A class of Cartesian grid embedded boundary algorithms for incompressible flow with time-varying complex geometries

We present a class of numerical algorithms for simulating viscous fluid problems of incompressible flow interacting with moving rigid structures. The proposed Cartesian grid embedded boundary algorithms employ a slightly different idea from the traditional direct-forcing immersed boundary methods: t...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Physica. D Ročník 240; číslo 20; s. 1583 - 1592
Hlavní autoři: Lee, Long, Vankova, Irena
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 01.10.2011
Témata:
ISSN:0167-2789, 1872-8022
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract We present a class of numerical algorithms for simulating viscous fluid problems of incompressible flow interacting with moving rigid structures. The proposed Cartesian grid embedded boundary algorithms employ a slightly different idea from the traditional direct-forcing immersed boundary methods: the proposed algorithms calculate and apply the force density in the extended solid domain to uphold the solid velocity and hence the boundary condition at the rigid-body surface. The principle of the embedded boundary algorithm allows us to solve the fluid equations on a Cartesian grid with a set of external forces spread onto the grid points occupied by the rigid structure. The proposed algorithms use the MAC (marker and cell) algorithm to solve the incompressible Navier–Stokes equations. Unlike projection methods, the MAC scheme incorporates the gradient of the force density in solving the pressure Poisson equation, so that the dipole force, due to the jump of pressure across the solid–fluid interface, is directly balanced by the gradient of the force density. We validate the proposed algorithms via the classical benchmark problem of flow past a cylinder. Our numerical experiments show that numerical solutions of the velocity field obtained by using the proposed algorithms are smooth across the solid–fluid interface. Finally, we consider the problem of a cylinder moving between two parallel plane walls. Numerical solutions of this problem obtained by using the proposed algorithms are compared with the classical asymptotic solutions. We show that the two solutions are in good agreement. ► We propose a class of numerical algorithms for simulating solid–fluid interaction. ► The algorithms incorporate the gradient of the force density in the pressure equation. ► The algorithms improve the direct-forcing immersed boundary methods. ► The algorithms are robust for moving structures with complex geometries.
AbstractList We present a class of numerical algorithms for simulating viscous fluid problems of incompressible flow interacting with moving rigid structures. The proposed Cartesian grid embedded boundary algorithms employ a slightly different idea from the traditional direct-forcing immersed boundary methods: the proposed algorithms calculate and apply the force density in the extended solid domain to uphold the solid velocity and hence the boundary condition at the rigid-body surface. The principle of the embedded boundary algorithm allows us to solve the fluid equations on a Cartesian grid with a set of external forces spread onto the grid points occupied by the rigid structure. The proposed algorithms use the MAC (marker and cell) algorithm to solve the incompressible Navier–Stokes equations. Unlike projection methods, the MAC scheme incorporates the gradient of the force density in solving the pressure Poisson equation, so that the dipole force, due to the jump of pressure across the solid–fluid interface, is directly balanced by the gradient of the force density. We validate the proposed algorithms via the classical benchmark problem of flow past a cylinder. Our numerical experiments show that numerical solutions of the velocity field obtained by using the proposed algorithms are smooth across the solid–fluid interface. Finally, we consider the problem of a cylinder moving between two parallel plane walls. Numerical solutions of this problem obtained by using the proposed algorithms are compared with the classical asymptotic solutions. We show that the two solutions are in good agreement. ► We propose a class of numerical algorithms for simulating solid–fluid interaction. ► The algorithms incorporate the gradient of the force density in the pressure equation. ► The algorithms improve the direct-forcing immersed boundary methods. ► The algorithms are robust for moving structures with complex geometries.
Author Lee, Long
Vankova, Irena
Author_xml – sequence: 1
  givenname: Long
  surname: Lee
  fullname: Lee, Long
  email: llee@uwyo.edu
– sequence: 2
  givenname: Irena
  surname: Vankova
  fullname: Vankova, Irena
BookMark eNqFkLtOAzEQRS0EEkngC2j8A7vYa_bhgiKKeEmRaKC2_BgnjnbtyDYJ-Xs2hIoCqinmnquZM0XnPnhA6IaSkhLa3G7K7fqQTFkRSkvSlISyMzShXVsVHamqczQZU21RtR2_RNOUNoQQ2rJ2gtIc616mhIPFCxkzJCc9XkVnMAwKjAGDVfjwRsYDlv0qRJfXQ8I2ROy8DsM2QkpO9YBtH_Z4P65xdgMUu5FwfoWPmR4-8QrCADk6SFfowso-wfXPnKH3x4e3xXOxfH16WcyXhWaE5cLcKWM5qzrNeW06JTtaWyY7xolsW6sJNDVVndW2bRTwuqpZwxlwXnGlGTNshtipV8eQUgQrttEN41mCEnH0Jjbi25s4ehOkEaO3keK_KO2yzC74HKXr_2HvTyyMb-0cRJG0A6_BuAg6CxPcn_wX4fSP3g
CitedBy_id crossref_primary_10_1016_j_physd_2011_08_002
crossref_primary_10_1016_j_cpc_2017_07_007
crossref_primary_10_1016_j_compfluid_2016_07_008
Cites_doi 10.1016/j.jcp.2005.12.016
10.1016/j.jcp.2005.03.031
10.1006/jcph.2001.6812
10.1146/annurev.fluid.37.061903.175743
10.1006/jcph.2000.6444
10.1137/040604960
10.1016/0045-7930(94)90031-0
10.1137/0907059
10.1016/j.euromechflu.2007.07.001
10.1063/1.1761178
10.1002/fld.1650071008
10.1016/j.compfluid.2009.07.011
10.1016/j.jcp.2006.05.004
10.1016/0021-9991(85)90148-2
10.1016/j.jcp.2007.06.002
10.1016/j.jcp.2006.06.002
10.1016/j.jcp.2008.01.053
10.1016/j.camwa.2007.08.022
10.1063/1.1512918
10.1017/S0022112077000135
10.1006/jcph.2000.6542
10.1137/S1064827502414060
10.1016/j.jcp.2009.10.027
10.1016/j.jcp.2008.12.028
10.1017/S0962492902000077
10.2514/6.1997-196
10.1006/jcph.1998.5965
10.1006/jcph.1999.6356
10.1016/j.jcp.2004.09.017
10.1006/jcph.2000.6484
10.1016/0021-9991(77)90100-0
10.1006/jcph.2002.7123
ContentType Journal Article
Copyright 2011 Elsevier B.V.
Copyright_xml – notice: 2011 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.physd.2011.06.013
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1872-8022
EndPage 1592
ExternalDocumentID 10_1016_j_physd_2011_06_013
S016727891100162X
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29O
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABAOU
ABFNM
ABMAC
ABNEU
ABXDB
ABYKQ
ACAZW
ACDAQ
ACFVG
ACGFS
ACNCT
ACNNM
ACRLP
ADBBV
ADEZE
ADGUI
ADIYS
ADMUD
AEBSH
AEKER
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGVJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BKOJK
BLXMC
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HMV
HVGLF
HZ~
H~9
IHE
J1W
K-O
KOM
M38
M41
MHUIS
MO0
MVM
N9A
NDZJH
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SPD
SPG
SSQ
SSW
SSZ
T5K
TN5
TWZ
WUQ
XJT
XPP
YNT
YYP
~02
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ADNMO
ADVLN
AEIPS
AFJKZ
AGQPQ
AIIUN
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c303t-d4bdf9328c995d8ba815f3a8390a77fc0e651b8fcf76be95253693e9929bc33d3
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000297455200004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0167-2789
IngestDate Sat Nov 29 03:57:30 EST 2025
Tue Nov 18 22:22:20 EST 2025
Fri Feb 23 02:33:29 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 20
Keywords MAC scheme
Moving rigid structures
Incompressible Navier–Stokes equations
Cartesian grid
Immersed boundary method
Direct forcing
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c303t-d4bdf9328c995d8ba815f3a8390a77fc0e651b8fcf76be95253693e9929bc33d3
PageCount 10
ParticipantIDs crossref_primary_10_1016_j_physd_2011_06_013
crossref_citationtrail_10_1016_j_physd_2011_06_013
elsevier_sciencedirect_doi_10_1016_j_physd_2011_06_013
PublicationCentury 2000
PublicationDate 2011-10-01
PublicationDateYYYYMMDD 2011-10-01
PublicationDate_xml – month: 10
  year: 2011
  text: 2011-10-01
  day: 01
PublicationDecade 2010
PublicationTitle Physica. D
PublicationYear 2011
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Wan, Turek (br000130) 2007; 222
Gresho, Sani (br000160) 1987; 7
J. Mohd-Yusof, Combined immersed boundaries/B-splines methods for simulations of flows in complex geometries, CTR Annual Research Briefs, NASA Ames/Stanford University, 1997.
Van Kan (br000060) 1986; 7
Ye, Mittal, Udaykumar, Shyy (br000105) 1999; 156
ten Cate, Nieuwstad, Derksen, Van den Akker (br000110) 2002; 14
Liao, Chang, Lin, McDonough (br000030) 2010; 39
Chorin (br000050) 1968; 2
M.J. Aftosmis, M.J. Berger, J.E. Melton, Robust and efficient Cartesian mesh generation for component based geometry, Tech. Report AIAA-97-0196, US Airforce Wright Laboratory, 1997.
Iglberger, Thürey, Rüde (br000115) 2008; 55
Peskin (br000010) 2002; 11
Coutanceau, Bouard (br000165) 1977; 79
Happel, Brenner (br000180) 1965
Linnick, Fasel (br000170) 2005; 204
Guy, Hartenstine (br000065) 2010; 229
Xu (br000045) 2008; 227
Peskin (br000005) 1977; 25
Kim, Moin (br000055) 1985; 59
Le, Khoo, Peraire (br000075) 2006; 220
Pan, Glowinskin (br000125) 2002; 181
Fadlun, Verzicco, Orlandi, Mohd-Yusof (br000020) 2000; 161
Xu, Wang (br000040) 2006; 27
Marella, Krishnan, Liu, Udaykumar (br000155) 2005; 210
Nguyen, Fedkiw, Kang (br000140) 2001; 172
Ito, Lai, Li (br000080) 2009; 228
Glowinski, Pan, Heska, Joseph, Périaux (br000120) 2001; 169
Lee, LeVeque (br000070) 2003; 25
Shu, Liu, Chew (br000150) 2007; 226
Mittal, Iaccarino (br000015) 2005; 37
Harlow, Welch (br000035) 1965; 8
H. Faxén, Neuvième Congrès des Mathemeticiens Scandinaves, Helsingfors, 1938.
Liu, Fedkiw, Kang (br000135) 2000; 160
Pianet, Arquis (br000145) 2008; 27
Johansen, Colella (br000095) 1998; 147
Quirk (br000100) 1994; 23
Xu, Wang (br000085) 2006; 216
Nguyen (10.1016/j.physd.2011.06.013_br000140) 2001; 172
Xu (10.1016/j.physd.2011.06.013_br000045) 2008; 227
Pianet (10.1016/j.physd.2011.06.013_br000145) 2008; 27
Xu (10.1016/j.physd.2011.06.013_br000085) 2006; 216
Ito (10.1016/j.physd.2011.06.013_br000080) 2009; 228
Van Kan (10.1016/j.physd.2011.06.013_br000060) 1986; 7
Glowinski (10.1016/j.physd.2011.06.013_br000120) 2001; 169
Marella (10.1016/j.physd.2011.06.013_br000155) 2005; 210
Xu (10.1016/j.physd.2011.06.013_br000040) 2006; 27
Linnick (10.1016/j.physd.2011.06.013_br000170) 2005; 204
Happel (10.1016/j.physd.2011.06.013_br000180) 1965
Harlow (10.1016/j.physd.2011.06.013_br000035) 1965; 8
Johansen (10.1016/j.physd.2011.06.013_br000095) 1998; 147
10.1016/j.physd.2011.06.013_br000025
Iglberger (10.1016/j.physd.2011.06.013_br000115) 2008; 55
Fadlun (10.1016/j.physd.2011.06.013_br000020) 2000; 161
Shu (10.1016/j.physd.2011.06.013_br000150) 2007; 226
Wan (10.1016/j.physd.2011.06.013_br000130) 2007; 222
Liu (10.1016/j.physd.2011.06.013_br000135) 2000; 160
Mittal (10.1016/j.physd.2011.06.013_br000015) 2005; 37
Chorin (10.1016/j.physd.2011.06.013_br000050) 1968; 2
Peskin (10.1016/j.physd.2011.06.013_br000010) 2002; 11
10.1016/j.physd.2011.06.013_br000090
ten Cate (10.1016/j.physd.2011.06.013_br000110) 2002; 14
Quirk (10.1016/j.physd.2011.06.013_br000100) 1994; 23
Coutanceau (10.1016/j.physd.2011.06.013_br000165) 1977; 79
Liao (10.1016/j.physd.2011.06.013_br000030) 2010; 39
10.1016/j.physd.2011.06.013_br000175
Peskin (10.1016/j.physd.2011.06.013_br000005) 1977; 25
Kim (10.1016/j.physd.2011.06.013_br000055) 1985; 59
Ye (10.1016/j.physd.2011.06.013_br000105) 1999; 156
Gresho (10.1016/j.physd.2011.06.013_br000160) 1987; 7
Lee (10.1016/j.physd.2011.06.013_br000070) 2003; 25
Guy (10.1016/j.physd.2011.06.013_br000065) 2010; 229
Le (10.1016/j.physd.2011.06.013_br000075) 2006; 220
Pan (10.1016/j.physd.2011.06.013_br000125) 2002; 181
References_xml – volume: 216
  start-page: 454
  year: 2006
  end-page: 493
  ident: br000085
  article-title: An immersed interface method for simulating the interaction of a fluid with moving boundaries
  publication-title: J. Comput. Phys.
– volume: 25
  start-page: 220
  year: 1977
  end-page: 252
  ident: br000005
  article-title: Numerical analysis of blood flow in the heart
  publication-title: J. Comput. Phys.
– volume: 11
  start-page: 479
  year: 2002
  end-page: 517
  ident: br000010
  article-title: The immersed boundary method
  publication-title: Acta Numer.
– volume: 23
  start-page: 125
  year: 1994
  end-page: 142
  ident: br000100
  article-title: An alternative to unstructured grids for computing gas dynamic flows around arbitrarily complex two-dimensional bodies
  publication-title: Comput. Fluids
– volume: 55
  start-page: 1461
  year: 2008
  end-page: 1468
  ident: br000115
  article-title: Simulation of moving particles in 3D with the lattice Boltzmann method
  publication-title: Comput. Math. Appl.
– volume: 222
  start-page: 28
  year: 2007
  end-page: 56
  ident: br000130
  article-title: Fictitious boundary and moving mesh methods for the numerical simulation of rigid particulate flows
  publication-title: J. Comput. Phys.
– volume: 172
  start-page: 71
  year: 2001
  end-page: 98
  ident: br000140
  article-title: A boundary condition capturing method for incompressible flame discontinuities
  publication-title: J. Comput. Phys.
– volume: 8
  start-page: 2182
  year: 1965
  end-page: 2189
  ident: br000035
  article-title: Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface
  publication-title: Phys. Fluids
– volume: 147
  start-page: 60
  year: 1998
  end-page: 85
  ident: br000095
  article-title: A Cartesian grid embedded boundary method for Poisson’s equation on irregular domains
  publication-title: J. Comput. Phys.
– volume: 160
  start-page: 151
  year: 2000
  end-page: 178
  ident: br000135
  article-title: A boundary condition capturing method for Poisson’s equation on irregular domain
  publication-title: J. Comput. Phys.
– volume: 2
  start-page: 64
  year: 1968
  end-page: 71
  ident: br000050
  article-title: Numerical solution of incompressible flow problems
  publication-title: Stud. Numerical Analysis
– volume: 27
  start-page: 1948
  year: 2006
  end-page: 1980
  ident: br000040
  article-title: Systematic derivation of jump conditions for the immersed interface method in three-dimensional flow simulation
  publication-title: SIAM J. Sci. Comput.
– volume: 161
  start-page: 35
  year: 2000
  end-page: 60
  ident: br000020
  article-title: Combined immersed-boundary finite-difference methods for three-dimensional complex flow simulations
  publication-title: J. Comput. Phys.
– reference: M.J. Aftosmis, M.J. Berger, J.E. Melton, Robust and efficient Cartesian mesh generation for component based geometry, Tech. Report AIAA-97-0196, US Airforce Wright Laboratory, 1997.
– volume: 7
  start-page: 870
  year: 1986
  end-page: 891
  ident: br000060
  article-title: A second-order accurate pressure-correction scheme for viscous incompressible flow
  publication-title: SIAM J. Sci. Comput.
– volume: 229
  start-page: 2479
  year: 2010
  end-page: 2496
  ident: br000065
  article-title: On the accuracy of direct forcing immersed boundary methods with projection methods
  publication-title: J. Comput. Phys.
– volume: 227
  start-page: 5045
  year: 2008
  end-page: 5071
  ident: br000045
  article-title: The immersed interface method for simulating prescribed motion of rigid objects in an incompressible viscous flow
  publication-title: J. Comput. Phys.
– reference: H. Faxén, Neuvième Congrès des Mathemeticiens Scandinaves, Helsingfors, 1938.
– volume: 14
  start-page: 4012
  year: 2002
  ident: br000110
  article-title: Particle imaging velocimetry experiments and lattice–Boltzmann simulations on a single sphere settling under gravity
  publication-title: Phys. Fluids
– volume: 204
  start-page: 157
  year: 2005
  end-page: 192
  ident: br000170
  article-title: A high-order immersed interface method for simulating unsteady incompressible flows on irregular domains
  publication-title: J. Comput. Phys.
– year: 1965
  ident: br000180
  article-title: Low Reynolds Number Hydrodynamics
– volume: 79
  start-page: 231
  year: 1977
  end-page: 256
  ident: br000165
  article-title: Experimental determination of the main features of the viscous flow in the wake of a circular cylinder in uniform translation, part 1, steady flow
  publication-title: J. Fluid Mech.
– volume: 181
  start-page: 260
  year: 2002
  end-page: 279
  ident: br000125
  article-title: Direct simulation of the motion of neutrally buoyant circular cylinders in plane poiseuille flow
  publication-title: J. Comput. Phys.
– volume: 156
  start-page: 209
  year: 1999
  end-page: 240
  ident: br000105
  article-title: An accurate Cartesian grid method for viscous incompressible flows with complex immersed boundaries
  publication-title: J. Comput. Phys.
– reference: J. Mohd-Yusof, Combined immersed boundaries/B-splines methods for simulations of flows in complex geometries, CTR Annual Research Briefs, NASA Ames/Stanford University, 1997.
– volume: 169
  start-page: 363
  year: 2001
  end-page: 426
  ident: br000120
  article-title: A fictitious domain approach to the direct numerical simulation of incompressible viscous flow past moving rigid bodies: application to particulate flow
  publication-title: J. Comput. Phys.
– volume: 226
  start-page: 1607
  year: 2007
  end-page: 1622
  ident: br000150
  article-title: A novel immersed boundary velocity correction-lattice Boltzmann method and its application to simulate flow past a circular cylinder
  publication-title: J. Comput. Phys.
– volume: 39
  start-page: 152
  year: 2010
  end-page: 167
  ident: br000030
  article-title: Simulating flows with moving rigid boundary using immersed-boundary method
  publication-title: Comput. Fluids
– volume: 210
  start-page: 1
  year: 2005
  end-page: 31
  ident: br000155
  article-title: Sharp interface Cartesian grid method I: an easily implemented technique for 3D moving boundary computations
  publication-title: J. Comput. Phys.
– volume: 7
  start-page: 1111
  year: 1987
  end-page: 1145
  ident: br000160
  article-title: On pressure boundary conditions for the incompressible Navier–Stokes equations
  publication-title: Internat. J. Numer. Methods Fluids
– volume: 25
  start-page: 832
  year: 2003
  end-page: 856
  ident: br000070
  article-title: An immersed interface method for the incompressible Navier–Stokes equations
  publication-title: SIAM J. Sci. Comput.
– volume: 59
  start-page: 308
  year: 1985
  end-page: 323
  ident: br000055
  article-title: Application of a fractional-step method to incompressible Navier–Stokes equations
  publication-title: J. Comput. Phys.
– volume: 228
  start-page: 2616
  year: 2009
  end-page: 2628
  ident: br000080
  article-title: A well-conditioned augmented system for solving Navier–Stokes equations in irregular domains
  publication-title: J. Comput. Phys.
– volume: 220
  start-page: 109
  year: 2006
  end-page: 138
  ident: br000075
  article-title: An immersed interface method for viscous incompressible flows involving rigid and flexible boundaries
  publication-title: J. Comput. Phys.
– volume: 27
  start-page: 309
  year: 2008
  end-page: 321
  ident: br000145
  article-title: Simulation of particles in fluid: a two-dimensional benchmark for a cylinder settling in a wall-bounded box
  publication-title: Eur. J. Mech. B Fluids
– volume: 37
  start-page: 239
  year: 2005
  end-page: 261
  ident: br000015
  article-title: The immersed boundary methods
  publication-title: Annu. Rev. Fluid Mech.
– volume: 216
  start-page: 454
  year: 2006
  ident: 10.1016/j.physd.2011.06.013_br000085
  article-title: An immersed interface method for simulating the interaction of a fluid with moving boundaries
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2005.12.016
– volume: 210
  start-page: 1
  year: 2005
  ident: 10.1016/j.physd.2011.06.013_br000155
  article-title: Sharp interface Cartesian grid method I: an easily implemented technique for 3D moving boundary computations
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2005.03.031
– volume: 172
  start-page: 71
  year: 2001
  ident: 10.1016/j.physd.2011.06.013_br000140
  article-title: A boundary condition capturing method for incompressible flame discontinuities
  publication-title: J. Comput. Phys.
  doi: 10.1006/jcph.2001.6812
– volume: 37
  start-page: 239
  year: 2005
  ident: 10.1016/j.physd.2011.06.013_br000015
  article-title: The immersed boundary methods
  publication-title: Annu. Rev. Fluid Mech.
  doi: 10.1146/annurev.fluid.37.061903.175743
– volume: 160
  start-page: 151
  year: 2000
  ident: 10.1016/j.physd.2011.06.013_br000135
  article-title: A boundary condition capturing method for Poisson’s equation on irregular domain
  publication-title: J. Comput. Phys.
  doi: 10.1006/jcph.2000.6444
– volume: 27
  start-page: 1948
  year: 2006
  ident: 10.1016/j.physd.2011.06.013_br000040
  article-title: Systematic derivation of jump conditions for the immersed interface method in three-dimensional flow simulation
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/040604960
– volume: 23
  start-page: 125
  year: 1994
  ident: 10.1016/j.physd.2011.06.013_br000100
  article-title: An alternative to unstructured grids for computing gas dynamic flows around arbitrarily complex two-dimensional bodies
  publication-title: Comput. Fluids
  doi: 10.1016/0045-7930(94)90031-0
– volume: 7
  start-page: 870
  year: 1986
  ident: 10.1016/j.physd.2011.06.013_br000060
  article-title: A second-order accurate pressure-correction scheme for viscous incompressible flow
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/0907059
– ident: 10.1016/j.physd.2011.06.013_br000025
– volume: 27
  start-page: 309
  year: 2008
  ident: 10.1016/j.physd.2011.06.013_br000145
  article-title: Simulation of particles in fluid: a two-dimensional benchmark for a cylinder settling in a wall-bounded box
  publication-title: Eur. J. Mech. B Fluids
  doi: 10.1016/j.euromechflu.2007.07.001
– volume: 8
  start-page: 2182
  year: 1965
  ident: 10.1016/j.physd.2011.06.013_br000035
  article-title: Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface
  publication-title: Phys. Fluids
  doi: 10.1063/1.1761178
– volume: 7
  start-page: 1111
  year: 1987
  ident: 10.1016/j.physd.2011.06.013_br000160
  article-title: On pressure boundary conditions for the incompressible Navier–Stokes equations
  publication-title: Internat. J. Numer. Methods Fluids
  doi: 10.1002/fld.1650071008
– volume: 39
  start-page: 152
  year: 2010
  ident: 10.1016/j.physd.2011.06.013_br000030
  article-title: Simulating flows with moving rigid boundary using immersed-boundary method
  publication-title: Comput. Fluids
  doi: 10.1016/j.compfluid.2009.07.011
– volume: 220
  start-page: 109
  year: 2006
  ident: 10.1016/j.physd.2011.06.013_br000075
  article-title: An immersed interface method for viscous incompressible flows involving rigid and flexible boundaries
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2006.05.004
– volume: 59
  start-page: 308
  year: 1985
  ident: 10.1016/j.physd.2011.06.013_br000055
  article-title: Application of a fractional-step method to incompressible Navier–Stokes equations
  publication-title: J. Comput. Phys.
  doi: 10.1016/0021-9991(85)90148-2
– volume: 226
  start-page: 1607
  year: 2007
  ident: 10.1016/j.physd.2011.06.013_br000150
  article-title: A novel immersed boundary velocity correction-lattice Boltzmann method and its application to simulate flow past a circular cylinder
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2007.06.002
– volume: 222
  start-page: 28
  year: 2007
  ident: 10.1016/j.physd.2011.06.013_br000130
  article-title: Fictitious boundary and moving mesh methods for the numerical simulation of rigid particulate flows
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2006.06.002
– volume: 227
  start-page: 5045
  year: 2008
  ident: 10.1016/j.physd.2011.06.013_br000045
  article-title: The immersed interface method for simulating prescribed motion of rigid objects in an incompressible viscous flow
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2008.01.053
– volume: 55
  start-page: 1461
  year: 2008
  ident: 10.1016/j.physd.2011.06.013_br000115
  article-title: Simulation of moving particles in 3D with the lattice Boltzmann method
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2007.08.022
– volume: 14
  start-page: 4012
  year: 2002
  ident: 10.1016/j.physd.2011.06.013_br000110
  article-title: Particle imaging velocimetry experiments and lattice–Boltzmann simulations on a single sphere settling under gravity
  publication-title: Phys. Fluids
  doi: 10.1063/1.1512918
– volume: 79
  start-page: 231
  year: 1977
  ident: 10.1016/j.physd.2011.06.013_br000165
  article-title: Experimental determination of the main features of the viscous flow in the wake of a circular cylinder in uniform translation, part 1, steady flow
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112077000135
– volume: 169
  start-page: 363
  year: 2001
  ident: 10.1016/j.physd.2011.06.013_br000120
  article-title: A fictitious domain approach to the direct numerical simulation of incompressible viscous flow past moving rigid bodies: application to particulate flow
  publication-title: J. Comput. Phys.
  doi: 10.1006/jcph.2000.6542
– volume: 25
  start-page: 832
  year: 2003
  ident: 10.1016/j.physd.2011.06.013_br000070
  article-title: An immersed interface method for the incompressible Navier–Stokes equations
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/S1064827502414060
– volume: 229
  start-page: 2479
  year: 2010
  ident: 10.1016/j.physd.2011.06.013_br000065
  article-title: On the accuracy of direct forcing immersed boundary methods with projection methods
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2009.10.027
– year: 1965
  ident: 10.1016/j.physd.2011.06.013_br000180
– volume: 228
  start-page: 2616
  year: 2009
  ident: 10.1016/j.physd.2011.06.013_br000080
  article-title: A well-conditioned augmented system for solving Navier–Stokes equations in irregular domains
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2008.12.028
– volume: 11
  start-page: 479
  year: 2002
  ident: 10.1016/j.physd.2011.06.013_br000010
  article-title: The immersed boundary method
  publication-title: Acta Numer.
  doi: 10.1017/S0962492902000077
– volume: 2
  start-page: 64
  year: 1968
  ident: 10.1016/j.physd.2011.06.013_br000050
  article-title: Numerical solution of incompressible flow problems
  publication-title: Stud. Numerical Analysis
– ident: 10.1016/j.physd.2011.06.013_br000090
  doi: 10.2514/6.1997-196
– volume: 147
  start-page: 60
  year: 1998
  ident: 10.1016/j.physd.2011.06.013_br000095
  article-title: A Cartesian grid embedded boundary method for Poisson’s equation on irregular domains
  publication-title: J. Comput. Phys.
  doi: 10.1006/jcph.1998.5965
– volume: 156
  start-page: 209
  year: 1999
  ident: 10.1016/j.physd.2011.06.013_br000105
  article-title: An accurate Cartesian grid method for viscous incompressible flows with complex immersed boundaries
  publication-title: J. Comput. Phys.
  doi: 10.1006/jcph.1999.6356
– volume: 204
  start-page: 157
  year: 2005
  ident: 10.1016/j.physd.2011.06.013_br000170
  article-title: A high-order immersed interface method for simulating unsteady incompressible flows on irregular domains
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2004.09.017
– volume: 161
  start-page: 35
  year: 2000
  ident: 10.1016/j.physd.2011.06.013_br000020
  article-title: Combined immersed-boundary finite-difference methods for three-dimensional complex flow simulations
  publication-title: J. Comput. Phys.
  doi: 10.1006/jcph.2000.6484
– ident: 10.1016/j.physd.2011.06.013_br000175
– volume: 25
  start-page: 220
  year: 1977
  ident: 10.1016/j.physd.2011.06.013_br000005
  article-title: Numerical analysis of blood flow in the heart
  publication-title: J. Comput. Phys.
  doi: 10.1016/0021-9991(77)90100-0
– volume: 181
  start-page: 260
  year: 2002
  ident: 10.1016/j.physd.2011.06.013_br000125
  article-title: Direct simulation of the motion of neutrally buoyant circular cylinders in plane poiseuille flow
  publication-title: J. Comput. Phys.
  doi: 10.1006/jcph.2002.7123
SSID ssj0001737
Score 1.9976611
Snippet We present a class of numerical algorithms for simulating viscous fluid problems of incompressible flow interacting with moving rigid structures. The proposed...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 1583
SubjectTerms Cartesian grid
Direct forcing
Immersed boundary method
Incompressible Navier–Stokes equations
MAC scheme
Moving rigid structures
Title A class of Cartesian grid embedded boundary algorithms for incompressible flow with time-varying complex geometries
URI https://dx.doi.org/10.1016/j.physd.2011.06.013
Volume 240
WOSCitedRecordID wos000297455200004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-8022
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001737
  issn: 0167-2789
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwELZgA2k8IBigjQHyA28hVWI3cfxYTUMMTdMkhtS3KPGP0tEmVdJ15b_nHDs_pk0TIPESVVHdpr7Pd19Pd98h9JFQFqlAcz9WMvKNopyfBQLOVTxmmoQiSLJGZ_aMnZ8n0ym_cDnduhknwIoi2W756r-aGu6BsU3r7F-Yu_tQuAGvwehwBbPD9Y8MP_GEYcS28aoCJmmO8KyaS08tcwV-BihnM0up-uVli1lZzdc_rCqDZ5QalrYy1jRU6UV54xK186XyN7DCteiuFmrrzVS5bOZx1UOGe2ENP-pLiV2tz1npgqQd7_Wz3DS89bRSdoB3m3twxW997uFuU4zNUYLvNQ22NsRYv5owcLwBueV4iRVqcggjwcCPhpEdb-NiMnAucq-_t6mHq5FJA0knyBqPgpD24a0rOvxmHsw8l1HJC2MyfYx2CYs4uPPdyenJ9GsXwUNmtVbbH9KqVTV1gXe-6n5GM2Aply_Qc_f3Ak8sLF6iR6rYR88GopP76Km1UP0K1RPcQAWXGndQwQYquIUKbqGCe6hggAq-DRVsoIINVPAQKthBBfdQeY2-fz65PP7iuyEcvgB2s_blOJcaSH4iOI9kkmdJGGmaAa8OMsa0CFQchXmihWZxrnhEIhpzqjjQ7lxQKukbtFOUhTpAmIhQKSKVUEAqmeC51sD_45wnkvGAjw8RaTcyFU6h3gxKWaRtKeJV2ux-anY_NQWZIT1En7pFKyvQ8vDb49ZCqeOYljumAKmHFr7914VHaK8_Ou_Qzrq6Vu_RE7FZz-vqg4PebyGXpGA
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+class+of+Cartesian+grid+embedded+boundary+algorithms+for+incompressible+flow+with+time-varying+complex+geometries&rft.jtitle=Physica.+D&rft.au=Lee%2C+Long&rft.au=Vankova%2C+Irena&rft.date=2011-10-01&rft.pub=Elsevier+B.V&rft.issn=0167-2789&rft.eissn=1872-8022&rft.volume=240&rft.issue=20&rft.spage=1583&rft.epage=1592&rft_id=info:doi/10.1016%2Fj.physd.2011.06.013&rft.externalDocID=S016727891100162X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-2789&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-2789&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-2789&client=summon