Dual link distributed source coding scheme for the transmission of satellite hyperspectral imagery
•The problem of hyperspectral image lossless compression is highlighted.•A dual link distributed source coding (DLDSC) scheme is developed to improve hyperspectral images' lossless compression.•DLDSC removed the temporal redundancy concerning images of the same area captured at different instan...
Uloženo v:
| Vydáno v: | Journal of visual communication and image representation Ročník 78; s. 103117 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Inc
01.07.2021
|
| Témata: | |
| ISSN: | 1047-3203, 1095-9076 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | •The problem of hyperspectral image lossless compression is highlighted.•A dual link distributed source coding (DLDSC) scheme is developed to improve hyperspectral images' lossless compression.•DLDSC removed the temporal redundancy concerning images of the same area captured at different instants of time.•Simulation results validate the effectiveness of the DLDSC over the the-state-of-art methods.
Traditional lossless compression methods for satellite hyperspectral imagery focus on exploiting spatial and/or spectral redundancy. Those methods do not consider the temporal redundancy between images of the same area that are captured at different times. To exploit the temporal redundancy between hyperspectral images and reduce the amount of information to be transmitted from the space-satellite to the ground station via the downlink, this paper introduces a dual link distributed source coding (DLDSC) scheme for hyperspectral space-satellite communication. The proposed scheme employs the space-satellite dual link (i.e., the downlink and the uplink). The satellite onboard uses some side information from the ground station to calculate the hyperspectral image band coset values, and then, without syndrome coding, transmits to the ground station via the downlink. Coset coding is a typical technique used in distributed source coding (DSC), and here the coset values represent the timely hyperspectral image details. Typically, the coset values have lower entropy than that of the original source values. To exploit the temporal redundancy, the side information is computed in the ground station using the image captured at the previous time for the same area and transmitted to the space-satellite via the uplink. Hyperspectral images from the Hyperion satellite are used for the validation of the proposed scheme. The experimental results indicate that the proposed DLDSC scheme can reduce the original signal entropy by approximately 3.2 bits per sample (bps) and can achieve up to 1.0 bps and 1.6 bps gains over the lossless JPEG2000 standard and the state-of-art predictive CCSDS-123 method, respectively. |
|---|---|
| AbstractList | •The problem of hyperspectral image lossless compression is highlighted.•A dual link distributed source coding (DLDSC) scheme is developed to improve hyperspectral images' lossless compression.•DLDSC removed the temporal redundancy concerning images of the same area captured at different instants of time.•Simulation results validate the effectiveness of the DLDSC over the the-state-of-art methods.
Traditional lossless compression methods for satellite hyperspectral imagery focus on exploiting spatial and/or spectral redundancy. Those methods do not consider the temporal redundancy between images of the same area that are captured at different times. To exploit the temporal redundancy between hyperspectral images and reduce the amount of information to be transmitted from the space-satellite to the ground station via the downlink, this paper introduces a dual link distributed source coding (DLDSC) scheme for hyperspectral space-satellite communication. The proposed scheme employs the space-satellite dual link (i.e., the downlink and the uplink). The satellite onboard uses some side information from the ground station to calculate the hyperspectral image band coset values, and then, without syndrome coding, transmits to the ground station via the downlink. Coset coding is a typical technique used in distributed source coding (DSC), and here the coset values represent the timely hyperspectral image details. Typically, the coset values have lower entropy than that of the original source values. To exploit the temporal redundancy, the side information is computed in the ground station using the image captured at the previous time for the same area and transmitted to the space-satellite via the uplink. Hyperspectral images from the Hyperion satellite are used for the validation of the proposed scheme. The experimental results indicate that the proposed DLDSC scheme can reduce the original signal entropy by approximately 3.2 bits per sample (bps) and can achieve up to 1.0 bps and 1.6 bps gains over the lossless JPEG2000 standard and the state-of-art predictive CCSDS-123 method, respectively. |
| ArticleNumber | 103117 |
| Author | El-Samie, Fathi E. Abd Hagag, Ahmed Ma, Guangzhi Omara, Ibrahim Chaib, Souleyman |
| Author_xml | – sequence: 1 givenname: Ahmed orcidid: 0000-0003-2631-1846 surname: Hagag fullname: Hagag, Ahmed email: ahagag@fci.bu.edu.eg organization: Department of Scientific Computing, Faculty of Computers and Artificial Intelligence, Benha University, Benha 13518, Egypt – sequence: 2 givenname: Ibrahim orcidid: 0000-0003-3243-990X surname: Omara fullname: Omara, Ibrahim organization: School of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China – sequence: 3 givenname: Souleyman surname: Chaib fullname: Chaib, Souleyman organization: LabRI-SBA Lab., Ecole Superieure en Informatique, Sidi Bel Abbes, Algeria – sequence: 4 givenname: Guangzhi surname: Ma fullname: Ma, Guangzhi organization: School of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China – sequence: 5 givenname: Fathi E. Abd surname: El-Samie fullname: El-Samie, Fathi E. Abd organization: Department of Electronics and Electrical Communications, Faculty of Electronic Engineering, Menoufia University, Menoufia 32952 Egypt |
| BookMark | eNqFkE1PAjEQhhuDiaD-Ai_9A4v9WLr04MHgZ0LihXvTjyl0XXZJW0j49xbx5EFPM5nMM3nnmaBRP_SA0B0lU0qouG-n7cGGOGWE0TLhlDYXaEyJnFWSNGJ06uum4ozwKzRJqSWEcMnrMTJPe93hLvSf2IWUYzD7DA6nYR8tYDu40K9xshvYAvZDxHkDOEfdp21IKQw9HjxOOkPXhQx4c9xBTDuwZaXDYavXEI836NLrLsHtT71Gq5fn1eKtWn68vi8el5XlhOfKNcY1rPbEeDeXzDRGOqOhdgas8II7LrgQ2kmY0ZmAuaeMSCLZ3HrrmeHXSJ7P2jikFMErG7LOJWMJEzpFiTq5Uq36dqVOrtTZVWH5L3YXS_p4_Id6OFNQvjoEiCrZAL0FF2JRoNwQ_uS_AMQQibw |
| CitedBy_id | crossref_primary_10_1007_s11227_024_06311_6 crossref_primary_10_1080_19479832_2023_2299476 |
| Cites_doi | 10.1016/j.jvcir.2019.05.006 10.1109/MGRS.2014.2352465 10.1109/TGRS.2009.2033470 10.1109/LGRS.2006.888109 10.1109/TGRS.2010.2083671 10.1109/TGRS.2019.2940553 10.1109/TIT.2003.810622 10.1007/978-1-4615-0799-4 10.1109/MSP.2004.1328091 10.1109/LGRS.2015.2436438 10.1117/1.JRS.7.073511 10.1016/j.jvcir.2019.01.042 10.1016/j.jvcir.2016.11.006 10.1109/TIP.2013.2277801 10.1016/j.ijleo.2016.11.172 10.1007/s11760-013-0516-4 10.1007/s11042-016-4158-8 10.1109/JSTARS.2019.2897344 10.1109/JSTSP.2015.2402118 10.1109/TIT.1973.1055037 10.1109/TGRS.2016.2569485 10.1109/TIT.2002.808103 10.1016/j.jvcir.2014.06.008 10.1007/s11045-016-0443-y |
| ContentType | Journal Article |
| Copyright | 2021 Elsevier Inc. |
| Copyright_xml | – notice: 2021 Elsevier Inc. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.jvcir.2021.103117 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Journalism & Communications Engineering |
| EISSN | 1095-9076 |
| ExternalDocumentID | 10_1016_j_jvcir_2021_103117 S1047320321000730 |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 29L 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADFGL ADJOM ADMHC ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CAG COF CS3 DM4 DU5 EBS EFBJH EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HLZ HVGLF HZ~ IHE J1W JJJVA KOM LG5 LX9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBC SDF SDG SDP SES SEW SPC SPCBC SST SSV SSZ T5K WH7 WUQ XPP YQT ZMT ZU3 ~G- 9DU AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c303t-d7bd724f0bfd892b7b9dbae4dbec6f63d36366ad9e5156e8f12090928cfcf2b3 |
| ISICitedReferencesCount | 3 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000674615200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1047-3203 |
| IngestDate | Sat Nov 29 07:04:54 EST 2025 Tue Nov 18 21:00:24 EST 2025 Fri Feb 23 02:37:43 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Distributed source coding (DSC) Lossless compression Temporal redundancy in hyperspectral images Dual link Hyperspectral image compression Coset values |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c303t-d7bd724f0bfd892b7b9dbae4dbec6f63d36366ad9e5156e8f12090928cfcf2b3 |
| ORCID | 0000-0003-2631-1846 0000-0003-3243-990X |
| ParticipantIDs | crossref_citationtrail_10_1016_j_jvcir_2021_103117 crossref_primary_10_1016_j_jvcir_2021_103117 elsevier_sciencedirect_doi_10_1016_j_jvcir_2021_103117 |
| PublicationCentury | 2000 |
| PublicationDate | July 2021 2021-07-00 |
| PublicationDateYYYYMMDD | 2021-07-01 |
| PublicationDate_xml | – month: 07 year: 2021 text: July 2021 |
| PublicationDecade | 2020 |
| PublicationTitle | Journal of visual communication and image representation |
| PublicationYear | 2021 |
| Publisher | Elsevier Inc |
| Publisher_xml | – name: Elsevier Inc |
| References | Hagag, Fan, El-Samie (b0055) 2017; 28 Nian, He, Wan (b0040) 2015; 28 Bartrina-Rapesta, Auli-Llinas (b0030) 2015; 12 C. C. f. S. D. Systems. (2019, February 10). Consultative Committee for Space Data Systems. Available: http://www.ccsds.org. Abrardo, Barni, Magli, Nencini (b0105) 2010; 48 G. Group. (2017, April 10, 2020). Universitat Autonoma de Barcelona, Regression Wavelet Analysis software. Available: http://www.gici.uab.es. Amrani, Serra-Sagristà, Laparra, Marcellin, Malo (b0045) 2016; 54 Auli-Llinas (b0015) 2013; 22 U. S. G. Survey. (2019, August 21). EarthExplorer. Available: http://earthexplorer.usgs.gov. Du, Fowler (b0005) 2007; 4 D. S. Taubman and M. W. Marcellin, JPEG2000: Image compression fundamentals, standards and pactice vol. 11: Norwell, MA, USA: Kluwer, 2002. Cover, Thomas (b0125) 2012 Hagag, Fan, El-Samie (b0065) 2017; 42 Blanes, Magli, Serra-Sagrista (b0025) 2014; 2 Hagag, Amin, El-Samie (b0035) 2015; 9 Hagag, Hassan, Amin, El-Samie, Fan (b0060) 2017; 131 Pradhan, Chou, Ramchandran (b0120) 2003; 49 F. Aulí-Llinàs. (2014, March 15, 2020). BOI Codec. Available: http://www.deic.uab.cat/~francesc/software/boi. Álvarez-Cortés, Serra-Sagristà, Bartrina-Rapesta, Marcellin (b0085) 2020; 58 Xiong, Liveris, Cheng (b0115) 2004; 21 Barret, Gutzwiller, Hariti (b0010) 2010; 49 Auli-Llinas, Marcellin, Sanchez, Serra-Sagrista, Bartrina-Rapesta, Blanes (b0090) 2016; 2016 G. Group. (2011, March 20, 2020). Universitat Autonoma de Barcelona, Emporda software. Available: http://www.gici.uab.es. Hagag, Amin, El-Samie (b0020) 2013; 7 Hagag, Fan, El-Samie (b0050) 2017; 76 Slepian, Wolf (b0100) 1973; 19 Zhang, Li, Chen (b0135) 2015; 9 C. C. f. S. D. Systems, “Lossless Multispectral & Hyperspectral Image Compression CCSDS 123.0-B-1,” CCSDS. Blue Book, 2012. Kong, Wu, Hu, Jeon (b0080) 2019; 62 Pradhan, Ramchandran (b0110) 2003; 49 Afjal, Al Mamun, Uddin (b0070) 2019; 59 Shi, Wang (b0075) 2019; 12 Blanes (10.1016/j.jvcir.2021.103117_b0025) 2014; 2 Barret (10.1016/j.jvcir.2021.103117_b0010) 2010; 49 Abrardo (10.1016/j.jvcir.2021.103117_b0105) 2010; 48 Álvarez-Cortés (10.1016/j.jvcir.2021.103117_b0085) 2020; 58 10.1016/j.jvcir.2021.103117_b0155 10.1016/j.jvcir.2021.103117_b0095 10.1016/j.jvcir.2021.103117_b0150 10.1016/j.jvcir.2021.103117_b0130 Hagag (10.1016/j.jvcir.2021.103117_b0065) 2017; 42 Du (10.1016/j.jvcir.2021.103117_b0005) 2007; 4 Slepian (10.1016/j.jvcir.2021.103117_b0100) 1973; 19 Hagag (10.1016/j.jvcir.2021.103117_b0050) 2017; 76 Zhang (10.1016/j.jvcir.2021.103117_b0135) 2015; 9 Cover (10.1016/j.jvcir.2021.103117_b0125) 2012 Nian (10.1016/j.jvcir.2021.103117_b0040) 2015; 28 Shi (10.1016/j.jvcir.2021.103117_b0075) 2019; 12 10.1016/j.jvcir.2021.103117_b0145 Hagag (10.1016/j.jvcir.2021.103117_b0055) 2017; 28 Hagag (10.1016/j.jvcir.2021.103117_b0035) 2015; 9 10.1016/j.jvcir.2021.103117_b0160 Auli-Llinas (10.1016/j.jvcir.2021.103117_b0015) 2013; 22 10.1016/j.jvcir.2021.103117_b0140 Pradhan (10.1016/j.jvcir.2021.103117_b0120) 2003; 49 Hagag (10.1016/j.jvcir.2021.103117_b0060) 2017; 131 Afjal (10.1016/j.jvcir.2021.103117_b0070) 2019; 59 Xiong (10.1016/j.jvcir.2021.103117_b0115) 2004; 21 Bartrina-Rapesta (10.1016/j.jvcir.2021.103117_b0030) 2015; 12 Kong (10.1016/j.jvcir.2021.103117_b0080) 2019; 62 Amrani (10.1016/j.jvcir.2021.103117_b0045) 2016; 54 Pradhan (10.1016/j.jvcir.2021.103117_b0110) 2003; 49 Hagag (10.1016/j.jvcir.2021.103117_b0020) 2013; 7 Auli-Llinas (10.1016/j.jvcir.2021.103117_b0090) 2016; 2016 |
| References_xml | – volume: 42 start-page: 14 year: 2017 end-page: 27 ident: b0065 article-title: HyperCast: hyperspectral satellite image broadcasting with band ordering optimization publication-title: J. Vis. Commun. Image Represent. – volume: 62 start-page: 174 year: 2019 end-page: 181 ident: b0080 article-title: Lossless compression codec of aurora spectral data using hybrid spatial-spectral decorrelation with outlier recognition publication-title: J. Vis. Commun. Image Represent. – volume: 58 start-page: 790 year: 2020 end-page: 798 ident: b0085 article-title: Regression Wavelet Analysis for Near-Lossless Remote Sensing Data Compression publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 131 start-page: 1023 year: 2017 end-page: 1035 ident: b0060 article-title: Satellite multispectral image compression based on removing sub-bands publication-title: Optik – volume: 48 start-page: 1892 year: 2010 end-page: 1904 ident: b0105 article-title: Error-resilient and low-complexity onboard lossless compression of hyperspectral images by means of distributed source coding publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 19 start-page: 471 year: 1973 end-page: 480 ident: b0100 article-title: Noiseless coding of correlated information sources publication-title: IEEE Trans. Inf. Theory – volume: 9 start-page: 977 year: 2015 end-page: 989 ident: b0135 article-title: Distributed lossless coding techniques for hyperspectral images publication-title: IEEE J. Sel. Top. Signal Process. – volume: 28 start-page: 113 year: 2015 end-page: 119 ident: b0040 article-title: Lossless and near-lossless compression of hyperspectral images based on distributed source coding publication-title: J. Vis. Commun. Image Represent. – volume: 12 start-page: 934 year: 2019 end-page: 949 ident: b0075 article-title: Remote sensing image compression based on adaptive directional wavelet transform with content-dependent binary tree codec publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. – reference: C. C. f. S. D. Systems, “Lossless Multispectral & Hyperspectral Image Compression CCSDS 123.0-B-1,” CCSDS. Blue Book, 2012. – volume: 21 start-page: 80 year: 2004 end-page: 94 ident: b0115 article-title: Distributed source coding for sensor networks publication-title: IEEE Signal Process Mag. – year: 2012 ident: b0125 article-title: Elements of information theory – volume: 4 start-page: 201 year: 2007 end-page: 205 ident: b0005 article-title: Hyperspectral image compression using JPEG2000 and principal component analysis publication-title: IEEE Geosci. Remote Sens. Lett. – reference: U. S. G. Survey. (2019, August 21). EarthExplorer. Available: http://earthexplorer.usgs.gov. – reference: G. Group. (2011, March 20, 2020). Universitat Autonoma de Barcelona, Emporda software. Available: http://www.gici.uab.es. – volume: 49 start-page: 1557 year: 2010 end-page: 1566 ident: b0010 article-title: Low-complexity hyperspectral image coding using exogenous orthogonal optimal spectral transform (OrthOST) and degree-2 zerotrees publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 2 start-page: 8 year: 2014 end-page: 26 ident: b0025 article-title: A tutorial on image compression for optical space imaging systems publication-title: IEEE Geosci. Remote Sens. Mag. – volume: 76 start-page: 23757 year: 2017 end-page: 23776 ident: b0050 article-title: Hyperspectral image coding and transmission scheme based on wavelet transform and distributed source coding publication-title: Multimedia Tools Applications – volume: 7 year: 2013 ident: b0020 article-title: Simultaneous denoising and compression of multispectral images publication-title: J. Appl. Remote Sens. – volume: 2016 start-page: 427 year: 2016 end-page: 436 ident: b0090 article-title: Coding scheme for the transmission of satellite imagery publication-title: Data Compression Conference (DCC) – volume: 22 start-page: 4678 year: 2013 end-page: 4688 ident: b0015 article-title: 2-step scalar deadzone quantization for bitplane image coding publication-title: IEEE Trans. Image Process. – reference: F. Aulí-Llinàs. (2014, March 15, 2020). BOI Codec. Available: http://www.deic.uab.cat/~francesc/software/boi. – volume: 49 start-page: 626 year: 2003 end-page: 643 ident: b0110 article-title: Distributed source coding using syndromes (DISCUS): Design and construction publication-title: IEEE Trans. Inf. Theory – volume: 12 start-page: 1893 year: 2015 end-page: 1897 ident: b0030 article-title: Cell-based two-step scalar deadzone quantization for high bit-depth hyperspectral image coding publication-title: IEEE Geosci. Remote Sens. Lett. – reference: D. S. Taubman and M. W. Marcellin, JPEG2000: Image compression fundamentals, standards and pactice vol. 11: Norwell, MA, USA: Kluwer, 2002. – reference: G. Group. (2017, April 10, 2020). Universitat Autonoma de Barcelona, Regression Wavelet Analysis software. Available: http://www.gici.uab.es. – volume: 54 start-page: 5616 year: 2016 end-page: 5627 ident: b0045 article-title: Regression wavelet analysis for lossless coding of remote-sensing data publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 28 start-page: 1717 year: 2017 end-page: 1736 ident: b0055 article-title: Lossy compression of satellite images with low impact on vegetation features publication-title: Multidimension. Syst. Signal Process. – volume: 59 start-page: 514 year: 2019 end-page: 526 ident: b0070 article-title: Band reordering heuristics for lossless satellite image compression with 3D-CALIC and CCSDS publication-title: J. Vis. Commun. Image Represent. – volume: 49 start-page: 1181 year: 2003 end-page: 1203 ident: b0120 article-title: Duality between source coding and channel coding and its extension to the side information case publication-title: IEEE Trans. Inf. Theory – reference: C. C. f. S. D. Systems. (2019, February 10). Consultative Committee for Space Data Systems. Available: http://www.ccsds.org. – volume: 9 start-page: 769 year: 2015 end-page: 778 ident: b0035 article-title: Multispectral image compression with band ordering and wavelet transforms publication-title: SIViP – volume: 62 start-page: 174 year: 2019 ident: 10.1016/j.jvcir.2021.103117_b0080 article-title: Lossless compression codec of aurora spectral data using hybrid spatial-spectral decorrelation with outlier recognition publication-title: J. Vis. Commun. Image Represent. doi: 10.1016/j.jvcir.2019.05.006 – volume: 2 start-page: 8 year: 2014 ident: 10.1016/j.jvcir.2021.103117_b0025 article-title: A tutorial on image compression for optical space imaging systems publication-title: IEEE Geosci. Remote Sens. Mag. doi: 10.1109/MGRS.2014.2352465 – volume: 48 start-page: 1892 year: 2010 ident: 10.1016/j.jvcir.2021.103117_b0105 article-title: Error-resilient and low-complexity onboard lossless compression of hyperspectral images by means of distributed source coding publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2009.2033470 – volume: 4 start-page: 201 year: 2007 ident: 10.1016/j.jvcir.2021.103117_b0005 article-title: Hyperspectral image compression using JPEG2000 and principal component analysis publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2006.888109 – volume: 49 start-page: 1557 year: 2010 ident: 10.1016/j.jvcir.2021.103117_b0010 article-title: Low-complexity hyperspectral image coding using exogenous orthogonal optimal spectral transform (OrthOST) and degree-2 zerotrees publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2010.2083671 – volume: 58 start-page: 790 year: 2020 ident: 10.1016/j.jvcir.2021.103117_b0085 article-title: Regression Wavelet Analysis for Near-Lossless Remote Sensing Data Compression publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2019.2940553 – volume: 49 start-page: 1181 year: 2003 ident: 10.1016/j.jvcir.2021.103117_b0120 article-title: Duality between source coding and channel coding and its extension to the side information case publication-title: IEEE Trans. Inf. Theory doi: 10.1109/TIT.2003.810622 – ident: 10.1016/j.jvcir.2021.103117_b0145 doi: 10.1007/978-1-4615-0799-4 – volume: 21 start-page: 80 year: 2004 ident: 10.1016/j.jvcir.2021.103117_b0115 article-title: Distributed source coding for sensor networks publication-title: IEEE Signal Process Mag. doi: 10.1109/MSP.2004.1328091 – ident: 10.1016/j.jvcir.2021.103117_b0160 – volume: 12 start-page: 1893 year: 2015 ident: 10.1016/j.jvcir.2021.103117_b0030 article-title: Cell-based two-step scalar deadzone quantization for high bit-depth hyperspectral image coding publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2015.2436438 – ident: 10.1016/j.jvcir.2021.103117_b0155 – volume: 7 year: 2013 ident: 10.1016/j.jvcir.2021.103117_b0020 article-title: Simultaneous denoising and compression of multispectral images publication-title: J. Appl. Remote Sens. doi: 10.1117/1.JRS.7.073511 – ident: 10.1016/j.jvcir.2021.103117_b0130 – volume: 59 start-page: 514 year: 2019 ident: 10.1016/j.jvcir.2021.103117_b0070 article-title: Band reordering heuristics for lossless satellite image compression with 3D-CALIC and CCSDS publication-title: J. Vis. Commun. Image Represent. doi: 10.1016/j.jvcir.2019.01.042 – volume: 2016 start-page: 427 year: 2016 ident: 10.1016/j.jvcir.2021.103117_b0090 article-title: Coding scheme for the transmission of satellite imagery publication-title: Data Compression Conference (DCC) – volume: 42 start-page: 14 year: 2017 ident: 10.1016/j.jvcir.2021.103117_b0065 article-title: HyperCast: hyperspectral satellite image broadcasting with band ordering optimization publication-title: J. Vis. Commun. Image Represent. doi: 10.1016/j.jvcir.2016.11.006 – volume: 22 start-page: 4678 year: 2013 ident: 10.1016/j.jvcir.2021.103117_b0015 article-title: 2-step scalar deadzone quantization for bitplane image coding publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2013.2277801 – volume: 131 start-page: 1023 year: 2017 ident: 10.1016/j.jvcir.2021.103117_b0060 article-title: Satellite multispectral image compression based on removing sub-bands publication-title: Optik doi: 10.1016/j.ijleo.2016.11.172 – volume: 9 start-page: 769 year: 2015 ident: 10.1016/j.jvcir.2021.103117_b0035 article-title: Multispectral image compression with band ordering and wavelet transforms publication-title: SIViP doi: 10.1007/s11760-013-0516-4 – volume: 76 start-page: 23757 year: 2017 ident: 10.1016/j.jvcir.2021.103117_b0050 article-title: Hyperspectral image coding and transmission scheme based on wavelet transform and distributed source coding publication-title: Multimedia Tools Applications doi: 10.1007/s11042-016-4158-8 – ident: 10.1016/j.jvcir.2021.103117_b0150 – volume: 12 start-page: 934 year: 2019 ident: 10.1016/j.jvcir.2021.103117_b0075 article-title: Remote sensing image compression based on adaptive directional wavelet transform with content-dependent binary tree codec publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2019.2897344 – ident: 10.1016/j.jvcir.2021.103117_b0140 – volume: 9 start-page: 977 year: 2015 ident: 10.1016/j.jvcir.2021.103117_b0135 article-title: Distributed lossless coding techniques for hyperspectral images publication-title: IEEE J. Sel. Top. Signal Process. doi: 10.1109/JSTSP.2015.2402118 – ident: 10.1016/j.jvcir.2021.103117_b0095 – volume: 19 start-page: 471 year: 1973 ident: 10.1016/j.jvcir.2021.103117_b0100 article-title: Noiseless coding of correlated information sources publication-title: IEEE Trans. Inf. Theory doi: 10.1109/TIT.1973.1055037 – year: 2012 ident: 10.1016/j.jvcir.2021.103117_b0125 – volume: 54 start-page: 5616 year: 2016 ident: 10.1016/j.jvcir.2021.103117_b0045 article-title: Regression wavelet analysis for lossless coding of remote-sensing data publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2016.2569485 – volume: 49 start-page: 626 year: 2003 ident: 10.1016/j.jvcir.2021.103117_b0110 article-title: Distributed source coding using syndromes (DISCUS): Design and construction publication-title: IEEE Trans. Inf. Theory doi: 10.1109/TIT.2002.808103 – volume: 28 start-page: 113 year: 2015 ident: 10.1016/j.jvcir.2021.103117_b0040 article-title: Lossless and near-lossless compression of hyperspectral images based on distributed source coding publication-title: J. Vis. Commun. Image Represent. doi: 10.1016/j.jvcir.2014.06.008 – volume: 28 start-page: 1717 year: 2017 ident: 10.1016/j.jvcir.2021.103117_b0055 article-title: Lossy compression of satellite images with low impact on vegetation features publication-title: Multidimension. Syst. Signal Process. doi: 10.1007/s11045-016-0443-y |
| SSID | ssj0003934 |
| Score | 2.2977805 |
| Snippet | •The problem of hyperspectral image lossless compression is highlighted.•A dual link distributed source coding (DLDSC) scheme is developed to improve... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 103117 |
| SubjectTerms | Coset values Distributed source coding (DSC) Dual link Hyperspectral image compression Lossless compression Temporal redundancy in hyperspectral images |
| Title | Dual link distributed source coding scheme for the transmission of satellite hyperspectral imagery |
| URI | https://dx.doi.org/10.1016/j.jvcir.2021.103117 |
| Volume | 78 |
| WOSCitedRecordID | wos000674615200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1095-9076 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003934 issn: 1047-3203 databaseCode: AIEXJ dateStart: 19950301 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Pb9MwFLbKxgEOCAZoY4B8QFxKUOJkSXysYIghmJDWQ29R_CNrqiWdlrSa-Ev4c3nPdtJ0QxMgcYkqy24ivy8vz_b7vkfIGyUg7GWx9oIwF16UaOXxSKewVEllDu_WUZobEdevyelpOpvx76PRz44Ls75I6jq9vuaX_9XU0AbGRursX5i7_1NogN9gdLiC2eH6R4b_iIQQPJfFwxdbz0rj3jhu0o_l0pBYYEmrK92nGLb4wQKDNy56bHKj09nq8RyWqZaNadQ5qvwmh3oQ0K7LZmXURgaUE3s2gcPGRj6zozrVG893nhtvM5lXjmeFW75VbuofjU9gMT8vq0ESQmkOkM6WK_Bm1Qba30x3AHx9_mNeDvcyWNDnvboNto5ks5UDasQkQuZbP6hdG5aY9G3pmM6R21pAt74Jdnti8X6xliUqwLIAlQYCSxm9IbZ9hjfDe7HAHGL698guS444uPzdycnx7Ev_lQ-5zVjoHq5TtDK5g7du9fuoZxDJTB-TR85idGKh84SMdL1HHg6EKffIoetUNhV9S7dIRM1TIhBiFCFGBxCjFmLUQoxaiFGAGAWI0SHE6LKgPcToFsSog9gzMv10PP3w2XO1OjwJQVDrqUSohEWFLwqVciYSwZXIdaTAR8RFHKowDuM4V1xDAB3rtEDOts9ZKgtZMBE-Jzv1stb7hAaJgA66gNA0jXgguYAg149lAqGq4oE4IKybykw6HXssp3KRdQmLi8zMf4bzn9n5PyDv-kGXVsbl7u5xZ6PMRaI2wswAVHcNfPGvAw_Jg80L8ZLstFcr_Yrcl-u2bK5eO_D9AtICtP4 |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dual+link+distributed+source+coding+scheme+for+the+transmission+of+satellite+hyperspectral+imagery&rft.jtitle=Journal+of+visual+communication+and+image+representation&rft.au=Hagag%2C+Ahmed&rft.au=Omara%2C+Ibrahim&rft.au=Chaib%2C+Souleyman&rft.au=Ma%2C+Guangzhi&rft.date=2021-07-01&rft.pub=Elsevier+Inc&rft.issn=1047-3203&rft.eissn=1095-9076&rft.volume=78&rft_id=info:doi/10.1016%2Fj.jvcir.2021.103117&rft.externalDocID=S1047320321000730 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1047-3203&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1047-3203&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1047-3203&client=summon |