Enhancing lane changing trajectory prediction on highways: A heuristic attention-based encoder-decoder model
Accurate prediction of lane changing (LC) trajectories plays a vital role in ensuring safe and efficient traffic flow on highways. This paper proposes a LC trajectory prediction model based on encoder-decoder architecture to address low long-term prediction accuracy problem and to gain insight into...
Saved in:
| Published in: | Physica A Vol. 639; p. 129696 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier B.V
01.04.2024
|
| Subjects: | |
| ISSN: | 0378-4371, 1873-2119 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Accurate prediction of lane changing (LC) trajectories plays a vital role in ensuring safe and efficient traffic flow on highways. This paper proposes a LC trajectory prediction model based on encoder-decoder architecture to address low long-term prediction accuracy problem and to gain insight into the underlying motivations of LC behavior. Three specific enhancements were proposed to improve the performance of encoder-decoder. The first enhancement involves the utilization of Neighborhood Component Analysis (NCA) to identify the most relevant input features from driving environment. The second enhancement involves the introduction of heuristic attention to capture intricate time-dependent and environment-dependent patterns of input data. Finally, a trajectory check module was proposed to supervise and adjust the prediction outputs based on vehicle dynamics constraints. The proposed model was trained and evaluated using the HighD dataset. Experimental results demonstrated that the proposed model outperforms improved encoder-decoder architectures designed by previous studies in terms of prediction accuracy in long-term prediction, which the lateral and longitude MAE were 0.041 m and 1.842 m in 5 s prediction duration, respectively. Additionally, it was observed that preceding vehicles in the current and target lane, and following vehicle in the target lane, exert a significantly influential effect on LC maneuvers, which represents the underlying motivations behind LC behavior. The findings of this study contribute to the advancement of intelligent transportation systems (ITS) and autonomous vehicles (AVs) by providing an effective LC trajectory prediction.
•Neighborhood Component Analysis is employed to identifying and analyzing crucial features and motivations of LC behavior.•An encoder-decoder architecture coupled with time-dependent and environment-dependent attention mechanism can predict the future trajectory accurately in lateral and longitudinal direction.•Trajectory check module can guarantee the rationality of prediction outputs and adjust those unreasonable prediction. |
|---|---|
| AbstractList | Accurate prediction of lane changing (LC) trajectories plays a vital role in ensuring safe and efficient traffic flow on highways. This paper proposes a LC trajectory prediction model based on encoder-decoder architecture to address low long-term prediction accuracy problem and to gain insight into the underlying motivations of LC behavior. Three specific enhancements were proposed to improve the performance of encoder-decoder. The first enhancement involves the utilization of Neighborhood Component Analysis (NCA) to identify the most relevant input features from driving environment. The second enhancement involves the introduction of heuristic attention to capture intricate time-dependent and environment-dependent patterns of input data. Finally, a trajectory check module was proposed to supervise and adjust the prediction outputs based on vehicle dynamics constraints. The proposed model was trained and evaluated using the HighD dataset. Experimental results demonstrated that the proposed model outperforms improved encoder-decoder architectures designed by previous studies in terms of prediction accuracy in long-term prediction, which the lateral and longitude MAE were 0.041 m and 1.842 m in 5 s prediction duration, respectively. Additionally, it was observed that preceding vehicles in the current and target lane, and following vehicle in the target lane, exert a significantly influential effect on LC maneuvers, which represents the underlying motivations behind LC behavior. The findings of this study contribute to the advancement of intelligent transportation systems (ITS) and autonomous vehicles (AVs) by providing an effective LC trajectory prediction.
•Neighborhood Component Analysis is employed to identifying and analyzing crucial features and motivations of LC behavior.•An encoder-decoder architecture coupled with time-dependent and environment-dependent attention mechanism can predict the future trajectory accurately in lateral and longitudinal direction.•Trajectory check module can guarantee the rationality of prediction outputs and adjust those unreasonable prediction. |
| ArticleNumber | 129696 |
| Author | Bo, Peng Chen, Yili Li, Keping Chen, Yingda Xiao, Xue |
| Author_xml | – sequence: 1 givenname: Xue surname: Xiao fullname: Xiao, Xue organization: The Key Laboratory of Road and Traffic Engineering, Ministry of Education, Tongji University, Shanghai 201804, China – sequence: 2 givenname: Peng surname: Bo fullname: Bo, Peng organization: Transportation College, Jilin University, Changchun 130012, China – sequence: 3 givenname: Yingda surname: Chen fullname: Chen, Yingda email: chenyd@tongji.edu.cn organization: The Key Laboratory of Road and Traffic Engineering, Ministry of Education, Tongji University, Shanghai 201804, China – sequence: 4 givenname: Yili surname: Chen fullname: Chen, Yili organization: PTV Software Technology (Shanghai) Co., Ltd., Shanghai 200001, China – sequence: 5 givenname: Keping surname: Li fullname: Li, Keping organization: The Key Laboratory of Road and Traffic Engineering, Ministry of Education, Tongji University, Shanghai 201804, China |
| BookMark | eNqFkE1qwzAQRkVJoUnaE3SjC9iVLMe2Cl2EkP5AoJvshSyNYxlHDpLa4ttXTrrqooVhhg_mDcxboJkdLCB0T0lKCS0euvTUjl6mGcnylGa84MUVmtOqZElGKZ-hOWFlleSspDdo4X1HCKEly-ao39pWWmXsAffSAlYxHaYUnOxAhcGN-ORAGxXMYHGs1hzaLzn6R7zGLXw444NRWIYAdlpJaulBY7Bq0OASDeeJj7H3t-i6kb2Hu5-5RPvn7X7zmuzeX942612iGGEhUVDlUNC8qqlmZZkr4ESDzpnMV7CqZQG6UqyuGslUUwHllBOqG814XfKGsyVil7PKDd47aMTJmaN0o6BETL5EJ86-xORLXHxFiv-ilAlyeimqMP0_7NOFhfjVpwEnvDJRQfTmokShB_Mn_w1swI1K |
| CitedBy_id | crossref_primary_10_1016_j_physa_2024_130158 crossref_primary_10_1109_TITS_2024_3458439 |
| Cites_doi | 10.1145/2347736.2347755 10.1109/MITS.2021.3049404 10.1177/0278364920917446 10.1109/TITS.2014.2331758 10.1109/ACCESS.2019.2907000 10.1177/03611981211028624 10.1016/j.trc.2019.07.002 10.1109/TVT.2021.3076473 10.1162/neco.1997.9.8.1735 10.1016/j.trc.2018.06.007 10.1109/LRA.2020.2974393 10.1016/j.apergo.2015.03.017 10.1109/TITS.2015.2498841 10.1016/j.trc.2019.05.021 10.1007/BF00114844 10.1109/TIV.2022.3167103 10.1016/j.trc.2018.01.016 |
| ContentType | Journal Article |
| Copyright | 2024 Elsevier B.V. |
| Copyright_xml | – notice: 2024 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.physa.2024.129696 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| EISSN | 1873-2119 |
| ExternalDocumentID | 10_1016_j_physa_2024_129696 S037843712400205X |
| GroupedDBID | --K --M -DZ -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 7-5 71M 8P~ 9JN 9JO AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAPFB AAQFI AAXUO ABAOU ABMAC ABNEU ABYKQ ACAZW ACDAQ ACFVG ACGFS ACNCT ACRLP ADBBV ADEZE ADFHU ADGUI AEBSH AEKER AEYQN AFFNX AFKWA AFTJW AGHFR AGTHC AGUBO AGYEJ AHHHB AIEXJ AIGVJ AIIAU AIKHN AITUG AIVDX AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ARUGR AXJTR AXLSJ BKOJK BLXMC EBS EFJIC EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE IXIXF J1W K-O KOM MHUIS MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SPD SSB SSF SSQ SSW SSZ T5K TN5 TWZ WH7 XPP YNT ZMT ~02 ~G- 29O 5VS 6TJ 9DU AAFFL AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABJNI ABWVN ABXDB ACLOT ACNNM ACROA ACRPL ADMUD ADNMO ADVLN AEIPS AFJKZ AFODL AGQPQ AIIUN AJWLA ANKPU APXCP ASPBG AVWKF AZFZN BBWZM BEHZQ BEZPJ BGSCR BNTGB BPUDD BULVW BZJEE CITATION EFKBS EFLBG EJD FEDTE FGOYB HMV HVGLF HZ~ M38 M41 MVM NDZJH R2- SPG VOH WUQ XOL YYP ZY4 ~HD |
| ID | FETCH-LOGICAL-c303t-ce84e6148b1d3774ce90ded43a45e5ba6ed8c3b8fa3cf8e191901dfd39b79f93 |
| ISICitedReferencesCount | 3 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001216158900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0378-4371 |
| IngestDate | Sat Nov 29 02:48:13 EST 2025 Tue Nov 18 21:53:35 EST 2025 Sat Apr 13 16:39:23 EDT 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Highway environment with heterogeneous traffic flow Lane changing motivations Lane changing trajectory prediction Heuristic attention-based encoder-decoder model |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c303t-ce84e6148b1d3774ce90ded43a45e5ba6ed8c3b8fa3cf8e191901dfd39b79f93 |
| ParticipantIDs | crossref_primary_10_1016_j_physa_2024_129696 crossref_citationtrail_10_1016_j_physa_2024_129696 elsevier_sciencedirect_doi_10_1016_j_physa_2024_129696 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-04-01 2024-04-00 |
| PublicationDateYYYYMMDD | 2024-04-01 |
| PublicationDate_xml | – month: 04 year: 2024 text: 2024-04-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Physica A |
| PublicationYear | 2024 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Khakzar, Bond, Rakotonirainy, Trespalacios, Dehkordi (bib25) 2021; 157 Peng, Guo, Fu, Yuan, Wang (bib10) 2015; 50 Kalair, Connaughton (bib28) 2021; 127 Tang, Salakhutdinov (bib22) 2019; 32 Wei, Hui, Yang, Jia, Khattak (bib19) 2022; 140 Chandra, Bhattacharya, Bera, Manocha (bib24) 2019 Insurance Information Institute, Facts + statistics: Highway safety, 2022, https://www.iii.org/fact-statistic/facts-statistics-highway-safety. Reid, Houts, Cammarata, Mills, Agarwal, Vora, Pandey (bib43) 2019; 1906 Sutskever, Vinyals, Le (bib36) 2014; 27 I. Goodfellow, Y. Bengio, A. Courville, Deep Learning, MIT press, (2016). Goldberger, Hinton, Roweis (bib33) 2004; 17 Hochreiter, Schmidhuber (bib37) 1997; 9 Kanayama, Hartman (bib5) 1997; 16 Choi, Curry, Elkaim (bib3) 2008; 27 Rudenko, Palmieri, Herman, Kitani, Gavrila, Arras (bib26) 2020; 39 Huang, Du, Yang, Zhou, Zhang, Chen (bib2) 2022; 7 Xie, Fang, Jia, He (bib16) 2019; 106 Ding, Wang, Wang, Baumann (bib9) 2013; 2013 Qiao, Shen, Wang, Han, Zhu (bib14) 2015; 16 Chen, Liu, Li, Wang, Lu (bib17) 2021; 2675 Zeng, Yu, Xiong, Zhao, Zhang, Li, Fu, Yao, Zhou (bib7) 2019 Qin, Song, Chen, Cheng, Jiang, Cottrell (bib13) 2017; 1704 Cho, Merrienboer, Gulcehre, Bahdanau, Bougares, Schwenk, Bengio (bib21) 2014; 1406 Bergstra, Bengio (bib41) 2012; 13 C. Olah. Understanding lstm Networks, 2015, http://colah.github.io/posts/2015-08-Understanding-LSTMs/. Yang, Shiyu, Wen, Jin Peter, Ran (bib6) 2018; 95 Izquierdo, Parra, Muñoz-Bulnes, Fernández-Llorca, Sotelo (bib11) 2017 Domingos (bib42) 2012; 55 Chen, Zhang, Zhang (bib29) 2016; 2596 Shou, Wang, Han, Liu, Tiwari, Di (bib45) 2020 Zhang, Qi, Sun (bib15) 2019; 104 Ridel, Deo, Wolf, Trivedi (bib23) 2022; 5 Virdi, Narayan, Kumari, Mathew (bib31) 2016 Lin, Li, Bi, Qin (bib20) 2021; 14 Werling, Ziegler, Kammel, Thrun (bib4) 2010 Vaswani, Shazeer, Parmar, Uszkoreit, Jones, Aidan, Kaiser, Polosukhin (bib34) 2017; 30 Dai (bib18) 2019; 7 Wang, Zhang, Zhang, Chen, Wu (bib30) 2018; 94 González, Pérez, Milanés, Nashashibi (bib38) 2015; 17 Ghazal (bib32) 2021; 69 Yu, Tseng, Langari (bib39) 2018; 88 Ester, Kriegel, Sander, Wei (bib27) 1996 Lin, Li, Bi, Qin (bib35) 2021; 14 Elman (bib12) 1991; 7 Huang, Huang, Hang (bib8) 2021; 70 Hochreiter (10.1016/j.physa.2024.129696_bib37) 1997; 9 Shou (10.1016/j.physa.2024.129696_bib45) 2020 Kanayama (10.1016/j.physa.2024.129696_bib5) 1997; 16 Khakzar (10.1016/j.physa.2024.129696_bib25) 2021; 157 Zeng (10.1016/j.physa.2024.129696_bib7) 2019 Cho (10.1016/j.physa.2024.129696_bib21) 2014; 1406 Peng (10.1016/j.physa.2024.129696_bib10) 2015; 50 Tang (10.1016/j.physa.2024.129696_bib22) 2019; 32 Ding (10.1016/j.physa.2024.129696_bib9) 2013; 2013 Ghazal (10.1016/j.physa.2024.129696_bib32) 2021; 69 González (10.1016/j.physa.2024.129696_bib38) 2015; 17 Elman (10.1016/j.physa.2024.129696_bib12) 1991; 7 Kalair (10.1016/j.physa.2024.129696_bib28) 2021; 127 Goldberger (10.1016/j.physa.2024.129696_bib33) 2004; 17 Dai (10.1016/j.physa.2024.129696_bib18) 2019; 7 Rudenko (10.1016/j.physa.2024.129696_bib26) 2020; 39 Virdi (10.1016/j.physa.2024.129696_bib31) 2016 Werling (10.1016/j.physa.2024.129696_bib4) 2010 Lin (10.1016/j.physa.2024.129696_bib20) 2021; 14 Qin (10.1016/j.physa.2024.129696_bib13) 2017; 1704 Lin (10.1016/j.physa.2024.129696_bib35) 2021; 14 Ridel (10.1016/j.physa.2024.129696_bib23) 2022; 5 10.1016/j.physa.2024.129696_bib44 10.1016/j.physa.2024.129696_bib40 Qiao (10.1016/j.physa.2024.129696_bib14) 2015; 16 Wang (10.1016/j.physa.2024.129696_bib30) 2018; 94 Vaswani (10.1016/j.physa.2024.129696_bib34) 2017; 30 10.1016/j.physa.2024.129696_bib1 Bergstra (10.1016/j.physa.2024.129696_bib41) 2012; 13 Choi (10.1016/j.physa.2024.129696_bib3) 2008; 27 Zhang (10.1016/j.physa.2024.129696_bib15) 2019; 104 Ester (10.1016/j.physa.2024.129696_bib27) 1996 Yu (10.1016/j.physa.2024.129696_bib39) 2018; 88 Huang (10.1016/j.physa.2024.129696_bib8) 2021; 70 Domingos (10.1016/j.physa.2024.129696_bib42) 2012; 55 Reid (10.1016/j.physa.2024.129696_bib43) 2019; 1906 Huang (10.1016/j.physa.2024.129696_bib2) 2022; 7 Xie (10.1016/j.physa.2024.129696_bib16) 2019; 106 Izquierdo (10.1016/j.physa.2024.129696_bib11) 2017 Yang (10.1016/j.physa.2024.129696_bib6) 2018; 95 Chen (10.1016/j.physa.2024.129696_bib17) 2021; 2675 Wei (10.1016/j.physa.2024.129696_bib19) 2022; 140 Sutskever (10.1016/j.physa.2024.129696_bib36) 2014; 27 Chandra (10.1016/j.physa.2024.129696_bib24) 2019 Chen (10.1016/j.physa.2024.129696_bib29) 2016; 2596 |
| References_xml | – volume: 14 start-page: 197 year: 2021 end-page: 208 ident: bib35 article-title: Vehicle trajectory prediction using LSTMs with spatial-temporal attention mechanisms publication-title: IEEE Intell. Transp. Syst. Mag. – volume: 32 start-page: 15424 year: 2019 end-page: 15434 ident: bib22 article-title: Multiple futures predictions publication-title: Adv. Neural Inf. Process. Syst. – volume: 30 start-page: 1 year: 2017 end-page: 11 ident: bib34 article-title: Attention is all you need publication-title: Adv. Neural Inf. Process. Syst. – reference: Insurance Information Institute, Facts + statistics: Highway safety, 2022, https://www.iii.org/fact-statistic/facts-statistics-highway-safety. – volume: 70 start-page: 5511 year: 2021 end-page: 5523 ident: bib8 article-title: Personalized trajectory planning and control of lane-change maneuvers for autonomous driving publication-title: IEEE Trans. Veh. Technol. – volume: 5 start-page: 2816 year: 2022 end-page: 2823 ident: bib23 article-title: Scene compliant trajectory forecast with agent-centric spatio-temporal grids publication-title: IEEE Robot. Autom. Lett. – volume: 55 start-page: 78 year: 2012 end-page: 87 ident: bib42 article-title: A few useful things to know about machine learning publication-title: Commun. ACM – start-page: 1 year: 2016 end-page: 5 ident: bib31 article-title: Discrete wavelet packet-based elbow movement classification using fine Gaussian SVM publication-title: Proc. 2016 IEEE 1st Int. Conf. Power Electron., Intell. Control Energy Syst. – volume: 127 start-page: 1 year: 2021 end-page: 23 ident: bib28 article-title: Anomaly detection and classification in traffic flow data from fluctuations in the flow-density relationship publication-title: Transp. Res. Part C – volume: 88 start-page: 140 year: 2018 end-page: 158 ident: bib39 article-title: A human-like game theory-based controller for automatic lane changing publication-title: Transp. Res. Part C – volume: 69 start-page: 191 year: 2021 end-page: 203 ident: bib32 article-title: Hep-pred: hepatitis C staging prediction using fine gaussian SVM publication-title: Comput. Mater. Contin. – volume: 17 start-page: 1135 year: 2015 end-page: 1145 ident: bib38 article-title: A review of motion planning techniques for automated vehicles publication-title: IEEE Trans. Intell. Transp. Syst. – volume: 16 start-page: 263 year: 1997 end-page: 284 ident: bib5 article-title: Smooth local path planning for autonomous vehicles publication-title: Ind. Robot – volume: 2013 start-page: 1 year: 2013 end-page: 8 ident: bib9 article-title: A neural network model for driver’s lane-changing trajectory prediction in urban traffic flow publication-title: Math. Probl. Eng. – volume: 39 start-page: 895 year: 2020 end-page: 935 ident: bib26 article-title: Human motion trajectory prediction: a survey publication-title: Int. J. Robot. Res. – volume: 9 start-page: 1735 year: 1997 end-page: 1780 ident: bib37 article-title: Long short-term memory publication-title: Neural Comput. – volume: 104 start-page: 287 year: 2019 end-page: 304 ident: bib15 article-title: Simultaneous modeling of car-following and lane-changing behavior using deep learning publication-title: Transp. Res. Part C – volume: 13 start-page: 281 year: 2012 end-page: 315 ident: bib41 article-title: Random search for hyper-parameter optimization publication-title: JMLR – volume: 1906 start-page: 01061 year: 2019 ident: bib43 article-title: Localization requirements for autonomous vehicles publication-title: arXiv Prepr. arXiv – start-page: 987 year: 2010 end-page: 993 ident: bib4 article-title: Optimal Trajectory Generation for Dynamic Street Scenarios in a Frenét Frame – volume: 50 start-page: 207 year: 2015 end-page: 217 ident: bib10 article-title: Multi-parameter prediction of drivers’ lane-changing behavior with neural network model publication-title: Appl. Ergon. – start-page: 486 year: 2019 end-page: 493 ident: bib7 article-title: A novel robust lane change trajectory planning method for autonomous vehicle publication-title: IEEE Intell. Veh. Symp. – start-page: 1 year: 2017 end-page: 6 ident: bib11 article-title: Vehicle Trajectory and Lane Change Prediction Using ANN and SVM Classifiers – volume: 14 start-page: 197 year: 2021 end-page: 208 ident: bib20 article-title: Vehicle trajectory prediction using LSTMs with spatial-temporal attention mechanisms publication-title: IEEE Intell. Transp. Syst. Mag. – volume: 27 start-page: 1 year: 2014 end-page: 9 ident: bib36 article-title: Sequence to sequence learning with neural networks publication-title: Proc. Annu. Conf. Neural Inf. Process. Syst. – volume: 16 start-page: 284 year: 2015 end-page: 296 ident: bib14 article-title: A self-adaptive parameter selection trajectory prediction approach via hidden Markov models publication-title: IEEE Trans. Intell. Transp. Syst. – volume: 2675 start-page: 186 year: 2021 end-page: 200 ident: bib17 article-title: Modeling anticipation and relaxation of lane changing behavior using deep learning publication-title: Transp. Res. Rec. – volume: 17 start-page: 1 year: 2004 end-page: 8 ident: bib33 article-title: Neighborhood components analysis publication-title: Adv. Neural Inf. Process. Syst. – volume: 7 start-page: 195 year: 1991 end-page: 225 ident: bib12 article-title: Distributed representations, simple recurrent networks, and grammatical structure publication-title: Mach. Learn. – volume: 140 start-page: 1 year: 2022 end-page: 24 ident: bib19 article-title: Fine-grained highway autonomous vehicle lane-changing trajectory prediction based on a heuristic attention-aided encoder-decoder model publication-title: Transp. Res. Part C – volume: 106 start-page: 41 year: 2019 end-page: 60 ident: bib16 article-title: A data-driven lane-changing model based on deep learning publication-title: Transp. Res. Part C – volume: 1406 start-page: 1078 year: 2014 ident: bib21 article-title: Learning phrase representations using RNN encoder-decoder for statistical machine translation publication-title: arXiv Prepr. arXiv – volume: 7 start-page: 652 year: 2022 end-page: 674 ident: bib2 article-title: A survey on trajectory-prediction methods for autonomous driving publication-title: IEEE T. Intell. Veh. – volume: 95 start-page: 228 year: 2018 end-page: 247 ident: bib6 article-title: A dynamic lane-changing trajectory planning model for automated vehicles publication-title: Transp. Res. Part C – volume: 157 start-page: 1 year: 2021 end-page: 13 ident: bib25 article-title: Driver influence on vehicle trajectory prediction publication-title: Accid. Anal. Prev. – reference: I. Goodfellow, Y. Bengio, A. Courville, Deep Learning, MIT press, (2016). – volume: 2596 start-page: 56 year: 2016 end-page: 64 ident: bib29 article-title: Density peaks clustering-based approach to identifying urban traffic congestion patterns publication-title: Transp. Res. Rec. – volume: 27 start-page: 158 year: 2008 end-page: 166 ident: bib3 article-title: Path planning based on Bézier curve for autonomous ground vehicles publication-title: A Adv. Electr. Electron. Eng. – volume: 7 start-page: 38287 year: 2019 end-page: 38296 ident: bib18 article-title: Modeling vehicle interactions via modified LSTM models for trajectory prediction publication-title: IEEE Access – start-page: 246 year: 2020 end-page: 252 ident: bib45 article-title: Long-term prediction of lane change maneuver through a multilayer perceptron publication-title: IEEE Intell. Veh. Symp. – volume: 1704 start-page: 02971 year: 2017 ident: bib13 article-title: A dual-stage attention-based recurrent neural network for time series prediction publication-title: arXiv Prepr. arXiv – volume: 94 start-page: 13 year: 2018 end-page: 30 ident: bib30 article-title: A clustering-based approach for large-scale urban traffic state estimation publication-title: Transp. Res. Part C – reference: C. Olah. Understanding lstm Networks, 2015, http://colah.github.io/posts/2015-08-Understanding-LSTMs/. – start-page: 8483 year: 2019 end-page: 8492 ident: bib24 article-title: Traphic: trajectory prediction in dense and heterogeneous traffic using weighted interactions publication-title: Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR) – start-page: 226 year: 1996 end-page: 231 ident: bib27 article-title: A density-based algorithm for discovering clusters in large spatial databases with noise publication-title: Inkdd – volume: 94 start-page: 13 year: 2018 ident: 10.1016/j.physa.2024.129696_bib30 article-title: A clustering-based approach for large-scale urban traffic state estimation publication-title: Transp. Res. Part C – volume: 55 start-page: 78 issue: 10 year: 2012 ident: 10.1016/j.physa.2024.129696_bib42 article-title: A few useful things to know about machine learning publication-title: Commun. ACM doi: 10.1145/2347736.2347755 – ident: 10.1016/j.physa.2024.129696_bib44 – volume: 32 start-page: 15424 year: 2019 ident: 10.1016/j.physa.2024.129696_bib22 article-title: Multiple futures predictions publication-title: Adv. Neural Inf. Process. Syst. – volume: 2013 start-page: 1 year: 2013 ident: 10.1016/j.physa.2024.129696_bib9 article-title: A neural network model for driver’s lane-changing trajectory prediction in urban traffic flow publication-title: Math. Probl. Eng. – volume: 16 start-page: 263 issue: 3 year: 1997 ident: 10.1016/j.physa.2024.129696_bib5 article-title: Smooth local path planning for autonomous vehicles publication-title: Ind. Robot – volume: 127 start-page: 1 issue: 103178 year: 2021 ident: 10.1016/j.physa.2024.129696_bib28 article-title: Anomaly detection and classification in traffic flow data from fluctuations in the flow-density relationship publication-title: Transp. Res. Part C – volume: 14 start-page: 197 issue: 2 year: 2021 ident: 10.1016/j.physa.2024.129696_bib20 article-title: Vehicle trajectory prediction using LSTMs with spatial-temporal attention mechanisms publication-title: IEEE Intell. Transp. Syst. Mag. doi: 10.1109/MITS.2021.3049404 – volume: 27 start-page: 1 year: 2014 ident: 10.1016/j.physa.2024.129696_bib36 article-title: Sequence to sequence learning with neural networks publication-title: Proc. Annu. Conf. Neural Inf. Process. Syst. – ident: 10.1016/j.physa.2024.129696_bib1 – volume: 39 start-page: 895 issue: 8 year: 2020 ident: 10.1016/j.physa.2024.129696_bib26 article-title: Human motion trajectory prediction: a survey publication-title: Int. J. Robot. Res. doi: 10.1177/0278364920917446 – volume: 2596 start-page: 56 issue: 1 year: 2016 ident: 10.1016/j.physa.2024.129696_bib29 article-title: Density peaks clustering-based approach to identifying urban traffic congestion patterns publication-title: Transp. Res. Rec. – start-page: 1 year: 2016 ident: 10.1016/j.physa.2024.129696_bib31 article-title: Discrete wavelet packet-based elbow movement classification using fine Gaussian SVM publication-title: Proc. 2016 IEEE 1st Int. Conf. Power Electron., Intell. Control Energy Syst. – volume: 140 start-page: 1 issue: 103706 year: 2022 ident: 10.1016/j.physa.2024.129696_bib19 article-title: Fine-grained highway autonomous vehicle lane-changing trajectory prediction based on a heuristic attention-aided encoder-decoder model publication-title: Transp. Res. Part C – volume: 16 start-page: 284 issue: 1 year: 2015 ident: 10.1016/j.physa.2024.129696_bib14 article-title: A self-adaptive parameter selection trajectory prediction approach via hidden Markov models publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2014.2331758 – start-page: 8483 year: 2019 ident: 10.1016/j.physa.2024.129696_bib24 article-title: Traphic: trajectory prediction in dense and heterogeneous traffic using weighted interactions – volume: 7 start-page: 38287 year: 2019 ident: 10.1016/j.physa.2024.129696_bib18 article-title: Modeling vehicle interactions via modified LSTM models for trajectory prediction publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2907000 – volume: 1906 start-page: 01061 year: 2019 ident: 10.1016/j.physa.2024.129696_bib43 article-title: Localization requirements for autonomous vehicles publication-title: arXiv Prepr. arXiv – volume: 2675 start-page: 186 issue: 12 year: 2021 ident: 10.1016/j.physa.2024.129696_bib17 article-title: Modeling anticipation and relaxation of lane changing behavior using deep learning publication-title: Transp. Res. Rec. doi: 10.1177/03611981211028624 – volume: 106 start-page: 41 year: 2019 ident: 10.1016/j.physa.2024.129696_bib16 article-title: A data-driven lane-changing model based on deep learning publication-title: Transp. Res. Part C doi: 10.1016/j.trc.2019.07.002 – volume: 14 start-page: 197 issue: 2 year: 2021 ident: 10.1016/j.physa.2024.129696_bib35 article-title: Vehicle trajectory prediction using LSTMs with spatial-temporal attention mechanisms publication-title: IEEE Intell. Transp. Syst. Mag. doi: 10.1109/MITS.2021.3049404 – volume: 70 start-page: 5511 issue: 6 year: 2021 ident: 10.1016/j.physa.2024.129696_bib8 article-title: Personalized trajectory planning and control of lane-change maneuvers for autonomous driving publication-title: IEEE Trans. Veh. Technol. doi: 10.1109/TVT.2021.3076473 – volume: 17 start-page: 1 year: 2004 ident: 10.1016/j.physa.2024.129696_bib33 article-title: Neighborhood components analysis publication-title: Adv. Neural Inf. Process. Syst. – volume: 9 start-page: 1735 issue: 8 year: 1997 ident: 10.1016/j.physa.2024.129696_bib37 article-title: Long short-term memory publication-title: Neural Comput. doi: 10.1162/neco.1997.9.8.1735 – volume: 95 start-page: 228 year: 2018 ident: 10.1016/j.physa.2024.129696_bib6 article-title: A dynamic lane-changing trajectory planning model for automated vehicles publication-title: Transp. Res. Part C doi: 10.1016/j.trc.2018.06.007 – volume: 1406 start-page: 1078 year: 2014 ident: 10.1016/j.physa.2024.129696_bib21 article-title: Learning phrase representations using RNN encoder-decoder for statistical machine translation publication-title: arXiv Prepr. arXiv – ident: 10.1016/j.physa.2024.129696_bib40 – volume: 13 start-page: 281 issue: 2 year: 2012 ident: 10.1016/j.physa.2024.129696_bib41 article-title: Random search for hyper-parameter optimization publication-title: JMLR – start-page: 987 year: 2010 ident: 10.1016/j.physa.2024.129696_bib4 – volume: 1704 start-page: 02971 year: 2017 ident: 10.1016/j.physa.2024.129696_bib13 article-title: A dual-stage attention-based recurrent neural network for time series prediction publication-title: arXiv Prepr. arXiv – volume: 30 start-page: 1 year: 2017 ident: 10.1016/j.physa.2024.129696_bib34 article-title: Attention is all you need publication-title: Adv. Neural Inf. Process. Syst. – start-page: 486 year: 2019 ident: 10.1016/j.physa.2024.129696_bib7 article-title: A novel robust lane change trajectory planning method for autonomous vehicle publication-title: IEEE Intell. Veh. Symp. – volume: 5 start-page: 2816 issue: 2 year: 2022 ident: 10.1016/j.physa.2024.129696_bib23 article-title: Scene compliant trajectory forecast with agent-centric spatio-temporal grids publication-title: IEEE Robot. Autom. Lett. doi: 10.1109/LRA.2020.2974393 – volume: 50 start-page: 207 year: 2015 ident: 10.1016/j.physa.2024.129696_bib10 article-title: Multi-parameter prediction of drivers’ lane-changing behavior with neural network model publication-title: Appl. Ergon. doi: 10.1016/j.apergo.2015.03.017 – volume: 17 start-page: 1135 issue: 4 year: 2015 ident: 10.1016/j.physa.2024.129696_bib38 article-title: A review of motion planning techniques for automated vehicles publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2015.2498841 – volume: 104 start-page: 287 year: 2019 ident: 10.1016/j.physa.2024.129696_bib15 article-title: Simultaneous modeling of car-following and lane-changing behavior using deep learning publication-title: Transp. Res. Part C doi: 10.1016/j.trc.2019.05.021 – volume: 7 start-page: 195 year: 1991 ident: 10.1016/j.physa.2024.129696_bib12 article-title: Distributed representations, simple recurrent networks, and grammatical structure publication-title: Mach. Learn. doi: 10.1007/BF00114844 – start-page: 1 year: 2017 ident: 10.1016/j.physa.2024.129696_bib11 – volume: 27 start-page: 158 year: 2008 ident: 10.1016/j.physa.2024.129696_bib3 article-title: Path planning based on Bézier curve for autonomous ground vehicles publication-title: A Adv. Electr. Electron. Eng. – volume: 7 start-page: 652 issue: 3 year: 2022 ident: 10.1016/j.physa.2024.129696_bib2 article-title: A survey on trajectory-prediction methods for autonomous driving publication-title: IEEE T. Intell. Veh. doi: 10.1109/TIV.2022.3167103 – start-page: 246 year: 2020 ident: 10.1016/j.physa.2024.129696_bib45 article-title: Long-term prediction of lane change maneuver through a multilayer perceptron publication-title: IEEE Intell. Veh. Symp. – volume: 69 start-page: 191 issue: 1 year: 2021 ident: 10.1016/j.physa.2024.129696_bib32 article-title: Hep-pred: hepatitis C staging prediction using fine gaussian SVM publication-title: Comput. Mater. Contin. – volume: 88 start-page: 140 year: 2018 ident: 10.1016/j.physa.2024.129696_bib39 article-title: A human-like game theory-based controller for automatic lane changing publication-title: Transp. Res. Part C doi: 10.1016/j.trc.2018.01.016 – volume: 157 start-page: 1 issue: 106165 year: 2021 ident: 10.1016/j.physa.2024.129696_bib25 article-title: Driver influence on vehicle trajectory prediction publication-title: Accid. Anal. Prev. – start-page: 226 year: 1996 ident: 10.1016/j.physa.2024.129696_bib27 article-title: A density-based algorithm for discovering clusters in large spatial databases with noise publication-title: Inkdd |
| SSID | ssj0001732 |
| Score | 2.4458256 |
| Snippet | Accurate prediction of lane changing (LC) trajectories plays a vital role in ensuring safe and efficient traffic flow on highways. This paper proposes a LC... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 129696 |
| SubjectTerms | Heuristic attention-based encoder-decoder model Highway environment with heterogeneous traffic flow Lane changing motivations Lane changing trajectory prediction |
| Title | Enhancing lane changing trajectory prediction on highways: A heuristic attention-based encoder-decoder model |
| URI | https://dx.doi.org/10.1016/j.physa.2024.129696 |
| Volume | 639 |
| WOSCitedRecordID | wos001216158900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-2119 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001732 issn: 0378-4371 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3di9QwEA-6p-CL-Il3npIH384u2ybdJL4tx4qKHAcuUp9Km6TeLkvv2I_j7r93kkk_2JVDBaG0JTRNmfmRTKYzvyHk3ahKtZZxGo3gEvG4KiJVxhy2KnEB9jJA2vMWfP8qzs5klqnz4Mpe-3ICoq7lzY26-q-qhjZQtkud_Qt1ty-FBrgHpcMZ1A7nP1L8tL5wHBr1T-eLtJjZG4pBLLyL_tYRA5g51giHwzMWF7drTFK_sFskbz5xzJs-FjJyS505cZSXxq4iY_0Vi-j0jdtz1HnnHs3mhffEZtvu3_0lRgWHBdMHFuDM9wM-snMPdK3Led8zkfQDWry7bC9lBtO0YNvKGdZdGVqcdaVgkaOa60_LYyQ52pvi0duwGDrPjyOOSvgQbJax2iHU9kv0NzeaG8xFyiajNLtPDhKRKjkgB5PP0-xLu2jHguEPp_B1DUGVDwXcG-r3RkzPMJk9IY_DjoJOEAlPyT1bPyMPURfr52TZ4oE6PNAGD7TDA-3wQOFo8PCBTmiLBrqDBrqDBurR8ILMPk5np5-iUGIj0mC7bCJtJbeOC7aMDYOdgLZqZKzhrOCpTctibI3UrJRVwXQlLWzuwX40lWGqFKpS7CUZ1Je1fUVoxWQp0grkYyxPEyOtsIlxdIalMFyLQ5I0Ist1oJ93VVCWeRNnuMi9nHMn5xzlfEjet52ukH3l7sfHjS7yYECiYZgDeO7qePSvHV-TRx3yj8lgs9raN-SBvt7M16u3AWS_AH0Jl90 |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhancing+lane+changing+trajectory+prediction+on+highways%3A+A+heuristic+attention-based+encoder-decoder+model&rft.jtitle=Physica+A&rft.au=Xiao%2C+Xue&rft.au=Bo%2C+Peng&rft.au=Chen%2C+Yingda&rft.au=Chen%2C+Yili&rft.date=2024-04-01&rft.pub=Elsevier+B.V&rft.issn=0378-4371&rft.eissn=1873-2119&rft.volume=639&rft_id=info:doi/10.1016%2Fj.physa.2024.129696&rft.externalDocID=S037843712400205X |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-4371&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-4371&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-4371&client=summon |