Adaptive slow feature analysis - sparse autoencoder based fault detection for time-varying processes

•Slow feature analysis is used to extract the dynamic characteristics of the process and establish a "model update index" to realize the failure judgment of time-varying process models.•Sparse autoencoder is used to extract process features and establish "process monitoring index"...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of the Taiwan Institute of Chemical Engineers Ročník 142; s. 104599
Hlavní autoři: Tan, Shuai, Zhou, Xinjin, Shi, Hongbo, Song, Bing
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 01.01.2023
Témata:
ISSN:1876-1070, 1876-1089
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract •Slow feature analysis is used to extract the dynamic characteristics of the process and establish a "model update index" to realize the failure judgment of time-varying process models.•Sparse autoencoder is used to extract process features and establish "process monitoring index" to realize process monitoring.•Updated dataset is built using the normal neighbors of online samples. The incremental update strategy is proposed to establish adaptive model in order to describe the dynamic characteristics of time-varying process. Fault detection and diagnosis technology is of great significance for practical industrial processes. Industrial process characteristics change with time due to various reasons such as changing working conditions. This will cause false alarm or missing alarm of process monitoring. In this paper, an adaptive slow feature analysis (SFA) - sparse autoencoder (SAE) algorithm is proposed to establish an adaptive model for time-varying process monitoring. Model update index is built based on time-varying characteristics extracted using SFA model. Process monitoring index is built based on sparse characteristics extracted using SAE model. Through online adaptive update strategy, updated monitoring model is realized to adapt to the time-varying characteristics of the process. The proposed algorithm has good performance on penicillin fermentation process data set and can realize the task of adaptive process monitoring. [Display omitted]
AbstractList •Slow feature analysis is used to extract the dynamic characteristics of the process and establish a "model update index" to realize the failure judgment of time-varying process models.•Sparse autoencoder is used to extract process features and establish "process monitoring index" to realize process monitoring.•Updated dataset is built using the normal neighbors of online samples. The incremental update strategy is proposed to establish adaptive model in order to describe the dynamic characteristics of time-varying process. Fault detection and diagnosis technology is of great significance for practical industrial processes. Industrial process characteristics change with time due to various reasons such as changing working conditions. This will cause false alarm or missing alarm of process monitoring. In this paper, an adaptive slow feature analysis (SFA) - sparse autoencoder (SAE) algorithm is proposed to establish an adaptive model for time-varying process monitoring. Model update index is built based on time-varying characteristics extracted using SFA model. Process monitoring index is built based on sparse characteristics extracted using SAE model. Through online adaptive update strategy, updated monitoring model is realized to adapt to the time-varying characteristics of the process. The proposed algorithm has good performance on penicillin fermentation process data set and can realize the task of adaptive process monitoring. [Display omitted]
ArticleNumber 104599
Author Shi, Hongbo
Tan, Shuai
Zhou, Xinjin
Song, Bing
Author_xml – sequence: 1
  givenname: Shuai
  surname: Tan
  fullname: Tan, Shuai
  email: tanshuai@ecust.edu.cn
– sequence: 2
  givenname: Xinjin
  surname: Zhou
  fullname: Zhou, Xinjin
– sequence: 3
  givenname: Hongbo
  surname: Shi
  fullname: Shi, Hongbo
– sequence: 4
  givenname: Bing
  surname: Song
  fullname: Song, Bing
BookMark eNqFkM9OAyEQh4mpiVX7BF54ga2wdJfl4KFp_Jc08aJnwsJg2GyXDdCavr2sNR486FyYmfARft8lmg1-AIRuKFlSQuvbbtklp2FZkrLMm1UlxBma04bXBSWNmP30nFygRYwdmYrn29UcmbVRY3IHwLH3H9iCSvsAWA2qP0YXcYHjqELMm33yMGhvIOBWRTDYqn2fsIEEOjk_YOsDTm4HxUGFoxve8Ri8hhghXqNzq_oIi-_zCr093L9unorty-PzZr0tNCMsFYY3glRt1ZiGGWFawilneSat4HkSoi7tyjBVEqC1Vm2ra8WbVQW8ZExbYFeInd7VwccYwMoxuF3-jaRETq5kJ79cycmVPLnKlPhFaZfUFCkF5fp_2LsTCznWwUGQUbusCYwLWYs03v3JfwIIxIn0
CitedBy_id crossref_primary_10_1002_cjce_25153
crossref_primary_10_1016_j_jtice_2023_105236
crossref_primary_10_1002_cem_3555
crossref_primary_10_1088_1361_6501_ad916a
crossref_primary_10_1002_cjce_25759
crossref_primary_10_1109_TAI_2025_3533438
crossref_primary_10_1016_j_jtice_2023_105292
crossref_primary_10_1016_j_knosys_2024_111404
crossref_primary_10_1016_j_jprocont_2025_103389
crossref_primary_10_1016_j_psep_2023_09_010
Cites_doi 10.1109/TIE.2014.2301773
10.1016/j.compchemeng.2022.107853
10.1016/j.arcontrol.2012.09.004
10.1109/TIM.2018.2872610
10.1016/j.isatra.2021.06.005
10.1016/j.neucom.2014.12.017
10.1109/TBDATA.2019.2903092
10.1016/j.jtice.2020.06.016
10.1016/S0959-1524(00)00022-6
10.1016/0169-7439(93)E0075-F
10.1016/j.conengprac.2008.04.004
10.1109/TNNLS.2017.2716952
10.1016/j.jtice.2020.07.007
10.1162/089976602317318938
10.1002/aic.14888
10.1016/j.jprocont.2019.01.008
10.1016/j.jtice.2019.09.017
10.1214/aoms/1177704472
10.1021/ie302069q
10.1016/j.jtice.2020.06.001
ContentType Journal Article
Copyright 2022
Copyright_xml – notice: 2022
DBID AAYXX
CITATION
DOI 10.1016/j.jtice.2022.104599
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Engineering
EISSN 1876-1089
ExternalDocumentID 10_1016_j_jtice_2022_104599
S1876107022003972
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
8RM
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABJNI
ABMAC
ABNUV
ABXDB
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHPOS
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EP2
EP3
FDB
FEDTE
FIRID
FNPLU
FYGXN
GBLVA
HVGLF
HZ~
J1W
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
SDF
SES
SPC
SPCBC
SSG
SSZ
T5K
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c303t-d78905b58d83d9db071735b50b97db09962f4d3a20e16cabbc6a7845e7233cfe3
ISICitedReferencesCount 10
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000903982000002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1876-1070
IngestDate Tue Nov 18 22:18:30 EST 2025
Sat Nov 29 07:00:38 EST 2025
Fri Feb 23 02:38:20 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Time-varying process
Sparse autoencoder
Slow feature analysis
Adaptive process monitoring
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c303t-d78905b58d83d9db071735b50b97db09962f4d3a20e16cabbc6a7845e7233cfe3
ParticipantIDs crossref_primary_10_1016_j_jtice_2022_104599
crossref_citationtrail_10_1016_j_jtice_2022_104599
elsevier_sciencedirect_doi_10_1016_j_jtice_2022_104599
PublicationCentury 2000
PublicationDate January 2023
2023-01-00
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: January 2023
PublicationDecade 2020
PublicationTitle Journal of the Taiwan Institute of Chemical Engineers
PublicationYear 2023
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References He, Li, Zhang, Xu, Zhu (bib0018) 2021; 70
Li, Yan (bib0005) 2020; 112
Peng, Zhang, Wang, Zhang (bib0017) 2022; 125
Lan, Tong, Shi, Luo (bib0006) 2020; 112
Li, Yue, Valle-Cervantes, Qin (bib0011) 2000; 10
Shang, Yang, Gao, Huang, Suykens, Huang (bib0019) 2015; 61
Wiskott, Sejnowski (bib0016) 2002; 14
Zhang, Yang, Chen, Li (bib0014) 2019; 6
Ge, Song (bib0013) 2008; 16
Shen, Song, Ge (bib0023) 2014; 2014
Chen, Liu (bib0015) 2018; 29
Parzen (bib0020) 1962; 33
Kang (bib0002) 2020; 112
Ge, Song, Gao (bib0003) 2013; 52
Song, Tan, Shi, Zhao (bib0001) 2020; 106
Wold (bib0010) 1994; 23
Cacciarelli, Kulahci (bib0021) 2022; 163
Yin, Ding, Xie, Luo (bib0007) 2014; 61
Dong, Zhang, Huang, Li, Peng (bib0009) 2015; 154
Jin, Fan, Chow (bib0008) 2019; 68
Qin (bib0012) 1998; 22
Qin (bib0004) 2012; 36
Zhang, Jiang, Zhan, Yang (bib0022) 2019; 75
Lan (10.1016/j.jtice.2022.104599_bib0006) 2020; 112
Dong (10.1016/j.jtice.2022.104599_bib0009) 2015; 154
Li (10.1016/j.jtice.2022.104599_bib0011) 2000; 10
Ge (10.1016/j.jtice.2022.104599_bib0003) 2013; 52
Li (10.1016/j.jtice.2022.104599_bib0005) 2020; 112
Song (10.1016/j.jtice.2022.104599_bib0001) 2020; 106
Shen (10.1016/j.jtice.2022.104599_bib0023) 2014; 2014
Yin (10.1016/j.jtice.2022.104599_bib0007) 2014; 61
He (10.1016/j.jtice.2022.104599_bib0018) 2021; 70
Cacciarelli (10.1016/j.jtice.2022.104599_bib0021) 2022; 163
Zhang (10.1016/j.jtice.2022.104599_bib0022) 2019; 75
Zhang (10.1016/j.jtice.2022.104599_bib0014) 2019; 6
Ge (10.1016/j.jtice.2022.104599_bib0013) 2008; 16
Wold (10.1016/j.jtice.2022.104599_bib0010) 1994; 23
Kang (10.1016/j.jtice.2022.104599_bib0002) 2020; 112
Wiskott (10.1016/j.jtice.2022.104599_bib0016) 2002; 14
Jin (10.1016/j.jtice.2022.104599_bib0008) 2019; 68
Shang (10.1016/j.jtice.2022.104599_bib0019) 2015; 61
Parzen (10.1016/j.jtice.2022.104599_bib0020) 1962; 33
Qin (10.1016/j.jtice.2022.104599_bib0012) 1998; 22
Chen (10.1016/j.jtice.2022.104599_bib0015) 2018; 29
Qin (10.1016/j.jtice.2022.104599_bib0004) 2012; 36
Peng (10.1016/j.jtice.2022.104599_bib0017) 2022; 125
References_xml – volume: 36
  start-page: 220
  year: 2012
  end-page: 234
  ident: bib0004
  article-title: Survey on data-driven industrial process monitoring and diagnosis
  publication-title: Annu Rev Control
– volume: 52
  start-page: 3543
  year: 2013
  end-page: 3562
  ident: bib0003
  article-title: Review of recent research on data-based process monitoring
  publication-title: Ind Eng Chem Res
– volume: 61
  start-page: 181
  year: 2015
  ident: bib0019
  article-title: Concurrent monitoring of operating condition deviations and process dynamics anomalies with slow feature analysis
  publication-title: AIChE J
– volume: 33
  start-page: 1065
  year: 1962
  end-page: 1076
  ident: bib0020
  article-title: On estimation of a probability density function and mode
  publication-title: Ann Math Stat
– volume: 125
  start-page: 371
  year: 2022
  end-page: 383
  ident: bib0017
  article-title: Towards robust and understandable fault detection and diagnosis using denoising sparse autoencoder and smooth integrated gradients
  publication-title: ISA Trans
– volume: 70
  start-page: 1
  year: 2021
  end-page: 8
  ident: bib0018
  article-title: Fault diagnosis using improved discrimination locality preserving projections integrated with sparse autoencoder
  publication-title: IEEE Trans Instrum Meas
– volume: 154
  start-page: 77
  year: 2015
  end-page: 85
  ident: bib0009
  article-title: Adaptive total PLS based quality-relevant process monitoring with application to the Tennessee Eastman process
  publication-title: Neurocomputing
– volume: 68
  start-page: 3128
  year: 2019
  end-page: 36136
  ident: bib0008
  article-title: Fault detection for rolling-element bearings using multivariate statistical process control methods
  publication-title: IEEE Trans Instrum Meas
– volume: 14
  start-page: 715
  year: 2002
  end-page: 770
  ident: bib0016
  article-title: Slow feature analysis: unsupervised learning of invariances
  publication-title: Neural Comput
– volume: 112
  start-page: 137
  year: 2020
  end-page: 151
  ident: bib0002
  article-title: Visualization analysis for fault diagnosis in chemical processes using recurrent neural networks - ScienceDirect
  publication-title: J Taiwan Inst Chem Eng
– volume: 75
  start-page: 136
  year: 2019
  end-page: 155
  ident: bib0022
  article-title: Gaussian feature learning based on variational autoencoder for improving nonlinear process monitoring
  publication-title: J Process Control
– volume: 2014
  start-page: 1957
  year: 2014
  end-page: 1962
  ident: bib0023
  article-title: JITL based local monitoring method for transitions of multiphase batch processes
  publication-title: Proceedings of the American control conference
– volume: 22
  start-page: 503
  year: 1998
  end-page: 514
  ident: bib0012
  article-title: Recursive PLS algorithms for adaptive data modeling
  publication-title: ComputChemEng
– volume: 106
  start-page: 1
  year: 2020
  end-page: 8
  ident: bib0001
  article-title: Fault detection and diagnosis via standardized k nearest neighbor for multimode process - ScienceDirect
  publication-title: J Taiwan Inst Chem Eng
– volume: 112
  start-page: 322
  year: 2020
  end-page: 329
  ident: bib0005
  article-title: Process monitoring using principal component analysis and stacked autoencoder for linear and nonlinear coexisting industrial processes
  publication-title: J Taiwan Inst Chem Eng
– volume: 29
  start-page: 10
  year: 2018
  end-page: 24
  ident: bib0015
  article-title: Broad learning system: an effective and efficient incremental learning system without the need for deep architecture
  publication-title: IEEE Trans Neural Netw Learn Syst
– volume: 163
  year: 2022
  ident: bib0021
  article-title: A novel fault detection and diagnosis approach based on orthogonal autoencoders
  publication-title: Comput Chem Eng
– volume: 16
  start-page: 1427
  year: 2008
  end-page: 1437
  ident: bib0013
  article-title: Online monitoring of nonlinear multiple mode processes based on adaptive local model approach
  publication-title: Control Eng Pract
– volume: 61
  start-page: 6418
  year: 2014
  end-page: 6428
  ident: bib0007
  article-title: A review on basic data-driven approaches for industrial process monitoring
  publication-title: IEEE Trans Ind Electron
– volume: 10
  start-page: 471
  year: 2000
  end-page: 486
  ident: bib0011
  article-title: Recursive PCA for adaptive process monitoring
  publication-title: J Process Control
– volume: 112
  start-page: 78
  year: 2020
  end-page: 86
  ident: bib0006
  article-title: Dynamic statistical process monitoring based on generalized canonical variate analysis
  publication-title: J Taiwan Inst Chem Eng
– volume: 23
  start-page: 149
  year: 1994
  end-page: 161
  ident: bib0010
  article-title: Exponentially weighted moving principal components analysis and projections to latent structures
  publication-title: Chemom Intell Lab Syst
– volume: 6
  start-page: 248
  year: 2019
  end-page: 257
  ident: bib0014
  article-title: Incremental deep computation model for wireless big data feature learning
  publication-title: IEEE Trans Big Data
– volume: 61
  start-page: 6418
  year: 2014
  ident: 10.1016/j.jtice.2022.104599_bib0007
  article-title: A review on basic data-driven approaches for industrial process monitoring
  publication-title: IEEE Trans Ind Electron
  doi: 10.1109/TIE.2014.2301773
– volume: 163
  year: 2022
  ident: 10.1016/j.jtice.2022.104599_bib0021
  article-title: A novel fault detection and diagnosis approach based on orthogonal autoencoders
  publication-title: Comput Chem Eng
  doi: 10.1016/j.compchemeng.2022.107853
– volume: 2014
  start-page: 1957
  year: 2014
  ident: 10.1016/j.jtice.2022.104599_bib0023
  article-title: JITL based local monitoring method for transitions of multiphase batch processes
– volume: 36
  start-page: 220
  year: 2012
  ident: 10.1016/j.jtice.2022.104599_bib0004
  article-title: Survey on data-driven industrial process monitoring and diagnosis
  publication-title: Annu Rev Control
  doi: 10.1016/j.arcontrol.2012.09.004
– volume: 68
  start-page: 3128
  year: 2019
  ident: 10.1016/j.jtice.2022.104599_bib0008
  article-title: Fault detection for rolling-element bearings using multivariate statistical process control methods
  publication-title: IEEE Trans Instrum Meas
  doi: 10.1109/TIM.2018.2872610
– volume: 125
  start-page: 371
  year: 2022
  ident: 10.1016/j.jtice.2022.104599_bib0017
  article-title: Towards robust and understandable fault detection and diagnosis using denoising sparse autoencoder and smooth integrated gradients
  publication-title: ISA Trans
  doi: 10.1016/j.isatra.2021.06.005
– volume: 154
  start-page: 77
  year: 2015
  ident: 10.1016/j.jtice.2022.104599_bib0009
  article-title: Adaptive total PLS based quality-relevant process monitoring with application to the Tennessee Eastman process
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2014.12.017
– volume: 6
  start-page: 248
  year: 2019
  ident: 10.1016/j.jtice.2022.104599_bib0014
  article-title: Incremental deep computation model for wireless big data feature learning
  publication-title: IEEE Trans Big Data
  doi: 10.1109/TBDATA.2019.2903092
– volume: 112
  start-page: 137
  year: 2020
  ident: 10.1016/j.jtice.2022.104599_bib0002
  article-title: Visualization analysis for fault diagnosis in chemical processes using recurrent neural networks - ScienceDirect
  publication-title: J Taiwan Inst Chem Eng
  doi: 10.1016/j.jtice.2020.06.016
– volume: 10
  start-page: 471
  year: 2000
  ident: 10.1016/j.jtice.2022.104599_bib0011
  article-title: Recursive PCA for adaptive process monitoring
  publication-title: J Process Control
  doi: 10.1016/S0959-1524(00)00022-6
– volume: 23
  start-page: 149
  year: 1994
  ident: 10.1016/j.jtice.2022.104599_bib0010
  article-title: Exponentially weighted moving principal components analysis and projections to latent structures
  publication-title: Chemom Intell Lab Syst
  doi: 10.1016/0169-7439(93)E0075-F
– volume: 16
  start-page: 1427
  year: 2008
  ident: 10.1016/j.jtice.2022.104599_bib0013
  article-title: Online monitoring of nonlinear multiple mode processes based on adaptive local model approach
  publication-title: Control Eng Pract
  doi: 10.1016/j.conengprac.2008.04.004
– volume: 29
  start-page: 10
  year: 2018
  ident: 10.1016/j.jtice.2022.104599_bib0015
  article-title: Broad learning system: an effective and efficient incremental learning system without the need for deep architecture
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2017.2716952
– volume: 112
  start-page: 78
  year: 2020
  ident: 10.1016/j.jtice.2022.104599_bib0006
  article-title: Dynamic statistical process monitoring based on generalized canonical variate analysis
  publication-title: J Taiwan Inst Chem Eng
  doi: 10.1016/j.jtice.2020.07.007
– volume: 22
  start-page: 503
  year: 1998
  ident: 10.1016/j.jtice.2022.104599_bib0012
  article-title: Recursive PLS algorithms for adaptive data modeling
  publication-title: ComputChemEng
– volume: 14
  start-page: 715
  year: 2002
  ident: 10.1016/j.jtice.2022.104599_bib0016
  article-title: Slow feature analysis: unsupervised learning of invariances
  publication-title: Neural Comput
  doi: 10.1162/089976602317318938
– volume: 61
  start-page: 181
  year: 2015
  ident: 10.1016/j.jtice.2022.104599_bib0019
  article-title: Concurrent monitoring of operating condition deviations and process dynamics anomalies with slow feature analysis
  publication-title: AIChE J
  doi: 10.1002/aic.14888
– volume: 70
  start-page: 1
  year: 2021
  ident: 10.1016/j.jtice.2022.104599_bib0018
  article-title: Fault diagnosis using improved discrimination locality preserving projections integrated with sparse autoencoder
  publication-title: IEEE Trans Instrum Meas
– volume: 75
  start-page: 136
  year: 2019
  ident: 10.1016/j.jtice.2022.104599_bib0022
  article-title: Gaussian feature learning based on variational autoencoder for improving nonlinear process monitoring
  publication-title: J Process Control
  doi: 10.1016/j.jprocont.2019.01.008
– volume: 106
  start-page: 1
  year: 2020
  ident: 10.1016/j.jtice.2022.104599_bib0001
  article-title: Fault detection and diagnosis via standardized k nearest neighbor for multimode process - ScienceDirect
  publication-title: J Taiwan Inst Chem Eng
  doi: 10.1016/j.jtice.2019.09.017
– volume: 33
  start-page: 1065
  year: 1962
  ident: 10.1016/j.jtice.2022.104599_bib0020
  article-title: On estimation of a probability density function and mode
  publication-title: Ann Math Stat
  doi: 10.1214/aoms/1177704472
– volume: 52
  start-page: 3543
  year: 2013
  ident: 10.1016/j.jtice.2022.104599_bib0003
  article-title: Review of recent research on data-based process monitoring
  publication-title: Ind Eng Chem Res
  doi: 10.1021/ie302069q
– volume: 112
  start-page: 322
  year: 2020
  ident: 10.1016/j.jtice.2022.104599_bib0005
  article-title: Process monitoring using principal component analysis and stacked autoencoder for linear and nonlinear coexisting industrial processes
  publication-title: J Taiwan Inst Chem Eng
  doi: 10.1016/j.jtice.2020.06.001
SSID ssj0000070225
Score 2.3627317
Snippet •Slow feature analysis is used to extract the dynamic characteristics of the process and establish a "model update index" to realize the failure judgment of...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 104599
SubjectTerms Adaptive process monitoring
Slow feature analysis
Sparse autoencoder
Time-varying process
Title Adaptive slow feature analysis - sparse autoencoder based fault detection for time-varying processes
URI https://dx.doi.org/10.1016/j.jtice.2022.104599
Volume 142
WOSCitedRecordID wos000903982000002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1876-1089
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000070225
  issn: 1876-1070
  databaseCode: AIEXJ
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELZKFwk4IFhALC_5wK0Etc7Tx4IWAUIrJArqLXJsh01VkqpNussf4fcyfjZLUcUeuETNKHGSzueZyWT8DUIvwcuVSVLQICQFDyLG04CxOAtEmrA04mVEddO-b5_Ss7NsPqefB4Nfbi3MdpnWdXZ5SVf_VdUgA2WrpbPXULcfFATwG5QOW1A7bP9J8VPBVroeaLNsLkalZPYbgSUfCUZgQ9YbkHRto1gsFZmE8mViVLJu2Y6EbCXfVSBWP2SwZeufZtW6XlVgyw73Q1oVxM5YdcHqq0UInpXAsR_6QH5m86_nHat2OeymU8J5VS8qj90v56a_dlN_LxovtAXFb5wDtvkLEvbyF8bkgj0GZ2Dah3ibbCi3rFWFV8bYtFHaM_gm97BQj8wV6ykhr3dHX6XX_sPt-WJEV-e2yPUguRokN4PcQEckjWk2REfTD6fzjz57p1iSiO7o62_fUVrp4sG92_l72NMLZWb30F2rMDw12LmPBrI-RrfcEvXNMbrTY6l8gIRDFFaIwhZR2CEKB9ggCvcQhTWisEYU9ojCgCjcRxT2iHqIvr47nb19H9jmHAGHqKeFyZzRcVzEmchCQUWhyzlgf1zQFPbgNZqUkQgZGctJwllRcJj8WRTLlIQhL2X4CA3rppaPEVZd0eiEQazLoggiUhaCB46FjFMiyCRMThBx_13OLXO9aqCyzA-o7gS98ietDHHL4cMTp5Tcxp4mpswBaYdOfHK96zxFt3eT4BkatutOPkc3-batNusXFma_AXFMqAU
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adaptive+slow+feature+analysis+-+sparse+autoencoder+based+fault+detection+for+time-varying+processes&rft.jtitle=Journal+of+the+Taiwan+Institute+of+Chemical+Engineers&rft.au=Tan%2C+Shuai&rft.au=Zhou%2C+Xinjin&rft.au=Shi%2C+Hongbo&rft.au=Song%2C+Bing&rft.date=2023-01-01&rft.issn=1876-1070&rft.volume=142&rft.spage=104599&rft_id=info:doi/10.1016%2Fj.jtice.2022.104599&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jtice_2022_104599
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1876-1070&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1876-1070&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1876-1070&client=summon