2018
Marino, Xu (bb0070) 2004; 3
Szaleniec, Wiatr, Szaleniec, Skladzien, Tomik, Oles, Tadeusiewicz (bb0110) 2013; 43
Bauschke, Combettes (bb0015) 2011
Chen, Huang, Zhang (bb0035) 2013; 29
Plawiak, Abdar, Acharya (bb0090) 2019; 84
Auslender, Teboulle, Ben-Tiba (bb0005) 1999
Goebel, Kirk (bb0050) 1990
Yang, Liu (bb0150) 2019; 80
bb0025
Gibali, Thong (bb0045) 2018; 55
Wang, Cui (bb0135) 2012; 54
Xiu, Wang, Kong (bb0140) 2007; 221–230
Szaleniec (10.1016/j.chaos.2022.112048_bb0110) 2013; 43
Lorenz (10.1016/j.chaos.2022.112048_bb0065) 2015; 51
Szaleniec (10.1016/j.chaos.2022.112048_bb0115) 2008; 72
Sahu (10.1016/j.chaos.2022.112048_bb0105) 2021; 87
Thomas (10.1016/j.chaos.2022.112048_bb0125) 2020
López (10.1016/j.chaos.2022.112048_bb0060) 2012; 2012
Bauschke (10.1016/j.chaos.2022.112048_bb0010) 1996; 38
Chen (10.1016/j.chaos.2022.112048_bb0035) 2013; 29
Moudafi (10.1016/j.chaos.2022.112048_bb0075) 2003; 155
Polyak (10.1016/j.chaos.2022.112048_bb0100) 1964; 4
Combettes (10.1016/j.chaos.2022.112048_bb0040) 2005; 4
Yang (10.1016/j.chaos.2022.112048_bb0150) 2019; 80
Bruck (10.1016/j.chaos.2022.112048_bb0030) 1977; 3
Wang (10.1016/j.chaos.2022.112048_bb0135) 2012; 54
Auslender (10.1016/j.chaos.2022.112048_bb0005) 1999
Verma (10.1016/j.chaos.2022.112048_bb0130) 2018; 48
Bauschke (10.1016/j.chaos.2022.112048_bb0015) 2011
Plawiak (10.1016/j.chaos.2022.112048_bb0095) 2020; 516
Liang (10.1016/j.chaos.2022.112048_bb0055) 2018
Zhang (10.1016/j.chaos.2022.112048_bb0155) 2008; 29
Xiu (10.1016/j.chaos.2022.112048_bb0140) 2007; 221–230
Nesterov (10.1016/j.chaos.2022.112048_bb0080) 1983; 269
Gibali (10.1016/j.chaos.2022.112048_bb0045) 2018; 55
Marino (10.1016/j.chaos.2022.112048_bb0070) 2004; 3
Tibshirani (10.1016/j.chaos.2022.112048_bb0120) 1996; 58
Yao (10.1016/j.chaos.2022.112048_bb0145) 2012
Beck (10.1016/j.chaos.2022.112048_bb0020) 2009; 2
Goebel (10.1016/j.chaos.2022.112048_bb0050) 1990
Plawiak (10.1016/j.chaos.2022.112048_bb0090) 2019; 84
Parikh (10.1016/j.chaos.2022.112048_bb0085) 2013; 3
References_xml – year: 2011
  ident: bb0015
  article-title: Convex Analysis and Monotone Operator Theory in Hilbert Spaces. CMS Books in Mathematics
– volume: 3
  start-page: 459
  year: 1977
  end-page: 470
  ident: bb0030
  article-title: Nonexpansive projections and resolvents of accretive operators in Banach spaces
  publication-title: Houst J Math
– volume: 4
  start-page: 1
  year: 1964
  end-page: 17
  ident: bb0100
  article-title: Some methods of speeding up the convergence of iteration methods
  publication-title: U.S.S.R. Comput Math Math Phys
– volume: 80
  start-page: 741
  year: 2019
  end-page: 752
  ident: bb0150
  article-title: Strong convergence result for solving monotone variational inequalities in hilbert space
  publication-title: Numer Algorithms
– volume: 269
  start-page: 543
  year: 1983
  end-page: 547
  ident: bb0080
  article-title: A method for solving the convex programming problem with convergence rate
  publication-title: Dokl Akad Nauk SSSR
– volume: 84
  start-page: 105
  year: 2019
  end-page: 740
  ident: bb0090
  article-title: Application of new deep genetic cascade ensemble of SVM classifiers to predict the australian credit scoring
  publication-title: Appl Soft Comput
– volume: 72
  start-page: 241
  year: 2008
  end-page: 256
  ident: bb0115
  article-title: How to select an optimal neural model of chemical reactivity
  publication-title: Neurocomputing
– volume: 3
  year: 2013
  ident: bb0085
  article-title: Proximal algorithms
  publication-title: Found Trends Optim
– volume: 221–230
  year: 2007
  ident: bb0140
  article-title: A note on the gradient projection method with exact stepsize rule
  publication-title: J Comput Math
– volume: 87
  start-page: 1075
  year: 2021
  end-page: 1095
  ident: bb0105
  article-title: Inertial relaxed CQ algorithms for solving a split feasibility problem in hilbert spaces
  publication-title: Numer Algorithms
– volume: 43
  start-page: 16
  year: 2013
  end-page: 22
  ident: bb0110
  article-title: Artificial neural network modelling of the results of tympanoplasty in chronic suppurative otitis media patients
  publication-title: Comput Biol Med
– volume: 55
  start-page: 1
  year: 2018
  end-page: 22
  ident: bb0045
  article-title: Tseng type methods for solving inclusion problems and its applications
  publication-title: Calcolo
– volume: 58
  start-page: 267
  year: 1996
  end-page: 288
  ident: bb0120
  article-title: Regression shrinkage and selection via the lasso
  publication-title: J R Stat Soc B Methodol
– volume: 4
  start-page: 1168
  year: 2005
  end-page: 1200
  ident: bb0040
  article-title: Signal recovery by proximal forward-backward splitting
  publication-title: Multiscale Model Simul
– start-page: 31
  year: 1999
  end-page: -40
  ident: bb0005
  article-title: A logarithmic-quadratic proximal method for variational inequalities
  publication-title: Computational optimization
– volume: 2
  start-page: 183
  year: 2009
  end-page: 202
  ident: bb0020
  article-title: A fast iterative shrinkage-thresholding algorithm for linear inverse problems
  publication-title: SIAM J Imag Sci
– volume: 51
  start-page: 311
  year: 2015
  end-page: 325
  ident: bb0065
  article-title: An inertial forward-backward algorithm for monotone inclusions
  publication-title: J Math Imaging Vision
– year: 1990
  ident: bb0050
  article-title: Topics in metric fixed point theory
– volume: 29
  start-page: 571
  year: 2008
  end-page: 581
  ident: bb0155
  article-title: Algorithms of common solutions to quasi variational inclusion and fixed point problems
  publication-title: Appl Math Mech
– ident: bb0025
  article-title: Breast cancer Wisconsin (original) data set, [online]
– volume: 54
  start-page: 485
  year: 2012
  end-page: 491
  ident: bb0135
  article-title: On the contraction-proximal point algorithms with multi-parameters
  publication-title: J Glob Optim
– year: 2018
  ident: bb0055
  article-title: Improving fista: faster, smarter and greedier
– volume: 2012
  year: 2012
  ident: bb0060
  article-title: Forward-backward splitting methods for accretive operators in Banach spaces
  publication-title: Abstr Appl Anal
– volume: 516
  start-page: 401
  year: 2020
  end-page: 418
  ident: bb0095
  article-title: DGHNL: a new deep genetic hierarchical network of learners for prediction of credit scoring
  publication-title: Inform Sci
– volume: 38
  start-page: 367
  year: 1996
  end-page: 426
  ident: bb0010
  article-title: On projection algorithms for solving convex feasibility problems
  publication-title: SIAM Rev
– start-page: 192
  year: 2020, February
  end-page: 196
  ident: bb0125
  article-title: Comparative analysis to predict breast cancer using machine learning algorithms: a survey
  publication-title: 2020 international conference on inventive computation technologies (ICICT)
– volume: 3
  start-page: 791
  year: 2004
  ident: bb0070
  article-title: Convergence of generalized proximal point algorithms
  publication-title: Commun Pure Appl Anal
– volume: 29
  year: 2013
  ident: bb0035
  article-title: A primal-dual fixed point algorithm for convex separable minimization with applications to image restoration
  publication-title: Inverse Prob
– volume: 48
  start-page: 2613
  year: 2018
  end-page: 2627
  ident: bb0130
  article-title: VAGA a novel viscosity-based accelerated gradient algorithm
  publication-title: Appl Intell
– year: 2012
  ident: bb0145
  article-title: A regularized gradient projection method for the minimization problem
  publication-title: J Appl Math
– volume: 155
  start-page: 447
  year: 2003
  end-page: 454
  ident: bb0075
  article-title: Convergence of a splitting inertial proximal method for monotone operators
  publication-title: J Comput Appl Math
– year: 1990
  ident: 10.1016/j.chaos.2022.112048_bb0050
– volume: 29
  start-page: 571
  issue: 5
  year: 2008
  ident: 10.1016/j.chaos.2022.112048_bb0155
  article-title: Algorithms of common solutions to quasi variational inclusion and fixed point problems
  publication-title: Appl Math Mech
  doi: 10.1007/s10483-008-0502-y
– volume: 3
  start-page: 459
  issue: 4
  year: 1977
  ident: 10.1016/j.chaos.2022.112048_bb0030
  article-title: Nonexpansive projections and resolvents of accretive operators in Banach spaces
  publication-title: Houst J Math
– year: 2012
  ident: 10.1016/j.chaos.2022.112048_bb0145
  article-title: A regularized gradient projection method for the minimization problem
  publication-title: J Appl Math
  doi: 10.1155/2012/259813
– volume: 55
  start-page: 1
  issue: 4
  year: 2018
  ident: 10.1016/j.chaos.2022.112048_bb0045
  article-title: Tseng type methods for solving inclusion problems and its applications
  publication-title: Calcolo
  doi: 10.1007/s10092-018-0292-1
– volume: 43
  start-page: 16
  issue: 1
  year: 2013
  ident: 10.1016/j.chaos.2022.112048_bb0110
  article-title: Artificial neural network modelling of the results of tympanoplasty in chronic suppurative otitis media patients
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2012.10.003
– year: 2011
  ident: 10.1016/j.chaos.2022.112048_bb0015
– volume: 516
  start-page: 401
  year: 2020
  ident: 10.1016/j.chaos.2022.112048_bb0095
  article-title: DGHNL: a new deep genetic hierarchical network of learners for prediction of credit scoring
  publication-title: Inform Sci
  doi: 10.1016/j.ins.2019.12.045
– volume: 4
  start-page: 1168
  issue: 4
  year: 2005
  ident: 10.1016/j.chaos.2022.112048_bb0040
  article-title: Signal recovery by proximal forward-backward splitting
  publication-title: Multiscale Model Simul
  doi: 10.1137/050626090
– volume: 54
  start-page: 485
  issue: 3
  year: 2012
  ident: 10.1016/j.chaos.2022.112048_bb0135
  article-title: On the contraction-proximal point algorithms with multi-parameters
  publication-title: J Glob Optim
  doi: 10.1007/s10898-011-9772-4
– start-page: 31
  year: 1999
  ident: 10.1016/j.chaos.2022.112048_bb0005
  article-title: A logarithmic-quadratic proximal method for variational inequalities
– year: 2018
  ident: 10.1016/j.chaos.2022.112048_bb0055
– volume: 29
  issue: 2
  year: 2013
  ident: 10.1016/j.chaos.2022.112048_bb0035
  article-title: A primal-dual fixed point algorithm for convex separable minimization with applications to image restoration
  publication-title: Inverse Prob
  doi: 10.1088/0266-5611/29/2/025011
– volume: 2
  start-page: 183
  issue: 1
  year: 2009
  ident: 10.1016/j.chaos.2022.112048_bb0020
  article-title: A fast iterative shrinkage-thresholding algorithm for linear inverse problems
  publication-title: SIAM J Imag Sci
  doi: 10.1137/080716542
– volume: 72
  start-page: 241
  issue: 1–3
  year: 2008
  ident: 10.1016/j.chaos.2022.112048_bb0115
  article-title: How to select an optimal neural model of chemical reactivity
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2008.01.003
– volume: 80
  start-page: 741
  issue: 3
  year: 2019
  ident: 10.1016/j.chaos.2022.112048_bb0150
  article-title: Strong convergence result for solving monotone variational inequalities in hilbert space
  publication-title: Numer Algorithms
  doi: 10.1007/s11075-018-0504-4
– volume: 3
  year: 2013
  ident: 10.1016/j.chaos.2022.112048_bb0085
  article-title: Proximal algorithms
  publication-title: Found Trends Optim
– start-page: 192
  year: 2020
  ident: 10.1016/j.chaos.2022.112048_bb0125
  article-title: Comparative analysis to predict breast cancer using machine learning algorithms: a survey
– volume: 38
  start-page: 367
  issue: 3
  year: 1996
  ident: 10.1016/j.chaos.2022.112048_bb0010
  article-title: On projection algorithms for solving convex feasibility problems
  publication-title: SIAM Rev
  doi: 10.1137/S0036144593251710
– volume: 4
  start-page: 1
  issue: 5
  year: 1964
  ident: 10.1016/j.chaos.2022.112048_bb0100
  article-title: Some methods of speeding up the convergence of iteration methods
  publication-title: U.S.S.R. Comput Math Math Phys
  doi: 10.1016/0041-5553(64)90137-5
– volume: 2012
  year: 2012
  ident: 10.1016/j.chaos.2022.112048_bb0060
  article-title: Forward-backward splitting methods for accretive operators in Banach spaces
  publication-title: Abstr Appl Anal
  doi: 10.1155/2012/109236
– volume: 84
  start-page: 105
  year: 2019
  ident: 10.1016/j.chaos.2022.112048_bb0090
  article-title: Application of new deep genetic cascade ensemble of SVM classifiers to predict the australian credit scoring
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2019.105740
– volume: 155
  start-page: 447
  year: 2003
  ident: 10.1016/j.chaos.2022.112048_bb0075
  article-title: Convergence of a splitting inertial proximal method for monotone operators
  publication-title: J Comput Appl Math
  doi: 10.1016/S0377-0427(02)00906-8
– volume: 221–230
  year: 2007
  ident: 10.1016/j.chaos.2022.112048_bb0140
  article-title: A note on the gradient projection method with exact stepsize rule
  publication-title: J Comput Math
– volume: 269
  start-page: 543
  year: 1983
  ident: 10.1016/j.chaos.2022.112048_bb0080
  article-title: A method for solving the convex programming problem with convergence rate
  publication-title: Dokl Akad Nauk SSSR
– volume: 58
  start-page: 267
  year: 1996
  ident: 10.1016/j.chaos.2022.112048_bb0120
  article-title: Regression shrinkage and selection via the lasso
  publication-title: J R Stat Soc B Methodol
  doi: 10.1111/j.2517-6161.1996.tb02080.x
– volume: 87
  start-page: 1075
  year: 2021
  ident: 10.1016/j.chaos.2022.112048_bb0105
  article-title: Inertial relaxed CQ algorithms for solving a split feasibility problem in hilbert spaces
  publication-title: Numer Algorithms
  doi: 10.1007/s11075-020-00999-2
– volume: 48
  start-page: 2613
  issue: 9
  year: 2018
  ident: 10.1016/j.chaos.2022.112048_bb0130
  article-title: VAGA a novel viscosity-based accelerated gradient algorithm
  publication-title: Appl Intell
  doi: 10.1007/s10489-017-1110-1
– volume: 3
  start-page: 791
  issue: 4
  year: 2004
  ident: 10.1016/j.chaos.2022.112048_bb0070
  article-title: Convergence of generalized proximal point algorithms
  publication-title: Commun Pure Appl Anal
  doi: 10.3934/cpaa.2004.3.791
– volume: 51
  start-page: 311
  year: 2015
  ident: 10.1016/j.chaos.2022.112048_bb0065
  article-title: An inertial forward-backward algorithm for monotone inclusions
  publication-title: J Math Imaging Vision
  doi: 10.1007/s10851-014-0523-2
SSID ssj0001062
Score 2.4695222
Snippet In this paper, we introduce the inertial Mann forward-backward splitting algorithm for solving variational inclusion problem of the sum of two operators, the...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 112048
SubjectTerms Data classification
Forward-backward splitting algorithm
Inertial methods
Machine learning
Signal recovery
Variational inclusion problem
Title An inertial Mann forward-backward splitting algorithm of variational inclusion problems and its applications
URI https://dx.doi.org/10.1016/j.chaos.2022.112048
Volume 158
WOSCitedRecordID wos000798778300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection
  customDbUrl:
  eissn: 1873-2887
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001062
  issn: 0960-0779
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Pb9MwFLbKxgEOaBsgxmDygQMIUmVdfvlYTZsGEtMEQ_QWOY7NWmVO1bTd-Dv4h3nPjt2woYoduERVFLtp35fn914-f4-QN0LGMWcZpKmRKIIoEnEA67wKkrQ4DCVAIOHCNJtIz86y0Yid93q_3F6YZZVqnd3csOl_NTWcA2Pj1tl7mNtPCifgMxgdjmB2OP6T4YfIXUS2NO665doQCQ01tsBSHVYNGgg8Ld2ZVz_q2Xh-eYUx4xLSZlcaHGtRLbCQ9r7tONP4twzdV97d0PboklvKXoOUOmTg4AiFu7B41axcsPzJSxOxns9qPeWedvN1YWTIsZ1YbRnGX_i1lKgjseIgQCJ-NRlz48K_wyqCctOQQehu8QLyXk8VdFXIJAzC1PaT8Q7Zirm3LhUCwtCKcd7x9rbwMOkL_IF9nL-_uvpPbe1ba55nIjqS2yQ3k-Q4SW4neUA2B2nMwFVuDj8ejz75BR6yaPNyyt27E7MytME79_L3gKcTxFxskSdt9kGHFjXbpCf1Dnn82Uv3Njtku_X2DX3bSpK_e0qqoaYOVBRBRW-DinpQUQ8qWivaARX1oKIOVBQgQgFUtAuqZ-TbyfHF0WnQ9ukIBARA86DkqJCUlVEIT71SgkcJZhmQOKiUcSaUknLAM1jORJmkoQIvEKcqKwsG6YmC0c_Jhq61fEFonPBIQlgq1UEYyaJgxYHMZBwOWFzIQxbtkoH7M3PRithjL5UqX2PIXfLBD5paDZf1lyfOSnkbhtrwMgfcrRv48n7fs0cerR6JV2RjPlvI1-ShWM7HzWy_Bd1v1Z2wBw
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+inertial+Mann+forward-backward+splitting+algorithm+of+variational+inclusion+problems+and+its+applications&rft.jtitle=Chaos%2C+solitons+and+fractals&rft.au=Peeyada%2C+Pronpat&rft.au=Suparatulatorn%2C+Raweerote&rft.au=Cholamjiak%2C+Watcharaporn&rft.date=2022-05-01&rft.issn=0960-0779&rft.volume=158&rft.spage=112048&rft_id=info:doi/10.1016%2Fj.chaos.2022.112048&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_chaos_2022_112048
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-0779&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-0779&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-0779&client=summon