A fractional-order epidemic model with time-delay and nonlinear incidence rate

•We provide an epidemic SIR model with long-range temporal memory governed by delay differential equations with fractional-order.•The existence of steady states and the asymptotic stability of the steady states are discussed.•The occurrence of Hopf bifurcation is captured when the time-delay passes...

Full description

Saved in:
Bibliographic Details
Published in:Chaos, solitons and fractals Vol. 126; pp. 97 - 105
Main Authors: Rihan, F.A., Al-Mdallal, Q.M., AlSakaji, H.J., Hashish, A.
Format: Journal Article
Language:English
Published: Elsevier Ltd 01.09.2019
Subjects:
ISSN:0960-0779, 1873-2887
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract •We provide an epidemic SIR model with long-range temporal memory governed by delay differential equations with fractional-order.•The existence of steady states and the asymptotic stability of the steady states are discussed.•The occurrence of Hopf bifurcation is captured when the time-delay passes through a critical value.•Theoretical results are validated numerically. In this paper, we provide an epidemic SIR model with long-range temporal memory. The model is governed by delay differential equations with fractional-order. We assume that the susceptible is obeying the logistic form in which the incidence term is of saturated form with the susceptible. Several theoretical results related to the existence of steady states and the asymptotic stability of the steady states are discussed. We use a suitable Lyapunov functional to formulate a new set of sufficient conditions that guarantee the global stability of the steady states. The occurrence of Hopf bifurcation is captured when the time-delay τ passes through a critical value τ*. Theoretical results are validated numerically by solving the governing system, using the modified Adams-Bashforth-Moulton predictor-corrector scheme. Our findings show that the combination of fractional-order derivative and time-delay in the model improves the dynamics and increases complexity of the model. In some cases, the phase portrait gets stretched as the order of the derivative is reduced.
AbstractList •We provide an epidemic SIR model with long-range temporal memory governed by delay differential equations with fractional-order.•The existence of steady states and the asymptotic stability of the steady states are discussed.•The occurrence of Hopf bifurcation is captured when the time-delay passes through a critical value.•Theoretical results are validated numerically. In this paper, we provide an epidemic SIR model with long-range temporal memory. The model is governed by delay differential equations with fractional-order. We assume that the susceptible is obeying the logistic form in which the incidence term is of saturated form with the susceptible. Several theoretical results related to the existence of steady states and the asymptotic stability of the steady states are discussed. We use a suitable Lyapunov functional to formulate a new set of sufficient conditions that guarantee the global stability of the steady states. The occurrence of Hopf bifurcation is captured when the time-delay τ passes through a critical value τ*. Theoretical results are validated numerically by solving the governing system, using the modified Adams-Bashforth-Moulton predictor-corrector scheme. Our findings show that the combination of fractional-order derivative and time-delay in the model improves the dynamics and increases complexity of the model. In some cases, the phase portrait gets stretched as the order of the derivative is reduced.
Author AlSakaji, H.J.
Rihan, F.A.
Al-Mdallal, Q.M.
Hashish, A.
Author_xml – sequence: 1
  givenname: F.A.
  orcidid: 0000-0003-3855-5944
  surname: Rihan
  fullname: Rihan, F.A.
  organization: Department of Mathematical Sciences, College of Science, UAE University, Al-Ain 15551, United Arab Emirates
– sequence: 2
  givenname: Q.M.
  orcidid: 0000-0002-2853-9337
  surname: Al-Mdallal
  fullname: Al-Mdallal, Q.M.
  email: q.almdallal@uaeu.ac.ae
  organization: Department of Mathematical Sciences, College of Science, UAE University, Al-Ain 15551, United Arab Emirates
– sequence: 3
  givenname: H.J.
  surname: AlSakaji
  fullname: AlSakaji, H.J.
  organization: Department of Mathematical Sciences, College of Science, UAE University, Al-Ain 15551, United Arab Emirates
– sequence: 4
  givenname: A.
  surname: Hashish
  fullname: Hashish, A.
  organization: Department of Physics, College of Science, UAE University, Al-Ain, 15551, United Arab Emirates
BookMark eNqFkMtOwzAQRS0EEm3hC9j4BxL8SOJ4waKqeEkVbGBtOeOJ6iqJK8cC9e9JKCsWsBqNNOeO7lmS8yEMSMgNZzlnvLrd57CzYcwF4zpnZc6kPiMLXiuZibpW52TBdMUyppS-JMtx3DPGOKvEgrysaRstJB8G22UhOowUD95h74H2wWFHP33a0eR7zKbNHqkdHJ3-d35AG6kfYLoeAGm0Ca_IRWu7Ea9_5oq8P9y_bZ6y7evj82a9zUAymTJXK62KslLC6VJVUmgHDisrRQkooBEAhQRuFS-qBrTiuimEdUXT6kaqRsoV0adciGEcI7YGfLJzixSt7wxnZhZj9uZbjJnFGFaaSczEyl_sIfrexuM_1N2JwqnWh8doRvBzb-cjQjIu-D_5LxDjgOY
CitedBy_id crossref_primary_10_1007_s11071_021_06623_9
crossref_primary_10_3390_axioms13030206
crossref_primary_10_1155_2021_6613171
crossref_primary_10_1007_s11071_021_07196_3
crossref_primary_10_1016_j_matcom_2020_09_029
crossref_primary_10_1016_j_chaos_2020_110340
crossref_primary_10_1186_s13662_020_02964_8
crossref_primary_10_1007_s11071_021_07177_6
crossref_primary_10_1002_mma_6155
crossref_primary_10_30755_NSJOM_15832
crossref_primary_10_3389_fnins_2023_1246778
crossref_primary_10_1016_j_chaos_2024_114982
crossref_primary_10_3390_fractalfract7100729
crossref_primary_10_1140_epjp_s13360_022_02351_0
crossref_primary_10_1186_s13662_021_03316_w
crossref_primary_10_1140_epjs_s11734_024_01267_3
crossref_primary_10_1016_j_chaos_2020_110256
crossref_primary_10_1140_epjs_s11734_024_01221_3
crossref_primary_10_1186_s13662_021_03254_7
crossref_primary_10_3390_vaccines10111773
crossref_primary_10_1016_j_chaos_2020_110090
crossref_primary_10_1007_s10668_024_04732_0
crossref_primary_10_1016_j_dsp_2021_103001
crossref_primary_10_1155_2022_6202049
crossref_primary_10_1515_math_2020_0014
crossref_primary_10_1007_s40435_022_01083_4
crossref_primary_10_1155_2020_4565036
crossref_primary_10_3390_math10122064
crossref_primary_10_3390_math9030263
crossref_primary_10_3390_sym16101343
crossref_primary_10_1186_s13662_020_02808_5
crossref_primary_10_1155_2019_1097201
crossref_primary_10_3390_math11010142
crossref_primary_10_1016_j_matcom_2022_04_029
crossref_primary_10_1186_s13662_021_03269_0
crossref_primary_10_1016_j_chaos_2022_112301
crossref_primary_10_1140_epjs_s11734_024_01294_0
crossref_primary_10_1007_s13226_024_00579_3
crossref_primary_10_1007_s12215_022_00825_9
crossref_primary_10_1007_s40435_023_01284_5
crossref_primary_10_1016_j_chaos_2020_109806
crossref_primary_10_1002_mma_6378
crossref_primary_10_3390_math9151829
crossref_primary_10_32604_cmes_2022_021483
crossref_primary_10_32604_cmes_2022_022177
crossref_primary_10_1186_s13662_020_02814_7
crossref_primary_10_3390_fractalfract5030120
crossref_primary_10_1016_j_chaos_2020_109960
crossref_primary_10_1155_2020_2149037
crossref_primary_10_3390_appliedmath5030127
crossref_primary_10_1155_2021_5518436
crossref_primary_10_1155_2021_3058414
crossref_primary_10_1016_j_cjph_2024_03_024
crossref_primary_10_1186_s13662_020_02745_3
crossref_primary_10_1016_j_cam_2020_113247
crossref_primary_10_1186_s13662_020_02709_7
crossref_primary_10_1002_mma_9161
crossref_primary_10_1186_s13663_022_00733_8
crossref_primary_10_1155_2020_9823753
crossref_primary_10_1016_j_cmpb_2020_105530
crossref_primary_10_1007_s40096_020_00372_3
crossref_primary_10_1155_2020_6824672
crossref_primary_10_1038_s41598_023_51121_0
crossref_primary_10_1088_1402_4896_acbfef
crossref_primary_10_1155_2022_5121636
crossref_primary_10_32604_cmes_2023_023059
crossref_primary_10_3390_math13071085
crossref_primary_10_1142_S0218348X25401164
crossref_primary_10_1186_s13661_024_01982_9
Cites_doi 10.1016/j.cam.2017.11.032
10.1016/j.chaos.2016.02.012
10.1016/j.chaos.2018.12.015
10.1007/s11425-008-0068-1
10.1016/j.chaos.2018.09.032
10.4134/JKMS.2005.42.5.1071
10.1088/1751-8113/41/31/315403
10.1016/j.cnsns.2008.07.006
10.1016/j.camwa.2009.08.011
10.1155/2014/456537
10.1155/2018/8131329
10.1515/fca-2015-0082
10.1016/j.apm.2013.04.024
10.1142/S0218127418501808
10.1016/S0362-546X(01)00528-4
10.1007/s11071-006-9094-0
10.1063/1.2970709
10.1080/00207721.2014.998411
10.1177/1687814015613758
10.1063/1.5028157
10.1023/A:1016592219341
10.1051/mmnp/201712503
10.1016/j.mcm.2010.12.051
10.1007/s11071-015-1905-8
10.3390/e17064439
10.1016/j.aml.2006.08.013
10.1016/S0362-546X(99)00138-8
10.1007/BF00178772
10.1016/j.cnsns.2011.10.003
10.3390/e17085771
10.1016/j.cam.2017.10.021
ContentType Journal Article
Copyright 2019 Elsevier Ltd
Copyright_xml – notice: 2019 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.chaos.2019.05.039
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Mathematics
EISSN 1873-2887
EndPage 105
ExternalDocumentID 10_1016_j_chaos_2019_05_039
S0960077919302048
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29B
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABMAC
ABNEU
ABTAH
ABXDB
ABYKQ
ACDAQ
ACFVG
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HLZ
HMV
HVGLF
HZ~
IHE
J1W
KOM
LG9
M38
M41
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SPD
SPG
SSQ
SSZ
T5K
WUQ
XPP
ZY4
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c303t-d879745672d9576329dcde6a325ce2cb2cc43c1a7146bc9719b42ad4bf9b37b33
ISICitedReferencesCount 116
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000483418000012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0960-0779
IngestDate Sat Nov 29 07:07:22 EST 2025
Tue Nov 18 22:28:07 EST 2025
Fri Feb 23 02:18:26 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Time-delay
Bifurcation theory
Stability
SIR
Fractional calculus
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c303t-d879745672d9576329dcde6a325ce2cb2cc43c1a7146bc9719b42ad4bf9b37b33
ORCID 0000-0003-3855-5944
0000-0002-2853-9337
PageCount 9
ParticipantIDs crossref_citationtrail_10_1016_j_chaos_2019_05_039
crossref_primary_10_1016_j_chaos_2019_05_039
elsevier_sciencedirect_doi_10_1016_j_chaos_2019_05_039
PublicationCentury 2000
PublicationDate September 2019
2019-09-00
PublicationDateYYYYMMDD 2019-09-01
PublicationDate_xml – month: 09
  year: 2019
  text: September 2019
PublicationDecade 2010
PublicationTitle Chaos, solitons and fractals
PublicationYear 2019
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Rihan, Lakshmanan, Hashish, Rakkiyappan, Ahmed (bib0042) 2015; 80
Al-Mdallal (bib0004) 2018; 116
Song, Cheng (bib0044) 2005; 42
Bozkurt, Abdeljawad, Hajji (bib0019) 2015; 14
Al-Mdallal, Abro, Khan (bib0006) 2018; 2018
Al-Mdallal, Syam (bib0009) 2012; 17
Al-Mdallal, Omer (bib0008) 2018; 321
Beretta, Hara, Ma, Takeuchi (bib0018) 2001; 47
Grahovac, Zigic (bib0026) 2010; 59
Al-Mdallal, Hajji (bib0005) 2015; 18
Rajivganthi, Rihan (bib0038) 2018
Aman, Al-Mdallal, Khan (bib0011) 2018
Abdeljawad, Al-Mdallal, Jarad (bib0002) 2019; 119
Takeuchi, Ma, Beretta (bib0045) 2000; 42
Podlubny (bib0037) 1999
Javidi, Nyamoradi (bib0030) 2013; 37
Latha, Rihan, Rakkiyappan, Velmurugan (bib0032) 2018; 339
Diethelm, Ford, Freed (bib0021) 2002; 29
Chinnathambi, Rihan, Alsakaji (bib0049) 2019
Atangana, Alkahtani (bib0012) 2015; 17
Rihan, Sheek-Hussein, Tridane, Yafia (bib0043) 2017; 12
Maraaba, Jarad, Baleanu (bib0035) 2008; 51
El-Sayed, El-Mesiry, El-Saka (bib0022) 2007; 20
Ferdri (bib0025) 2012; 12
Rihan, Baleanu, Lakshmanan, Rakkiyappan (bib0041) 2014; 2014
Al-Mdallal, Hajji (bib0007) 2015; 18
Xu (bib0047) 2009; 14
Hethcote, Driessche (bib0028) 1995; 34
Ahmed, Hashish, Rihan (bib0003) 2012; 3
Atangana, Nieto (bib0014) 2015; 7
Keeling, Rohani (bib0031) 2008
Rihan (bib0039) 2013; 2013
Deng, Li, Lu (bib0020) 2007; 48
Atangana, Koca (bib0013) 2016; 89
Abdeljawad, Al-Mdallal (bib0001) 2018; 339
Bai, Wen, Rahmani, Yu (bib0015) 2015; 46
Hale, Lunel (bib0027) 1993
El-Shahed, Alsaedi (bib0023) 2011; 3
Al-Sulami, El-Shahed, Nieto, Shammak (bib0010) 2014
Wang, Wang, Huang, Li (bib0046) 2018; 28
Zeb, Bano, Alzahrani, Zaman (bib0048) 2018; 8
Engelborghs, Luzyanina, Samaey (bib0024) 2001
ÖZalp, Demirci (bib0036) 2011; 54
Rihan, Anwar (bib0040) 2012; 2012
Baskonus, Mekkaoui, Hammouch, Bulut (bib0017) 2015; 17
Li, Zhang, Hu, Jiang, Teng (bib0033) 2017; 54
Hilfer (bib0029) 2000
Baleanu, Maaraba, Jarad (bib0016) 2008; 41
Maraaba, Baleanu, Jarad (bib0034) 2008; 49
Rihan (10.1016/j.chaos.2019.05.039_bib0039) 2013; 2013
Al-Mdallal (10.1016/j.chaos.2019.05.039_bib0006) 2018; 2018
Abdeljawad (10.1016/j.chaos.2019.05.039_bib0001) 2018; 339
Baleanu (10.1016/j.chaos.2019.05.039_bib0016) 2008; 41
Maraaba (10.1016/j.chaos.2019.05.039_bib0034) 2008; 49
Atangana (10.1016/j.chaos.2019.05.039_bib0012) 2015; 17
Wang (10.1016/j.chaos.2019.05.039_bib0046) 2018; 28
Rihan (10.1016/j.chaos.2019.05.039_bib0040) 2012; 2012
Chinnathambi (10.1016/j.chaos.2019.05.039_bib0049) 2019
Latha (10.1016/j.chaos.2019.05.039_bib0032) 2018; 339
Hale (10.1016/j.chaos.2019.05.039_bib0027) 1993
Javidi (10.1016/j.chaos.2019.05.039_bib0030) 2013; 37
Bai (10.1016/j.chaos.2019.05.039_bib0015) 2015; 46
Hilfer (10.1016/j.chaos.2019.05.039_bib0029) 2000
El-Shahed (10.1016/j.chaos.2019.05.039_bib0023) 2011; 3
Grahovac (10.1016/j.chaos.2019.05.039_bib0026) 2010; 59
Al-Mdallal (10.1016/j.chaos.2019.05.039_bib0005) 2015; 18
Hethcote (10.1016/j.chaos.2019.05.039_bib0028) 1995; 34
Al-Mdallal (10.1016/j.chaos.2019.05.039_bib0009) 2012; 17
Diethelm (10.1016/j.chaos.2019.05.039_bib0021) 2002; 29
Podlubny (10.1016/j.chaos.2019.05.039_bib0037) 1999
Baskonus (10.1016/j.chaos.2019.05.039_bib0017) 2015; 17
ÖZalp (10.1016/j.chaos.2019.05.039_bib0036) 2011; 54
Aman (10.1016/j.chaos.2019.05.039_bib0011) 2018
Bozkurt (10.1016/j.chaos.2019.05.039_bib0019) 2015; 14
Ferdri (10.1016/j.chaos.2019.05.039_bib0025) 2012; 12
Engelborghs (10.1016/j.chaos.2019.05.039_bib0024) 2001
Takeuchi (10.1016/j.chaos.2019.05.039_bib0045) 2000; 42
Al-Mdallal (10.1016/j.chaos.2019.05.039_bib0007) 2015; 18
Al-Sulami (10.1016/j.chaos.2019.05.039_sbref0010) 2014
Rihan (10.1016/j.chaos.2019.05.039_bib0043) 2017; 12
Deng (10.1016/j.chaos.2019.05.039_bib0020) 2007; 48
Al-Mdallal (10.1016/j.chaos.2019.05.039_bib0004) 2018; 116
Zeb (10.1016/j.chaos.2019.05.039_bib0048) 2018; 8
Beretta (10.1016/j.chaos.2019.05.039_bib0018) 2001; 47
Li (10.1016/j.chaos.2019.05.039_bib0033) 2017; 54
El-Sayed (10.1016/j.chaos.2019.05.039_bib0022) 2007; 20
Rajivganthi (10.1016/j.chaos.2019.05.039_sbref0038) 2018
Ahmed (10.1016/j.chaos.2019.05.039_bib0003) 2012; 3
Abdeljawad (10.1016/j.chaos.2019.05.039_bib0002) 2019; 119
Maraaba (10.1016/j.chaos.2019.05.039_bib0035) 2008; 51
Keeling (10.1016/j.chaos.2019.05.039_bib0031) 2008
Al-Mdallal (10.1016/j.chaos.2019.05.039_bib0008) 2018; 321
Rihan (10.1016/j.chaos.2019.05.039_bib0042) 2015; 80
Atangana (10.1016/j.chaos.2019.05.039_sbref0014) 2015; 7
Atangana (10.1016/j.chaos.2019.05.039_bib0013) 2016; 89
Xu (10.1016/j.chaos.2019.05.039_bib0047) 2009; 14
Song (10.1016/j.chaos.2019.05.039_bib0044) 2005; 42
Rihan (10.1016/j.chaos.2019.05.039_bib0041) 2014; 2014
References_xml – volume: 14
  start-page: 50
  year: 2015
  end-page: 62
  ident: bib0019
  article-title: Stability analysis of a fractional order differential equation model of a brain tumor growth depending on the density
  publication-title: Appl Comput Math
– volume: 49
  start-page: 083507
  year: 2008
  ident: bib0034
  article-title: Existence and uniqueness theorem for a class of delay differential equations with left and right caput fractional derivatives
  publication-title: J Math Phys
– volume: 339
  start-page: 218
  year: 2018
  end-page: 230
  ident: bib0001
  article-title: Discrete Mittag-Leffler kernel type fractional difference initial value problems and Gronwalls inequality
  publication-title: J Comput Appl Math
– year: 2014
  ident: bib0010
  article-title: On fractional order dengue epidemic model
  publication-title: Math Probl Eng
– volume: 48
  start-page: 409
  year: 2007
  end-page: 416
  ident: bib0020
  article-title: Stability analysis of linear fractional differential system with multiple time delays
  publication-title: Nonlinear Dyn
– volume: 2013
  start-page: 11
  year: 2013
  ident: bib0039
  article-title: Numerical modeling of fractional-order biological systems
  publication-title: Abst Appl Anal
– volume: 7
  year: 2015
  ident: bib0014
  article-title: Numerical solution for the model of RLC circuit via the fractional derivative without singular kernel
  publication-title: Adv Mech Eng
– year: 2001
  ident: bib0024
  article-title: DDE-BIFTOOL V. 2.00: a matlab package for bifurcation analysis of delay differential equations
– volume: 3
  start-page: 1
  year: 2012
  end-page: 6
  ident: bib0003
  article-title: On fractional order cancer model
  publication-title: Fract Calcul Appl Anal
– volume: 18
  start-page: 1423
  year: 2015
  end-page: 1440
  ident: bib0005
  article-title: A convergent algorithm for solving higher-order nonlinear fractional boundary value problems
  publication-title: Fract Calcul Appl Anal
– volume: 18
  start-page: 1423
  year: 2015
  end-page: 1440
  ident: bib0007
  article-title: A convergent algorithm for solving higher-order nonlinear fractional boundary value problems
  publication-title: Fract Calcul Appl Anal
– volume: 28
  start-page: 1850180
  year: 2018
  ident: bib0046
  article-title: Dynamic analysis of a delayed fractional-order sir model with saturated incidence and treatment functions
  publication-title: Int J Bifurcat Chaos
– volume: 339
  start-page: 134
  year: 2018
  end-page: 146
  ident: bib0032
  article-title: A fractional-order model for Ebola virus infection with delayed immune response on heterogeneous complex networks
  publication-title: J Comput Appl Math
– volume: 17
  start-page: 2299
  year: 2012
  end-page: 2308
  ident: bib0009
  article-title: An efficient method for solving non-linear singularly perturbed two points boundary-value problems of fractional order
  publication-title: Commun Nonlinear Sci Numer Simul
– volume: 14
  start-page: 1978
  year: 2009
  end-page: 1983
  ident: bib0047
  article-title: Analytical approximations for a population growth model with fractional order
  publication-title: Commun Nonlinear Sci Numer Simul
– volume: 41
  start-page: 315403
  year: 2008
  ident: bib0016
  article-title: Fractional variational principles with delay
  publication-title: J Phys A Math Theor
– volume: 17
  start-page: 5771
  year: 2015
  end-page: 5783
  ident: bib0017
  article-title: Active control of a chaotic fractional order economic system
  publication-title: Entropy
– volume: 42
  start-page: 1071
  year: 2005
  end-page: 1086
  ident: bib0044
  article-title: A delay differential equation model of HIV infection of CD4
  publication-title: J Korean Math Soci
– volume: 80
  start-page: 777
  year: 2015
  end-page: 789
  ident: bib0042
  article-title: Fractional order delayed predator-prey systems with holling type-II functional response
  publication-title: Nonlinear Dyn
– volume: 59
  start-page: 1695
  year: 2010
  end-page: 1700
  ident: bib0026
  article-title: Modelling of the hamstring muscle group by use of fractional derivatives
  publication-title: Comput Math Appl
– volume: 54
  start-page: 435
  year: 2017
  end-page: 449
  ident: bib0033
  article-title: Dynamical analysis of a fractional-order predator-prey model incorporating a prey refuge
  publication-title: Appl Math Comput
– volume: 17
  start-page: 4439
  year: 2015
  end-page: 4453
  ident: bib0012
  article-title: Analysis of the Keller–Segel model with a fractional derivative without singular kernel
  publication-title: Entropy
– year: 1993
  ident: bib0027
  article-title: Introduction to functional differential equations
– volume: 54
  start-page: 1
  year: 2011
  end-page: 6
  ident: bib0036
  article-title: A fractional order SEIR model with vertical transmission
  publication-title: Math Comput Modell
– start-page: 1
  year: 2018
  end-page: 12
  ident: bib0038
  article-title: Stability of fractional-order preypredator system with time-delay and Monod-Haldane functional response
  publication-title: Nonlinear Dyn
– volume: 89
  start-page: 447
  year: 2016
  end-page: 454
  ident: bib0013
  article-title: Chaos in a simple nonlinear system with Atangana–Baleanu derivatives with fractional order
  publication-title: Chaos Solit Fract
– year: 2008
  ident: bib0031
  article-title: Modeling infectious diseases
– volume: 47
  start-page: 4107
  year: 2001
  end-page: 4115
  ident: bib0018
  article-title: Global asymptotic stability of an SIR epidemic model with distributed time delay
  publication-title: Nonlinear Anal
– year: 2018
  ident: bib0011
  article-title: Heat transfer and second order slip effect on MHD flow of fractional maxwell fluid in a porous medium
  publication-title: J King Saud Univ Sci
– year: 2000
  ident: bib0029
  article-title: Applications of fractional calculus in physics
– volume: 51
  start-page: 1775
  year: 2008
  end-page: 1786
  ident: bib0035
  article-title: On the existence and the uniqueness theorem for fractional differential equations with bounded delay within caputo derivatives
  publication-title: Sci China Ser A Math
– volume: 2012
  start-page: 13
  year: 2012
  ident: bib0040
  article-title: Qualitative analysis of delayed sir epidemic model with a saturated incidence rate
  publication-title: Int J Differ Equ
– start-page: 1
  year: 2019
  end-page: 15
  ident: bib0049
  article-title: A fractional-order model with time delay for tuberculosis with endogenous reactivation and exogenous reinfections
  publication-title: Math Meth Appl Sci.
– volume: 116
  start-page: 261
  year: 2018
  end-page: 267
  ident: bib0004
  article-title: On fractional-Legendre spectral Galerkin method for fractional Sturm–Liouville problems
  publication-title: Chaos Solit Fract
– volume: 34
  start-page: 177
  year: 1995
  end-page: 194
  ident: bib0028
  article-title: An SIS epidemic model with variable population size and a delay
  publication-title: J Math Biol
– volume: 12
  start-page: 33
  year: 2017
  end-page: 47
  ident: bib0043
  article-title: Dynamics of hepatitis c virus infection: mathematical modeling and parameter estimation
  publication-title: Math Model Nat Phenom
– volume: 46
  start-page: 2380
  year: 2015
  end-page: 2392
  ident: bib0015
  article-title: Distributed formation control of fractional-order multi-agent systems with absolute damping and communication delay
  publication-title: Int J Syst Sci
– volume: 8
  start-page: 045317
  year: 2018
  ident: bib0048
  article-title: Dynamical analysis of cigarette smoking model with a saturated incidence rate
  publication-title: AIP Adv
– volume: 3
  start-page: 378
  year: 2011
  end-page: 387
  ident: bib0023
  article-title: The fractional SIRC model and influenza a
  publication-title: Math Probl Eng
– volume: 321
  start-page: 74
  year: 2018
  end-page: 84
  ident: bib0008
  article-title: Fractional-order legendre-collocation method for solving fractional initial value problems
  publication-title: Appl Math Comput
– volume: 12
  start-page: 13
  year: 2012
  ident: bib0025
  article-title: Some applications of fractional order calculus to design digital filters for biomedical signal processing
  publication-title: J Mech Med Biol
– volume: 20
  start-page: 817
  year: 2007
  end-page: 823
  ident: bib0022
  article-title: On the fractional-order logistic equation
  publication-title: Appl Math Lett
– volume: 37
  start-page: 8946
  year: 2013
  end-page: 8956
  ident: bib0030
  article-title: Dynamic analysis of a fractional order prey-predator interaction with harvesting
  publication-title: Appl Math Model
– year: 1999
  ident: bib0037
  article-title: Fractional differential equations
– volume: 42
  start-page: 931
  year: 2000
  end-page: 947
  ident: bib0045
  article-title: Global asymptotic properties of a delay SIR epidemic model with finite incubation times
  publication-title: Nonlinear Anal Theory Methods Appl
– volume: 2018
  year: 2018
  ident: bib0006
  article-title: Analytical solutions of fractional Walters b fluid with applications
  publication-title: Complexity
– volume: 2014
  start-page: 9
  year: 2014
  ident: bib0041
  article-title: On fractional SIRC model with salmonella bacterial infection
  publication-title: Abst Appl Anal
– volume: 29
  start-page: 3
  year: 2002
  end-page: 22
  ident: bib0021
  article-title: A predictor corrector approach for the numerical solution of fractional differential equations
  publication-title: Nonlinear Dyn
– volume: 119
  start-page: 94
  year: 2019
  end-page: 101
  ident: bib0002
  article-title: Fractional logistic models in the frame of fractional operators generated by conformable derivatives
  publication-title: Chaos Solit Fract
– volume: 339
  start-page: 134
  year: 2018
  ident: 10.1016/j.chaos.2019.05.039_bib0032
  article-title: A fractional-order model for Ebola virus infection with delayed immune response on heterogeneous complex networks
  publication-title: J Comput Appl Math
  doi: 10.1016/j.cam.2017.11.032
– volume: 89
  start-page: 447
  year: 2016
  ident: 10.1016/j.chaos.2019.05.039_bib0013
  article-title: Chaos in a simple nonlinear system with Atangana–Baleanu derivatives with fractional order
  publication-title: Chaos Solit Fract
  doi: 10.1016/j.chaos.2016.02.012
– volume: 119
  start-page: 94
  year: 2019
  ident: 10.1016/j.chaos.2019.05.039_bib0002
  article-title: Fractional logistic models in the frame of fractional operators generated by conformable derivatives
  publication-title: Chaos Solit Fract
  doi: 10.1016/j.chaos.2018.12.015
– start-page: 1
  year: 2018
  ident: 10.1016/j.chaos.2019.05.039_sbref0038
  article-title: Stability of fractional-order preypredator system with time-delay and Monod-Haldane functional response
  publication-title: Nonlinear Dyn
– volume: 3
  start-page: 1
  year: 2012
  ident: 10.1016/j.chaos.2019.05.039_bib0003
  article-title: On fractional order cancer model
  publication-title: Fract Calcul Appl Anal
– volume: 2012
  start-page: 13
  year: 2012
  ident: 10.1016/j.chaos.2019.05.039_bib0040
  article-title: Qualitative analysis of delayed sir epidemic model with a saturated incidence rate
  publication-title: Int J Differ Equ
– volume: 51
  start-page: 1775
  issue: 10
  year: 2008
  ident: 10.1016/j.chaos.2019.05.039_bib0035
  article-title: On the existence and the uniqueness theorem for fractional differential equations with bounded delay within caputo derivatives
  publication-title: Sci China Ser A Math
  doi: 10.1007/s11425-008-0068-1
– volume: 116
  start-page: 261
  year: 2018
  ident: 10.1016/j.chaos.2019.05.039_bib0004
  article-title: On fractional-Legendre spectral Galerkin method for fractional Sturm–Liouville problems
  publication-title: Chaos Solit Fract
  doi: 10.1016/j.chaos.2018.09.032
– volume: 42
  start-page: 1071
  issue: 5
  year: 2005
  ident: 10.1016/j.chaos.2019.05.039_bib0044
  article-title: A delay differential equation model of HIV infection of CD4+t -cells
  publication-title: J Korean Math Soci
  doi: 10.4134/JKMS.2005.42.5.1071
– volume: 12
  start-page: 13
  issue: 2
  year: 2012
  ident: 10.1016/j.chaos.2019.05.039_bib0025
  article-title: Some applications of fractional order calculus to design digital filters for biomedical signal processing
  publication-title: J Mech Med Biol
– volume: 41
  start-page: 315403
  issue: 31
  year: 2008
  ident: 10.1016/j.chaos.2019.05.039_bib0016
  article-title: Fractional variational principles with delay
  publication-title: J Phys A Math Theor
  doi: 10.1088/1751-8113/41/31/315403
– volume: 14
  start-page: 1978
  year: 2009
  ident: 10.1016/j.chaos.2019.05.039_bib0047
  article-title: Analytical approximations for a population growth model with fractional order
  publication-title: Commun Nonlinear Sci Numer Simul
  doi: 10.1016/j.cnsns.2008.07.006
– year: 2018
  ident: 10.1016/j.chaos.2019.05.039_bib0011
  article-title: Heat transfer and second order slip effect on MHD flow of fractional maxwell fluid in a porous medium
  publication-title: J King Saud Univ Sci
– volume: 59
  start-page: 1695
  year: 2010
  ident: 10.1016/j.chaos.2019.05.039_bib0026
  article-title: Modelling of the hamstring muscle group by use of fractional derivatives
  publication-title: Comput Math Appl
  doi: 10.1016/j.camwa.2009.08.011
– volume: 14
  start-page: 50
  issue: 1
  year: 2015
  ident: 10.1016/j.chaos.2019.05.039_bib0019
  article-title: Stability analysis of a fractional order differential equation model of a brain tumor growth depending on the density
  publication-title: Appl Comput Math
– year: 2001
  ident: 10.1016/j.chaos.2019.05.039_bib0024
– volume: 2014
  start-page: 9
  year: 2014
  ident: 10.1016/j.chaos.2019.05.039_bib0041
  article-title: On fractional SIRC model with salmonella bacterial infection
  publication-title: Abst Appl Anal
– volume: 321
  start-page: 74
  year: 2018
  ident: 10.1016/j.chaos.2019.05.039_bib0008
  article-title: Fractional-order legendre-collocation method for solving fractional initial value problems
  publication-title: Appl Math Comput
– volume: 3
  start-page: 378
  year: 2011
  ident: 10.1016/j.chaos.2019.05.039_bib0023
  article-title: The fractional SIRC model and influenza a
  publication-title: Math Probl Eng
– year: 2014
  ident: 10.1016/j.chaos.2019.05.039_sbref0010
  article-title: On fractional order dengue epidemic model
  publication-title: Math Probl Eng
  doi: 10.1155/2014/456537
– volume: 2018
  year: 2018
  ident: 10.1016/j.chaos.2019.05.039_bib0006
  article-title: Analytical solutions of fractional Walters b fluid with applications
  publication-title: Complexity
  doi: 10.1155/2018/8131329
– volume: 18
  start-page: 1423
  issue: 6
  year: 2015
  ident: 10.1016/j.chaos.2019.05.039_bib0007
  article-title: A convergent algorithm for solving higher-order nonlinear fractional boundary value problems
  publication-title: Fract Calcul Appl Anal
  doi: 10.1515/fca-2015-0082
– start-page: 1
  year: 2019
  ident: 10.1016/j.chaos.2019.05.039_bib0049
  article-title: A fractional-order model with time delay for tuberculosis with endogenous reactivation and exogenous reinfections
  publication-title: Math Meth Appl Sci.
– volume: 37
  start-page: 8946
  year: 2013
  ident: 10.1016/j.chaos.2019.05.039_bib0030
  article-title: Dynamic analysis of a fractional order prey-predator interaction with harvesting
  publication-title: Appl Math Model
  doi: 10.1016/j.apm.2013.04.024
– volume: 28
  start-page: 1850180
  issue: 14
  year: 2018
  ident: 10.1016/j.chaos.2019.05.039_bib0046
  article-title: Dynamic analysis of a delayed fractional-order sir model with saturated incidence and treatment functions
  publication-title: Int J Bifurcat Chaos
  doi: 10.1142/S0218127418501808
– year: 1999
  ident: 10.1016/j.chaos.2019.05.039_bib0037
– volume: 47
  start-page: 4107
  year: 2001
  ident: 10.1016/j.chaos.2019.05.039_bib0018
  article-title: Global asymptotic stability of an SIR epidemic model with distributed time delay
  publication-title: Nonlinear Anal
  doi: 10.1016/S0362-546X(01)00528-4
– volume: 48
  start-page: 409
  year: 2007
  ident: 10.1016/j.chaos.2019.05.039_bib0020
  article-title: Stability analysis of linear fractional differential system with multiple time delays
  publication-title: Nonlinear Dyn
  doi: 10.1007/s11071-006-9094-0
– year: 1993
  ident: 10.1016/j.chaos.2019.05.039_bib0027
– volume: 2013
  start-page: 11
  year: 2013
  ident: 10.1016/j.chaos.2019.05.039_bib0039
  article-title: Numerical modeling of fractional-order biological systems
  publication-title: Abst Appl Anal
– volume: 49
  start-page: 083507
  issue: 8
  year: 2008
  ident: 10.1016/j.chaos.2019.05.039_bib0034
  article-title: Existence and uniqueness theorem for a class of delay differential equations with left and right caput fractional derivatives
  publication-title: J Math Phys
  doi: 10.1063/1.2970709
– volume: 46
  start-page: 2380
  issue: 13
  year: 2015
  ident: 10.1016/j.chaos.2019.05.039_bib0015
  article-title: Distributed formation control of fractional-order multi-agent systems with absolute damping and communication delay
  publication-title: Int J Syst Sci
  doi: 10.1080/00207721.2014.998411
– volume: 7
  issue: 10
  year: 2015
  ident: 10.1016/j.chaos.2019.05.039_sbref0014
  article-title: Numerical solution for the model of RLC circuit via the fractional derivative without singular kernel
  publication-title: Adv Mech Eng
  doi: 10.1177/1687814015613758
– volume: 8
  start-page: 045317
  issue: 4
  year: 2018
  ident: 10.1016/j.chaos.2019.05.039_bib0048
  article-title: Dynamical analysis of cigarette smoking model with a saturated incidence rate
  publication-title: AIP Adv
  doi: 10.1063/1.5028157
– year: 2000
  ident: 10.1016/j.chaos.2019.05.039_bib0029
– volume: 29
  start-page: 3
  year: 2002
  ident: 10.1016/j.chaos.2019.05.039_bib0021
  article-title: A predictor corrector approach for the numerical solution of fractional differential equations
  publication-title: Nonlinear Dyn
  doi: 10.1023/A:1016592219341
– volume: 12
  start-page: 33
  issue: 5
  year: 2017
  ident: 10.1016/j.chaos.2019.05.039_bib0043
  article-title: Dynamics of hepatitis c virus infection: mathematical modeling and parameter estimation
  publication-title: Math Model Nat Phenom
  doi: 10.1051/mmnp/201712503
– volume: 54
  start-page: 1
  year: 2011
  ident: 10.1016/j.chaos.2019.05.039_bib0036
  article-title: A fractional order SEIR model with vertical transmission
  publication-title: Math Comput Modell
  doi: 10.1016/j.mcm.2010.12.051
– volume: 80
  start-page: 777
  issue: 1
  year: 2015
  ident: 10.1016/j.chaos.2019.05.039_bib0042
  article-title: Fractional order delayed predator-prey systems with holling type-II functional response
  publication-title: Nonlinear Dyn
  doi: 10.1007/s11071-015-1905-8
– volume: 17
  start-page: 4439
  issue: 6
  year: 2015
  ident: 10.1016/j.chaos.2019.05.039_bib0012
  article-title: Analysis of the Keller–Segel model with a fractional derivative without singular kernel
  publication-title: Entropy
  doi: 10.3390/e17064439
– volume: 54
  start-page: 435
  year: 2017
  ident: 10.1016/j.chaos.2019.05.039_bib0033
  article-title: Dynamical analysis of a fractional-order predator-prey model incorporating a prey refuge
  publication-title: Appl Math Comput
– volume: 20
  start-page: 817
  issue: 7
  year: 2007
  ident: 10.1016/j.chaos.2019.05.039_bib0022
  article-title: On the fractional-order logistic equation
  publication-title: Appl Math Lett
  doi: 10.1016/j.aml.2006.08.013
– volume: 42
  start-page: 931
  year: 2000
  ident: 10.1016/j.chaos.2019.05.039_bib0045
  article-title: Global asymptotic properties of a delay SIR epidemic model with finite incubation times
  publication-title: Nonlinear Anal Theory Methods Appl
  doi: 10.1016/S0362-546X(99)00138-8
– volume: 18
  start-page: 1423
  issue: 6
  year: 2015
  ident: 10.1016/j.chaos.2019.05.039_bib0005
  article-title: A convergent algorithm for solving higher-order nonlinear fractional boundary value problems
  publication-title: Fract Calcul Appl Anal
  doi: 10.1515/fca-2015-0082
– volume: 34
  start-page: 177
  year: 1995
  ident: 10.1016/j.chaos.2019.05.039_bib0028
  article-title: An SIS epidemic model with variable population size and a delay
  publication-title: J Math Biol
  doi: 10.1007/BF00178772
– volume: 17
  start-page: 2299
  issue: 6
  year: 2012
  ident: 10.1016/j.chaos.2019.05.039_bib0009
  article-title: An efficient method for solving non-linear singularly perturbed two points boundary-value problems of fractional order
  publication-title: Commun Nonlinear Sci Numer Simul
  doi: 10.1016/j.cnsns.2011.10.003
– volume: 17
  start-page: 5771
  issue: 8
  year: 2015
  ident: 10.1016/j.chaos.2019.05.039_bib0017
  article-title: Active control of a chaotic fractional order economic system
  publication-title: Entropy
  doi: 10.3390/e17085771
– volume: 339
  start-page: 218
  year: 2018
  ident: 10.1016/j.chaos.2019.05.039_bib0001
  article-title: Discrete Mittag-Leffler kernel type fractional difference initial value problems and Gronwalls inequality
  publication-title: J Comput Appl Math
  doi: 10.1016/j.cam.2017.10.021
– year: 2008
  ident: 10.1016/j.chaos.2019.05.039_bib0031
SSID ssj0001062
Score 2.5850675
Snippet •We provide an epidemic SIR model with long-range temporal memory governed by delay differential equations with fractional-order.•The existence of steady...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 97
SubjectTerms Bifurcation theory
Fractional calculus
SIR
Stability
Time-delay
Title A fractional-order epidemic model with time-delay and nonlinear incidence rate
URI https://dx.doi.org/10.1016/j.chaos.2019.05.039
Volume 126
WOSCitedRecordID wos000483418000012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-2887
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001062
  issn: 0960-0779
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZCywEOiBYQLQ_5wAEUvEq8D8fHVdUKKiUCUaTcVrbXqyQsqyqbVj3w4xk_1htaFNEDl1W0ie1s5tPMePL5G4TeSQYxfVQlRLJEkUTxjEhIi4iG0JFC-KoqKWyzCTabTeZz_mUw-NWdhbmuWdNMbm745X81NdwDY5ujs_cwd5gUbsBrMDpcwexw_SfD58Nq7U4riJpYZc2hdm1glet742uvy5-aGIlIJ8DUOMkMQ0ltlGs0OjQqEtvJ68lCOFJea0hzhmNjRtrVRN1z5pcLV1Q9i_Io4Kkm09LU7G3F-Ws03Xrnm_ghVq55dnQe9S6xXSxbW_Tx0_jaxLgnX4UiYzYiI-baxQR_S7c9pmPn-tg7tkew77p1V2FYRco8p-HjcSu36mSQ_hTRvhXcAuWwY7OtCjtJYSYpRmkBkzxA-5SlHHzifv75dH4eIjlsl-2_UN1TdKpVlh9457v8PbPZylYunqInfpuBcwePAzTQzSF6PA0ave0hOvBuvcXvvfb4h2doluPb6MEderBFDzbowT16MGAAB_TggB5s0PMcfT87vTj5RHzLDaIgl9mQcsJgg5lmjJYcdqIx5aUqdSZimipNlaRKJbEaCwYBVirOxlwmVJSJrLiMmYzjF2gPltQvEWZiQlUqMq5VlSQ6FZXSbKKZqjSkzJk-QrT7uQrl9ehNW5S62GGqI_QxDLp0ciy7P551dih8RukyxQKQtWvg8f3WeYUe9fB_jfY26yv9Bj1U15tlu37rYfUbNYyWoQ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+fractional-order+epidemic+model+with+time-delay+and+nonlinear+incidence+rate&rft.jtitle=Chaos%2C+solitons+and+fractals&rft.au=Rihan%2C+F.A.&rft.au=Al-Mdallal%2C+Q.M.&rft.au=AlSakaji%2C+H.J.&rft.au=Hashish%2C+A.&rft.date=2019-09-01&rft.issn=0960-0779&rft.volume=126&rft.spage=97&rft.epage=105&rft_id=info:doi/10.1016%2Fj.chaos.2019.05.039&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_chaos_2019_05_039
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-0779&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-0779&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-0779&client=summon