A fractional-order epidemic model with time-delay and nonlinear incidence rate
•We provide an epidemic SIR model with long-range temporal memory governed by delay differential equations with fractional-order.•The existence of steady states and the asymptotic stability of the steady states are discussed.•The occurrence of Hopf bifurcation is captured when the time-delay passes...
Saved in:
| Published in: | Chaos, solitons and fractals Vol. 126; pp. 97 - 105 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier Ltd
01.09.2019
|
| Subjects: | |
| ISSN: | 0960-0779, 1873-2887 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | •We provide an epidemic SIR model with long-range temporal memory governed by delay differential equations with fractional-order.•The existence of steady states and the asymptotic stability of the steady states are discussed.•The occurrence of Hopf bifurcation is captured when the time-delay passes through a critical value.•Theoretical results are validated numerically.
In this paper, we provide an epidemic SIR model with long-range temporal memory. The model is governed by delay differential equations with fractional-order. We assume that the susceptible is obeying the logistic form in which the incidence term is of saturated form with the susceptible. Several theoretical results related to the existence of steady states and the asymptotic stability of the steady states are discussed. We use a suitable Lyapunov functional to formulate a new set of sufficient conditions that guarantee the global stability of the steady states. The occurrence of Hopf bifurcation is captured when the time-delay τ passes through a critical value τ*. Theoretical results are validated numerically by solving the governing system, using the modified Adams-Bashforth-Moulton predictor-corrector scheme. Our findings show that the combination of fractional-order derivative and time-delay in the model improves the dynamics and increases complexity of the model. In some cases, the phase portrait gets stretched as the order of the derivative is reduced. |
|---|---|
| AbstractList | •We provide an epidemic SIR model with long-range temporal memory governed by delay differential equations with fractional-order.•The existence of steady states and the asymptotic stability of the steady states are discussed.•The occurrence of Hopf bifurcation is captured when the time-delay passes through a critical value.•Theoretical results are validated numerically.
In this paper, we provide an epidemic SIR model with long-range temporal memory. The model is governed by delay differential equations with fractional-order. We assume that the susceptible is obeying the logistic form in which the incidence term is of saturated form with the susceptible. Several theoretical results related to the existence of steady states and the asymptotic stability of the steady states are discussed. We use a suitable Lyapunov functional to formulate a new set of sufficient conditions that guarantee the global stability of the steady states. The occurrence of Hopf bifurcation is captured when the time-delay τ passes through a critical value τ*. Theoretical results are validated numerically by solving the governing system, using the modified Adams-Bashforth-Moulton predictor-corrector scheme. Our findings show that the combination of fractional-order derivative and time-delay in the model improves the dynamics and increases complexity of the model. In some cases, the phase portrait gets stretched as the order of the derivative is reduced. |
| Author | AlSakaji, H.J. Rihan, F.A. Al-Mdallal, Q.M. Hashish, A. |
| Author_xml | – sequence: 1 givenname: F.A. orcidid: 0000-0003-3855-5944 surname: Rihan fullname: Rihan, F.A. organization: Department of Mathematical Sciences, College of Science, UAE University, Al-Ain 15551, United Arab Emirates – sequence: 2 givenname: Q.M. orcidid: 0000-0002-2853-9337 surname: Al-Mdallal fullname: Al-Mdallal, Q.M. email: q.almdallal@uaeu.ac.ae organization: Department of Mathematical Sciences, College of Science, UAE University, Al-Ain 15551, United Arab Emirates – sequence: 3 givenname: H.J. surname: AlSakaji fullname: AlSakaji, H.J. organization: Department of Mathematical Sciences, College of Science, UAE University, Al-Ain 15551, United Arab Emirates – sequence: 4 givenname: A. surname: Hashish fullname: Hashish, A. organization: Department of Physics, College of Science, UAE University, Al-Ain, 15551, United Arab Emirates |
| BookMark | eNqFkMtOwzAQRS0EEm3hC9j4BxL8SOJ4waKqeEkVbGBtOeOJ6iqJK8cC9e9JKCsWsBqNNOeO7lmS8yEMSMgNZzlnvLrd57CzYcwF4zpnZc6kPiMLXiuZibpW52TBdMUyppS-JMtx3DPGOKvEgrysaRstJB8G22UhOowUD95h74H2wWFHP33a0eR7zKbNHqkdHJ3-d35AG6kfYLoeAGm0Ca_IRWu7Ea9_5oq8P9y_bZ6y7evj82a9zUAymTJXK62KslLC6VJVUmgHDisrRQkooBEAhQRuFS-qBrTiuimEdUXT6kaqRsoV0adciGEcI7YGfLJzixSt7wxnZhZj9uZbjJnFGFaaSczEyl_sIfrexuM_1N2JwqnWh8doRvBzb-cjQjIu-D_5LxDjgOY |
| CitedBy_id | crossref_primary_10_1007_s11071_021_06623_9 crossref_primary_10_3390_axioms13030206 crossref_primary_10_1155_2021_6613171 crossref_primary_10_1007_s11071_021_07196_3 crossref_primary_10_1016_j_matcom_2020_09_029 crossref_primary_10_1016_j_chaos_2020_110340 crossref_primary_10_1186_s13662_020_02964_8 crossref_primary_10_1007_s11071_021_07177_6 crossref_primary_10_1002_mma_6155 crossref_primary_10_30755_NSJOM_15832 crossref_primary_10_3389_fnins_2023_1246778 crossref_primary_10_1016_j_chaos_2024_114982 crossref_primary_10_3390_fractalfract7100729 crossref_primary_10_1140_epjp_s13360_022_02351_0 crossref_primary_10_1186_s13662_021_03316_w crossref_primary_10_1140_epjs_s11734_024_01267_3 crossref_primary_10_1016_j_chaos_2020_110256 crossref_primary_10_1140_epjs_s11734_024_01221_3 crossref_primary_10_1186_s13662_021_03254_7 crossref_primary_10_3390_vaccines10111773 crossref_primary_10_1016_j_chaos_2020_110090 crossref_primary_10_1007_s10668_024_04732_0 crossref_primary_10_1016_j_dsp_2021_103001 crossref_primary_10_1155_2022_6202049 crossref_primary_10_1515_math_2020_0014 crossref_primary_10_1007_s40435_022_01083_4 crossref_primary_10_1155_2020_4565036 crossref_primary_10_3390_math10122064 crossref_primary_10_3390_math9030263 crossref_primary_10_3390_sym16101343 crossref_primary_10_1186_s13662_020_02808_5 crossref_primary_10_1155_2019_1097201 crossref_primary_10_3390_math11010142 crossref_primary_10_1016_j_matcom_2022_04_029 crossref_primary_10_1186_s13662_021_03269_0 crossref_primary_10_1016_j_chaos_2022_112301 crossref_primary_10_1140_epjs_s11734_024_01294_0 crossref_primary_10_1007_s13226_024_00579_3 crossref_primary_10_1007_s12215_022_00825_9 crossref_primary_10_1007_s40435_023_01284_5 crossref_primary_10_1016_j_chaos_2020_109806 crossref_primary_10_1002_mma_6378 crossref_primary_10_3390_math9151829 crossref_primary_10_32604_cmes_2022_021483 crossref_primary_10_32604_cmes_2022_022177 crossref_primary_10_1186_s13662_020_02814_7 crossref_primary_10_3390_fractalfract5030120 crossref_primary_10_1016_j_chaos_2020_109960 crossref_primary_10_1155_2020_2149037 crossref_primary_10_3390_appliedmath5030127 crossref_primary_10_1155_2021_5518436 crossref_primary_10_1155_2021_3058414 crossref_primary_10_1016_j_cjph_2024_03_024 crossref_primary_10_1186_s13662_020_02745_3 crossref_primary_10_1016_j_cam_2020_113247 crossref_primary_10_1186_s13662_020_02709_7 crossref_primary_10_1002_mma_9161 crossref_primary_10_1186_s13663_022_00733_8 crossref_primary_10_1155_2020_9823753 crossref_primary_10_1016_j_cmpb_2020_105530 crossref_primary_10_1007_s40096_020_00372_3 crossref_primary_10_1155_2020_6824672 crossref_primary_10_1038_s41598_023_51121_0 crossref_primary_10_1088_1402_4896_acbfef crossref_primary_10_1155_2022_5121636 crossref_primary_10_32604_cmes_2023_023059 crossref_primary_10_3390_math13071085 crossref_primary_10_1142_S0218348X25401164 crossref_primary_10_1186_s13661_024_01982_9 |
| Cites_doi | 10.1016/j.cam.2017.11.032 10.1016/j.chaos.2016.02.012 10.1016/j.chaos.2018.12.015 10.1007/s11425-008-0068-1 10.1016/j.chaos.2018.09.032 10.4134/JKMS.2005.42.5.1071 10.1088/1751-8113/41/31/315403 10.1016/j.cnsns.2008.07.006 10.1016/j.camwa.2009.08.011 10.1155/2014/456537 10.1155/2018/8131329 10.1515/fca-2015-0082 10.1016/j.apm.2013.04.024 10.1142/S0218127418501808 10.1016/S0362-546X(01)00528-4 10.1007/s11071-006-9094-0 10.1063/1.2970709 10.1080/00207721.2014.998411 10.1177/1687814015613758 10.1063/1.5028157 10.1023/A:1016592219341 10.1051/mmnp/201712503 10.1016/j.mcm.2010.12.051 10.1007/s11071-015-1905-8 10.3390/e17064439 10.1016/j.aml.2006.08.013 10.1016/S0362-546X(99)00138-8 10.1007/BF00178772 10.1016/j.cnsns.2011.10.003 10.3390/e17085771 10.1016/j.cam.2017.10.021 |
| ContentType | Journal Article |
| Copyright | 2019 Elsevier Ltd |
| Copyright_xml | – notice: 2019 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.chaos.2019.05.039 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Sciences (General) Mathematics |
| EISSN | 1873-2887 |
| EndPage | 105 |
| ExternalDocumentID | 10_1016_j_chaos_2019_05_039 S0960077919302048 |
| GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29B 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABMAC ABNEU ABTAH ABXDB ABYKQ ACDAQ ACFVG ACGFS ACNNM ACRLP ADBBV ADEZE ADMUD AEBSH AEKER AENEX AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BBWZM BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HLZ HMV HVGLF HZ~ IHE J1W KOM LG9 M38 M41 MO0 N9A NDZJH O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SBC SDF SDG SDP SES SEW SPC SPCBC SPD SPG SSQ SSZ T5K WUQ XPP ZY4 ~G- 9DU AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c303t-d879745672d9576329dcde6a325ce2cb2cc43c1a7146bc9719b42ad4bf9b37b33 |
| ISICitedReferencesCount | 116 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000483418000012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0960-0779 |
| IngestDate | Sat Nov 29 07:07:22 EST 2025 Tue Nov 18 22:28:07 EST 2025 Fri Feb 23 02:18:26 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Time-delay Bifurcation theory Stability SIR Fractional calculus |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c303t-d879745672d9576329dcde6a325ce2cb2cc43c1a7146bc9719b42ad4bf9b37b33 |
| ORCID | 0000-0003-3855-5944 0000-0002-2853-9337 |
| PageCount | 9 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_chaos_2019_05_039 crossref_primary_10_1016_j_chaos_2019_05_039 elsevier_sciencedirect_doi_10_1016_j_chaos_2019_05_039 |
| PublicationCentury | 2000 |
| PublicationDate | September 2019 2019-09-00 |
| PublicationDateYYYYMMDD | 2019-09-01 |
| PublicationDate_xml | – month: 09 year: 2019 text: September 2019 |
| PublicationDecade | 2010 |
| PublicationTitle | Chaos, solitons and fractals |
| PublicationYear | 2019 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Rihan, Lakshmanan, Hashish, Rakkiyappan, Ahmed (bib0042) 2015; 80 Al-Mdallal (bib0004) 2018; 116 Song, Cheng (bib0044) 2005; 42 Bozkurt, Abdeljawad, Hajji (bib0019) 2015; 14 Al-Mdallal, Abro, Khan (bib0006) 2018; 2018 Al-Mdallal, Syam (bib0009) 2012; 17 Al-Mdallal, Omer (bib0008) 2018; 321 Beretta, Hara, Ma, Takeuchi (bib0018) 2001; 47 Grahovac, Zigic (bib0026) 2010; 59 Al-Mdallal, Hajji (bib0005) 2015; 18 Rajivganthi, Rihan (bib0038) 2018 Aman, Al-Mdallal, Khan (bib0011) 2018 Abdeljawad, Al-Mdallal, Jarad (bib0002) 2019; 119 Takeuchi, Ma, Beretta (bib0045) 2000; 42 Podlubny (bib0037) 1999 Javidi, Nyamoradi (bib0030) 2013; 37 Latha, Rihan, Rakkiyappan, Velmurugan (bib0032) 2018; 339 Diethelm, Ford, Freed (bib0021) 2002; 29 Chinnathambi, Rihan, Alsakaji (bib0049) 2019 Atangana, Alkahtani (bib0012) 2015; 17 Rihan, Sheek-Hussein, Tridane, Yafia (bib0043) 2017; 12 Maraaba, Jarad, Baleanu (bib0035) 2008; 51 El-Sayed, El-Mesiry, El-Saka (bib0022) 2007; 20 Ferdri (bib0025) 2012; 12 Rihan, Baleanu, Lakshmanan, Rakkiyappan (bib0041) 2014; 2014 Al-Mdallal, Hajji (bib0007) 2015; 18 Xu (bib0047) 2009; 14 Hethcote, Driessche (bib0028) 1995; 34 Ahmed, Hashish, Rihan (bib0003) 2012; 3 Atangana, Nieto (bib0014) 2015; 7 Keeling, Rohani (bib0031) 2008 Rihan (bib0039) 2013; 2013 Deng, Li, Lu (bib0020) 2007; 48 Atangana, Koca (bib0013) 2016; 89 Abdeljawad, Al-Mdallal (bib0001) 2018; 339 Bai, Wen, Rahmani, Yu (bib0015) 2015; 46 Hale, Lunel (bib0027) 1993 El-Shahed, Alsaedi (bib0023) 2011; 3 Al-Sulami, El-Shahed, Nieto, Shammak (bib0010) 2014 Wang, Wang, Huang, Li (bib0046) 2018; 28 Zeb, Bano, Alzahrani, Zaman (bib0048) 2018; 8 Engelborghs, Luzyanina, Samaey (bib0024) 2001 ÖZalp, Demirci (bib0036) 2011; 54 Rihan, Anwar (bib0040) 2012; 2012 Baskonus, Mekkaoui, Hammouch, Bulut (bib0017) 2015; 17 Li, Zhang, Hu, Jiang, Teng (bib0033) 2017; 54 Hilfer (bib0029) 2000 Baleanu, Maaraba, Jarad (bib0016) 2008; 41 Maraaba, Baleanu, Jarad (bib0034) 2008; 49 Rihan (10.1016/j.chaos.2019.05.039_bib0039) 2013; 2013 Al-Mdallal (10.1016/j.chaos.2019.05.039_bib0006) 2018; 2018 Abdeljawad (10.1016/j.chaos.2019.05.039_bib0001) 2018; 339 Baleanu (10.1016/j.chaos.2019.05.039_bib0016) 2008; 41 Maraaba (10.1016/j.chaos.2019.05.039_bib0034) 2008; 49 Atangana (10.1016/j.chaos.2019.05.039_bib0012) 2015; 17 Wang (10.1016/j.chaos.2019.05.039_bib0046) 2018; 28 Rihan (10.1016/j.chaos.2019.05.039_bib0040) 2012; 2012 Chinnathambi (10.1016/j.chaos.2019.05.039_bib0049) 2019 Latha (10.1016/j.chaos.2019.05.039_bib0032) 2018; 339 Hale (10.1016/j.chaos.2019.05.039_bib0027) 1993 Javidi (10.1016/j.chaos.2019.05.039_bib0030) 2013; 37 Bai (10.1016/j.chaos.2019.05.039_bib0015) 2015; 46 Hilfer (10.1016/j.chaos.2019.05.039_bib0029) 2000 El-Shahed (10.1016/j.chaos.2019.05.039_bib0023) 2011; 3 Grahovac (10.1016/j.chaos.2019.05.039_bib0026) 2010; 59 Al-Mdallal (10.1016/j.chaos.2019.05.039_bib0005) 2015; 18 Hethcote (10.1016/j.chaos.2019.05.039_bib0028) 1995; 34 Al-Mdallal (10.1016/j.chaos.2019.05.039_bib0009) 2012; 17 Diethelm (10.1016/j.chaos.2019.05.039_bib0021) 2002; 29 Podlubny (10.1016/j.chaos.2019.05.039_bib0037) 1999 Baskonus (10.1016/j.chaos.2019.05.039_bib0017) 2015; 17 ÖZalp (10.1016/j.chaos.2019.05.039_bib0036) 2011; 54 Aman (10.1016/j.chaos.2019.05.039_bib0011) 2018 Bozkurt (10.1016/j.chaos.2019.05.039_bib0019) 2015; 14 Ferdri (10.1016/j.chaos.2019.05.039_bib0025) 2012; 12 Engelborghs (10.1016/j.chaos.2019.05.039_bib0024) 2001 Takeuchi (10.1016/j.chaos.2019.05.039_bib0045) 2000; 42 Al-Mdallal (10.1016/j.chaos.2019.05.039_bib0007) 2015; 18 Al-Sulami (10.1016/j.chaos.2019.05.039_sbref0010) 2014 Rihan (10.1016/j.chaos.2019.05.039_bib0043) 2017; 12 Deng (10.1016/j.chaos.2019.05.039_bib0020) 2007; 48 Al-Mdallal (10.1016/j.chaos.2019.05.039_bib0004) 2018; 116 Zeb (10.1016/j.chaos.2019.05.039_bib0048) 2018; 8 Beretta (10.1016/j.chaos.2019.05.039_bib0018) 2001; 47 Li (10.1016/j.chaos.2019.05.039_bib0033) 2017; 54 El-Sayed (10.1016/j.chaos.2019.05.039_bib0022) 2007; 20 Rajivganthi (10.1016/j.chaos.2019.05.039_sbref0038) 2018 Ahmed (10.1016/j.chaos.2019.05.039_bib0003) 2012; 3 Abdeljawad (10.1016/j.chaos.2019.05.039_bib0002) 2019; 119 Maraaba (10.1016/j.chaos.2019.05.039_bib0035) 2008; 51 Keeling (10.1016/j.chaos.2019.05.039_bib0031) 2008 Al-Mdallal (10.1016/j.chaos.2019.05.039_bib0008) 2018; 321 Rihan (10.1016/j.chaos.2019.05.039_bib0042) 2015; 80 Atangana (10.1016/j.chaos.2019.05.039_sbref0014) 2015; 7 Atangana (10.1016/j.chaos.2019.05.039_bib0013) 2016; 89 Xu (10.1016/j.chaos.2019.05.039_bib0047) 2009; 14 Song (10.1016/j.chaos.2019.05.039_bib0044) 2005; 42 Rihan (10.1016/j.chaos.2019.05.039_bib0041) 2014; 2014 |
| References_xml | – volume: 14 start-page: 50 year: 2015 end-page: 62 ident: bib0019 article-title: Stability analysis of a fractional order differential equation model of a brain tumor growth depending on the density publication-title: Appl Comput Math – volume: 49 start-page: 083507 year: 2008 ident: bib0034 article-title: Existence and uniqueness theorem for a class of delay differential equations with left and right caput fractional derivatives publication-title: J Math Phys – volume: 339 start-page: 218 year: 2018 end-page: 230 ident: bib0001 article-title: Discrete Mittag-Leffler kernel type fractional difference initial value problems and Gronwalls inequality publication-title: J Comput Appl Math – year: 2014 ident: bib0010 article-title: On fractional order dengue epidemic model publication-title: Math Probl Eng – volume: 48 start-page: 409 year: 2007 end-page: 416 ident: bib0020 article-title: Stability analysis of linear fractional differential system with multiple time delays publication-title: Nonlinear Dyn – volume: 2013 start-page: 11 year: 2013 ident: bib0039 article-title: Numerical modeling of fractional-order biological systems publication-title: Abst Appl Anal – volume: 7 year: 2015 ident: bib0014 article-title: Numerical solution for the model of RLC circuit via the fractional derivative without singular kernel publication-title: Adv Mech Eng – year: 2001 ident: bib0024 article-title: DDE-BIFTOOL V. 2.00: a matlab package for bifurcation analysis of delay differential equations – volume: 3 start-page: 1 year: 2012 end-page: 6 ident: bib0003 article-title: On fractional order cancer model publication-title: Fract Calcul Appl Anal – volume: 18 start-page: 1423 year: 2015 end-page: 1440 ident: bib0005 article-title: A convergent algorithm for solving higher-order nonlinear fractional boundary value problems publication-title: Fract Calcul Appl Anal – volume: 18 start-page: 1423 year: 2015 end-page: 1440 ident: bib0007 article-title: A convergent algorithm for solving higher-order nonlinear fractional boundary value problems publication-title: Fract Calcul Appl Anal – volume: 28 start-page: 1850180 year: 2018 ident: bib0046 article-title: Dynamic analysis of a delayed fractional-order sir model with saturated incidence and treatment functions publication-title: Int J Bifurcat Chaos – volume: 339 start-page: 134 year: 2018 end-page: 146 ident: bib0032 article-title: A fractional-order model for Ebola virus infection with delayed immune response on heterogeneous complex networks publication-title: J Comput Appl Math – volume: 17 start-page: 2299 year: 2012 end-page: 2308 ident: bib0009 article-title: An efficient method for solving non-linear singularly perturbed two points boundary-value problems of fractional order publication-title: Commun Nonlinear Sci Numer Simul – volume: 14 start-page: 1978 year: 2009 end-page: 1983 ident: bib0047 article-title: Analytical approximations for a population growth model with fractional order publication-title: Commun Nonlinear Sci Numer Simul – volume: 41 start-page: 315403 year: 2008 ident: bib0016 article-title: Fractional variational principles with delay publication-title: J Phys A Math Theor – volume: 17 start-page: 5771 year: 2015 end-page: 5783 ident: bib0017 article-title: Active control of a chaotic fractional order economic system publication-title: Entropy – volume: 42 start-page: 1071 year: 2005 end-page: 1086 ident: bib0044 article-title: A delay differential equation model of HIV infection of CD4 publication-title: J Korean Math Soci – volume: 80 start-page: 777 year: 2015 end-page: 789 ident: bib0042 article-title: Fractional order delayed predator-prey systems with holling type-II functional response publication-title: Nonlinear Dyn – volume: 59 start-page: 1695 year: 2010 end-page: 1700 ident: bib0026 article-title: Modelling of the hamstring muscle group by use of fractional derivatives publication-title: Comput Math Appl – volume: 54 start-page: 435 year: 2017 end-page: 449 ident: bib0033 article-title: Dynamical analysis of a fractional-order predator-prey model incorporating a prey refuge publication-title: Appl Math Comput – volume: 17 start-page: 4439 year: 2015 end-page: 4453 ident: bib0012 article-title: Analysis of the Keller–Segel model with a fractional derivative without singular kernel publication-title: Entropy – year: 1993 ident: bib0027 article-title: Introduction to functional differential equations – volume: 54 start-page: 1 year: 2011 end-page: 6 ident: bib0036 article-title: A fractional order SEIR model with vertical transmission publication-title: Math Comput Modell – start-page: 1 year: 2018 end-page: 12 ident: bib0038 article-title: Stability of fractional-order preypredator system with time-delay and Monod-Haldane functional response publication-title: Nonlinear Dyn – volume: 89 start-page: 447 year: 2016 end-page: 454 ident: bib0013 article-title: Chaos in a simple nonlinear system with Atangana–Baleanu derivatives with fractional order publication-title: Chaos Solit Fract – year: 2008 ident: bib0031 article-title: Modeling infectious diseases – volume: 47 start-page: 4107 year: 2001 end-page: 4115 ident: bib0018 article-title: Global asymptotic stability of an SIR epidemic model with distributed time delay publication-title: Nonlinear Anal – year: 2018 ident: bib0011 article-title: Heat transfer and second order slip effect on MHD flow of fractional maxwell fluid in a porous medium publication-title: J King Saud Univ Sci – year: 2000 ident: bib0029 article-title: Applications of fractional calculus in physics – volume: 51 start-page: 1775 year: 2008 end-page: 1786 ident: bib0035 article-title: On the existence and the uniqueness theorem for fractional differential equations with bounded delay within caputo derivatives publication-title: Sci China Ser A Math – volume: 2012 start-page: 13 year: 2012 ident: bib0040 article-title: Qualitative analysis of delayed sir epidemic model with a saturated incidence rate publication-title: Int J Differ Equ – start-page: 1 year: 2019 end-page: 15 ident: bib0049 article-title: A fractional-order model with time delay for tuberculosis with endogenous reactivation and exogenous reinfections publication-title: Math Meth Appl Sci. – volume: 116 start-page: 261 year: 2018 end-page: 267 ident: bib0004 article-title: On fractional-Legendre spectral Galerkin method for fractional Sturm–Liouville problems publication-title: Chaos Solit Fract – volume: 34 start-page: 177 year: 1995 end-page: 194 ident: bib0028 article-title: An SIS epidemic model with variable population size and a delay publication-title: J Math Biol – volume: 12 start-page: 33 year: 2017 end-page: 47 ident: bib0043 article-title: Dynamics of hepatitis c virus infection: mathematical modeling and parameter estimation publication-title: Math Model Nat Phenom – volume: 46 start-page: 2380 year: 2015 end-page: 2392 ident: bib0015 article-title: Distributed formation control of fractional-order multi-agent systems with absolute damping and communication delay publication-title: Int J Syst Sci – volume: 8 start-page: 045317 year: 2018 ident: bib0048 article-title: Dynamical analysis of cigarette smoking model with a saturated incidence rate publication-title: AIP Adv – volume: 3 start-page: 378 year: 2011 end-page: 387 ident: bib0023 article-title: The fractional SIRC model and influenza a publication-title: Math Probl Eng – volume: 321 start-page: 74 year: 2018 end-page: 84 ident: bib0008 article-title: Fractional-order legendre-collocation method for solving fractional initial value problems publication-title: Appl Math Comput – volume: 12 start-page: 13 year: 2012 ident: bib0025 article-title: Some applications of fractional order calculus to design digital filters for biomedical signal processing publication-title: J Mech Med Biol – volume: 20 start-page: 817 year: 2007 end-page: 823 ident: bib0022 article-title: On the fractional-order logistic equation publication-title: Appl Math Lett – volume: 37 start-page: 8946 year: 2013 end-page: 8956 ident: bib0030 article-title: Dynamic analysis of a fractional order prey-predator interaction with harvesting publication-title: Appl Math Model – year: 1999 ident: bib0037 article-title: Fractional differential equations – volume: 42 start-page: 931 year: 2000 end-page: 947 ident: bib0045 article-title: Global asymptotic properties of a delay SIR epidemic model with finite incubation times publication-title: Nonlinear Anal Theory Methods Appl – volume: 2018 year: 2018 ident: bib0006 article-title: Analytical solutions of fractional Walters b fluid with applications publication-title: Complexity – volume: 2014 start-page: 9 year: 2014 ident: bib0041 article-title: On fractional SIRC model with salmonella bacterial infection publication-title: Abst Appl Anal – volume: 29 start-page: 3 year: 2002 end-page: 22 ident: bib0021 article-title: A predictor corrector approach for the numerical solution of fractional differential equations publication-title: Nonlinear Dyn – volume: 119 start-page: 94 year: 2019 end-page: 101 ident: bib0002 article-title: Fractional logistic models in the frame of fractional operators generated by conformable derivatives publication-title: Chaos Solit Fract – volume: 339 start-page: 134 year: 2018 ident: 10.1016/j.chaos.2019.05.039_bib0032 article-title: A fractional-order model for Ebola virus infection with delayed immune response on heterogeneous complex networks publication-title: J Comput Appl Math doi: 10.1016/j.cam.2017.11.032 – volume: 89 start-page: 447 year: 2016 ident: 10.1016/j.chaos.2019.05.039_bib0013 article-title: Chaos in a simple nonlinear system with Atangana–Baleanu derivatives with fractional order publication-title: Chaos Solit Fract doi: 10.1016/j.chaos.2016.02.012 – volume: 119 start-page: 94 year: 2019 ident: 10.1016/j.chaos.2019.05.039_bib0002 article-title: Fractional logistic models in the frame of fractional operators generated by conformable derivatives publication-title: Chaos Solit Fract doi: 10.1016/j.chaos.2018.12.015 – start-page: 1 year: 2018 ident: 10.1016/j.chaos.2019.05.039_sbref0038 article-title: Stability of fractional-order preypredator system with time-delay and Monod-Haldane functional response publication-title: Nonlinear Dyn – volume: 3 start-page: 1 year: 2012 ident: 10.1016/j.chaos.2019.05.039_bib0003 article-title: On fractional order cancer model publication-title: Fract Calcul Appl Anal – volume: 2012 start-page: 13 year: 2012 ident: 10.1016/j.chaos.2019.05.039_bib0040 article-title: Qualitative analysis of delayed sir epidemic model with a saturated incidence rate publication-title: Int J Differ Equ – volume: 51 start-page: 1775 issue: 10 year: 2008 ident: 10.1016/j.chaos.2019.05.039_bib0035 article-title: On the existence and the uniqueness theorem for fractional differential equations with bounded delay within caputo derivatives publication-title: Sci China Ser A Math doi: 10.1007/s11425-008-0068-1 – volume: 116 start-page: 261 year: 2018 ident: 10.1016/j.chaos.2019.05.039_bib0004 article-title: On fractional-Legendre spectral Galerkin method for fractional Sturm–Liouville problems publication-title: Chaos Solit Fract doi: 10.1016/j.chaos.2018.09.032 – volume: 42 start-page: 1071 issue: 5 year: 2005 ident: 10.1016/j.chaos.2019.05.039_bib0044 article-title: A delay differential equation model of HIV infection of CD4+t -cells publication-title: J Korean Math Soci doi: 10.4134/JKMS.2005.42.5.1071 – volume: 12 start-page: 13 issue: 2 year: 2012 ident: 10.1016/j.chaos.2019.05.039_bib0025 article-title: Some applications of fractional order calculus to design digital filters for biomedical signal processing publication-title: J Mech Med Biol – volume: 41 start-page: 315403 issue: 31 year: 2008 ident: 10.1016/j.chaos.2019.05.039_bib0016 article-title: Fractional variational principles with delay publication-title: J Phys A Math Theor doi: 10.1088/1751-8113/41/31/315403 – volume: 14 start-page: 1978 year: 2009 ident: 10.1016/j.chaos.2019.05.039_bib0047 article-title: Analytical approximations for a population growth model with fractional order publication-title: Commun Nonlinear Sci Numer Simul doi: 10.1016/j.cnsns.2008.07.006 – year: 2018 ident: 10.1016/j.chaos.2019.05.039_bib0011 article-title: Heat transfer and second order slip effect on MHD flow of fractional maxwell fluid in a porous medium publication-title: J King Saud Univ Sci – volume: 59 start-page: 1695 year: 2010 ident: 10.1016/j.chaos.2019.05.039_bib0026 article-title: Modelling of the hamstring muscle group by use of fractional derivatives publication-title: Comput Math Appl doi: 10.1016/j.camwa.2009.08.011 – volume: 14 start-page: 50 issue: 1 year: 2015 ident: 10.1016/j.chaos.2019.05.039_bib0019 article-title: Stability analysis of a fractional order differential equation model of a brain tumor growth depending on the density publication-title: Appl Comput Math – year: 2001 ident: 10.1016/j.chaos.2019.05.039_bib0024 – volume: 2014 start-page: 9 year: 2014 ident: 10.1016/j.chaos.2019.05.039_bib0041 article-title: On fractional SIRC model with salmonella bacterial infection publication-title: Abst Appl Anal – volume: 321 start-page: 74 year: 2018 ident: 10.1016/j.chaos.2019.05.039_bib0008 article-title: Fractional-order legendre-collocation method for solving fractional initial value problems publication-title: Appl Math Comput – volume: 3 start-page: 378 year: 2011 ident: 10.1016/j.chaos.2019.05.039_bib0023 article-title: The fractional SIRC model and influenza a publication-title: Math Probl Eng – year: 2014 ident: 10.1016/j.chaos.2019.05.039_sbref0010 article-title: On fractional order dengue epidemic model publication-title: Math Probl Eng doi: 10.1155/2014/456537 – volume: 2018 year: 2018 ident: 10.1016/j.chaos.2019.05.039_bib0006 article-title: Analytical solutions of fractional Walters b fluid with applications publication-title: Complexity doi: 10.1155/2018/8131329 – volume: 18 start-page: 1423 issue: 6 year: 2015 ident: 10.1016/j.chaos.2019.05.039_bib0007 article-title: A convergent algorithm for solving higher-order nonlinear fractional boundary value problems publication-title: Fract Calcul Appl Anal doi: 10.1515/fca-2015-0082 – start-page: 1 year: 2019 ident: 10.1016/j.chaos.2019.05.039_bib0049 article-title: A fractional-order model with time delay for tuberculosis with endogenous reactivation and exogenous reinfections publication-title: Math Meth Appl Sci. – volume: 37 start-page: 8946 year: 2013 ident: 10.1016/j.chaos.2019.05.039_bib0030 article-title: Dynamic analysis of a fractional order prey-predator interaction with harvesting publication-title: Appl Math Model doi: 10.1016/j.apm.2013.04.024 – volume: 28 start-page: 1850180 issue: 14 year: 2018 ident: 10.1016/j.chaos.2019.05.039_bib0046 article-title: Dynamic analysis of a delayed fractional-order sir model with saturated incidence and treatment functions publication-title: Int J Bifurcat Chaos doi: 10.1142/S0218127418501808 – year: 1999 ident: 10.1016/j.chaos.2019.05.039_bib0037 – volume: 47 start-page: 4107 year: 2001 ident: 10.1016/j.chaos.2019.05.039_bib0018 article-title: Global asymptotic stability of an SIR epidemic model with distributed time delay publication-title: Nonlinear Anal doi: 10.1016/S0362-546X(01)00528-4 – volume: 48 start-page: 409 year: 2007 ident: 10.1016/j.chaos.2019.05.039_bib0020 article-title: Stability analysis of linear fractional differential system with multiple time delays publication-title: Nonlinear Dyn doi: 10.1007/s11071-006-9094-0 – year: 1993 ident: 10.1016/j.chaos.2019.05.039_bib0027 – volume: 2013 start-page: 11 year: 2013 ident: 10.1016/j.chaos.2019.05.039_bib0039 article-title: Numerical modeling of fractional-order biological systems publication-title: Abst Appl Anal – volume: 49 start-page: 083507 issue: 8 year: 2008 ident: 10.1016/j.chaos.2019.05.039_bib0034 article-title: Existence and uniqueness theorem for a class of delay differential equations with left and right caput fractional derivatives publication-title: J Math Phys doi: 10.1063/1.2970709 – volume: 46 start-page: 2380 issue: 13 year: 2015 ident: 10.1016/j.chaos.2019.05.039_bib0015 article-title: Distributed formation control of fractional-order multi-agent systems with absolute damping and communication delay publication-title: Int J Syst Sci doi: 10.1080/00207721.2014.998411 – volume: 7 issue: 10 year: 2015 ident: 10.1016/j.chaos.2019.05.039_sbref0014 article-title: Numerical solution for the model of RLC circuit via the fractional derivative without singular kernel publication-title: Adv Mech Eng doi: 10.1177/1687814015613758 – volume: 8 start-page: 045317 issue: 4 year: 2018 ident: 10.1016/j.chaos.2019.05.039_bib0048 article-title: Dynamical analysis of cigarette smoking model with a saturated incidence rate publication-title: AIP Adv doi: 10.1063/1.5028157 – year: 2000 ident: 10.1016/j.chaos.2019.05.039_bib0029 – volume: 29 start-page: 3 year: 2002 ident: 10.1016/j.chaos.2019.05.039_bib0021 article-title: A predictor corrector approach for the numerical solution of fractional differential equations publication-title: Nonlinear Dyn doi: 10.1023/A:1016592219341 – volume: 12 start-page: 33 issue: 5 year: 2017 ident: 10.1016/j.chaos.2019.05.039_bib0043 article-title: Dynamics of hepatitis c virus infection: mathematical modeling and parameter estimation publication-title: Math Model Nat Phenom doi: 10.1051/mmnp/201712503 – volume: 54 start-page: 1 year: 2011 ident: 10.1016/j.chaos.2019.05.039_bib0036 article-title: A fractional order SEIR model with vertical transmission publication-title: Math Comput Modell doi: 10.1016/j.mcm.2010.12.051 – volume: 80 start-page: 777 issue: 1 year: 2015 ident: 10.1016/j.chaos.2019.05.039_bib0042 article-title: Fractional order delayed predator-prey systems with holling type-II functional response publication-title: Nonlinear Dyn doi: 10.1007/s11071-015-1905-8 – volume: 17 start-page: 4439 issue: 6 year: 2015 ident: 10.1016/j.chaos.2019.05.039_bib0012 article-title: Analysis of the Keller–Segel model with a fractional derivative without singular kernel publication-title: Entropy doi: 10.3390/e17064439 – volume: 54 start-page: 435 year: 2017 ident: 10.1016/j.chaos.2019.05.039_bib0033 article-title: Dynamical analysis of a fractional-order predator-prey model incorporating a prey refuge publication-title: Appl Math Comput – volume: 20 start-page: 817 issue: 7 year: 2007 ident: 10.1016/j.chaos.2019.05.039_bib0022 article-title: On the fractional-order logistic equation publication-title: Appl Math Lett doi: 10.1016/j.aml.2006.08.013 – volume: 42 start-page: 931 year: 2000 ident: 10.1016/j.chaos.2019.05.039_bib0045 article-title: Global asymptotic properties of a delay SIR epidemic model with finite incubation times publication-title: Nonlinear Anal Theory Methods Appl doi: 10.1016/S0362-546X(99)00138-8 – volume: 18 start-page: 1423 issue: 6 year: 2015 ident: 10.1016/j.chaos.2019.05.039_bib0005 article-title: A convergent algorithm for solving higher-order nonlinear fractional boundary value problems publication-title: Fract Calcul Appl Anal doi: 10.1515/fca-2015-0082 – volume: 34 start-page: 177 year: 1995 ident: 10.1016/j.chaos.2019.05.039_bib0028 article-title: An SIS epidemic model with variable population size and a delay publication-title: J Math Biol doi: 10.1007/BF00178772 – volume: 17 start-page: 2299 issue: 6 year: 2012 ident: 10.1016/j.chaos.2019.05.039_bib0009 article-title: An efficient method for solving non-linear singularly perturbed two points boundary-value problems of fractional order publication-title: Commun Nonlinear Sci Numer Simul doi: 10.1016/j.cnsns.2011.10.003 – volume: 17 start-page: 5771 issue: 8 year: 2015 ident: 10.1016/j.chaos.2019.05.039_bib0017 article-title: Active control of a chaotic fractional order economic system publication-title: Entropy doi: 10.3390/e17085771 – volume: 339 start-page: 218 year: 2018 ident: 10.1016/j.chaos.2019.05.039_bib0001 article-title: Discrete Mittag-Leffler kernel type fractional difference initial value problems and Gronwalls inequality publication-title: J Comput Appl Math doi: 10.1016/j.cam.2017.10.021 – year: 2008 ident: 10.1016/j.chaos.2019.05.039_bib0031 |
| SSID | ssj0001062 |
| Score | 2.5850675 |
| Snippet | •We provide an epidemic SIR model with long-range temporal memory governed by delay differential equations with fractional-order.•The existence of steady... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 97 |
| SubjectTerms | Bifurcation theory Fractional calculus SIR Stability Time-delay |
| Title | A fractional-order epidemic model with time-delay and nonlinear incidence rate |
| URI | https://dx.doi.org/10.1016/j.chaos.2019.05.039 |
| Volume | 126 |
| WOSCitedRecordID | wos000483418000012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-2887 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001062 issn: 0960-0779 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZCywEOiBYQLQ_5wAEUvEq8D8fHVdUKKiUCUaTcVrbXqyQsqyqbVj3w4xk_1htaFNEDl1W0ie1s5tPMePL5G4TeSQYxfVQlRLJEkUTxjEhIi4iG0JFC-KoqKWyzCTabTeZz_mUw-NWdhbmuWdNMbm745X81NdwDY5ujs_cwd5gUbsBrMDpcwexw_SfD58Nq7U4riJpYZc2hdm1glet742uvy5-aGIlIJ8DUOMkMQ0ltlGs0OjQqEtvJ68lCOFJea0hzhmNjRtrVRN1z5pcLV1Q9i_Io4Kkm09LU7G3F-Ws03Xrnm_ghVq55dnQe9S6xXSxbW_Tx0_jaxLgnX4UiYzYiI-baxQR_S7c9pmPn-tg7tkew77p1V2FYRco8p-HjcSu36mSQ_hTRvhXcAuWwY7OtCjtJYSYpRmkBkzxA-5SlHHzifv75dH4eIjlsl-2_UN1TdKpVlh9457v8PbPZylYunqInfpuBcwePAzTQzSF6PA0ave0hOvBuvcXvvfb4h2doluPb6MEderBFDzbowT16MGAAB_TggB5s0PMcfT87vTj5RHzLDaIgl9mQcsJgg5lmjJYcdqIx5aUqdSZimipNlaRKJbEaCwYBVirOxlwmVJSJrLiMmYzjF2gPltQvEWZiQlUqMq5VlSQ6FZXSbKKZqjSkzJk-QrT7uQrl9ehNW5S62GGqI_QxDLp0ciy7P551dih8RukyxQKQtWvg8f3WeYUe9fB_jfY26yv9Bj1U15tlu37rYfUbNYyWoQ |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+fractional-order+epidemic+model+with+time-delay+and+nonlinear+incidence+rate&rft.jtitle=Chaos%2C+solitons+and+fractals&rft.au=Rihan%2C+F.A.&rft.au=Al-Mdallal%2C+Q.M.&rft.au=AlSakaji%2C+H.J.&rft.au=Hashish%2C+A.&rft.date=2019-09-01&rft.issn=0960-0779&rft.volume=126&rft.spage=97&rft.epage=105&rft_id=info:doi/10.1016%2Fj.chaos.2019.05.039&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_chaos_2019_05_039 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-0779&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-0779&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-0779&client=summon |