Enhancing lane changing trajectory prediction on highways: A heuristic attention-based encoder-decoder model

Accurate prediction of lane changing (LC) trajectories plays a vital role in ensuring safe and efficient traffic flow on highways. This paper proposes a LC trajectory prediction model based on encoder-decoder architecture to address low long-term prediction accuracy problem and to gain insight into...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Physica A Ročník 639; s. 129696
Hlavní autoři: Xiao, Xue, Bo, Peng, Chen, Yingda, Chen, Yili, Li, Keping
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 01.04.2024
Témata:
ISSN:0378-4371, 1873-2119
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Accurate prediction of lane changing (LC) trajectories plays a vital role in ensuring safe and efficient traffic flow on highways. This paper proposes a LC trajectory prediction model based on encoder-decoder architecture to address low long-term prediction accuracy problem and to gain insight into the underlying motivations of LC behavior. Three specific enhancements were proposed to improve the performance of encoder-decoder. The first enhancement involves the utilization of Neighborhood Component Analysis (NCA) to identify the most relevant input features from driving environment. The second enhancement involves the introduction of heuristic attention to capture intricate time-dependent and environment-dependent patterns of input data. Finally, a trajectory check module was proposed to supervise and adjust the prediction outputs based on vehicle dynamics constraints. The proposed model was trained and evaluated using the HighD dataset. Experimental results demonstrated that the proposed model outperforms improved encoder-decoder architectures designed by previous studies in terms of prediction accuracy in long-term prediction, which the lateral and longitude MAE were 0.041 m and 1.842 m in 5 s prediction duration, respectively. Additionally, it was observed that preceding vehicles in the current and target lane, and following vehicle in the target lane, exert a significantly influential effect on LC maneuvers, which represents the underlying motivations behind LC behavior. The findings of this study contribute to the advancement of intelligent transportation systems (ITS) and autonomous vehicles (AVs) by providing an effective LC trajectory prediction. •Neighborhood Component Analysis is employed to identifying and analyzing crucial features and motivations of LC behavior.•An encoder-decoder architecture coupled with time-dependent and environment-dependent attention mechanism can predict the future trajectory accurately in lateral and longitudinal direction.•Trajectory check module can guarantee the rationality of prediction outputs and adjust those unreasonable prediction.
AbstractList Accurate prediction of lane changing (LC) trajectories plays a vital role in ensuring safe and efficient traffic flow on highways. This paper proposes a LC trajectory prediction model based on encoder-decoder architecture to address low long-term prediction accuracy problem and to gain insight into the underlying motivations of LC behavior. Three specific enhancements were proposed to improve the performance of encoder-decoder. The first enhancement involves the utilization of Neighborhood Component Analysis (NCA) to identify the most relevant input features from driving environment. The second enhancement involves the introduction of heuristic attention to capture intricate time-dependent and environment-dependent patterns of input data. Finally, a trajectory check module was proposed to supervise and adjust the prediction outputs based on vehicle dynamics constraints. The proposed model was trained and evaluated using the HighD dataset. Experimental results demonstrated that the proposed model outperforms improved encoder-decoder architectures designed by previous studies in terms of prediction accuracy in long-term prediction, which the lateral and longitude MAE were 0.041 m and 1.842 m in 5 s prediction duration, respectively. Additionally, it was observed that preceding vehicles in the current and target lane, and following vehicle in the target lane, exert a significantly influential effect on LC maneuvers, which represents the underlying motivations behind LC behavior. The findings of this study contribute to the advancement of intelligent transportation systems (ITS) and autonomous vehicles (AVs) by providing an effective LC trajectory prediction. •Neighborhood Component Analysis is employed to identifying and analyzing crucial features and motivations of LC behavior.•An encoder-decoder architecture coupled with time-dependent and environment-dependent attention mechanism can predict the future trajectory accurately in lateral and longitudinal direction.•Trajectory check module can guarantee the rationality of prediction outputs and adjust those unreasonable prediction.
ArticleNumber 129696
Author Bo, Peng
Chen, Yili
Li, Keping
Chen, Yingda
Xiao, Xue
Author_xml – sequence: 1
  givenname: Xue
  surname: Xiao
  fullname: Xiao, Xue
  organization: The Key Laboratory of Road and Traffic Engineering, Ministry of Education, Tongji University, Shanghai 201804, China
– sequence: 2
  givenname: Peng
  surname: Bo
  fullname: Bo, Peng
  organization: Transportation College, Jilin University, Changchun 130012, China
– sequence: 3
  givenname: Yingda
  surname: Chen
  fullname: Chen, Yingda
  email: chenyd@tongji.edu.cn
  organization: The Key Laboratory of Road and Traffic Engineering, Ministry of Education, Tongji University, Shanghai 201804, China
– sequence: 4
  givenname: Yili
  surname: Chen
  fullname: Chen, Yili
  organization: PTV Software Technology (Shanghai) Co., Ltd., Shanghai 200001, China
– sequence: 5
  givenname: Keping
  surname: Li
  fullname: Li, Keping
  organization: The Key Laboratory of Road and Traffic Engineering, Ministry of Education, Tongji University, Shanghai 201804, China
BookMark eNqFkE1qwzAQRkVJoUnaE3SjC9iVLMe2Cl2EkP5AoJvshSyNYxlHDpLa4ttXTrrqooVhhg_mDcxboJkdLCB0T0lKCS0euvTUjl6mGcnylGa84MUVmtOqZElGKZ-hOWFlleSspDdo4X1HCKEly-ao39pWWmXsAffSAlYxHaYUnOxAhcGN-ORAGxXMYHGs1hzaLzn6R7zGLXw444NRWIYAdlpJaulBY7Bq0OASDeeJj7H3t-i6kb2Hu5-5RPvn7X7zmuzeX942612iGGEhUVDlUNC8qqlmZZkr4ESDzpnMV7CqZQG6UqyuGslUUwHllBOqG814XfKGsyVil7PKDd47aMTJmaN0o6BETL5EJ86-xORLXHxFiv-ilAlyeimqMP0_7NOFhfjVpwEnvDJRQfTmokShB_Mn_w1swI1K
CitedBy_id crossref_primary_10_1016_j_physa_2024_130158
crossref_primary_10_1109_TITS_2024_3458439
Cites_doi 10.1145/2347736.2347755
10.1109/MITS.2021.3049404
10.1177/0278364920917446
10.1109/TITS.2014.2331758
10.1109/ACCESS.2019.2907000
10.1177/03611981211028624
10.1016/j.trc.2019.07.002
10.1109/TVT.2021.3076473
10.1162/neco.1997.9.8.1735
10.1016/j.trc.2018.06.007
10.1109/LRA.2020.2974393
10.1016/j.apergo.2015.03.017
10.1109/TITS.2015.2498841
10.1016/j.trc.2019.05.021
10.1007/BF00114844
10.1109/TIV.2022.3167103
10.1016/j.trc.2018.01.016
ContentType Journal Article
Copyright 2024 Elsevier B.V.
Copyright_xml – notice: 2024 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.physa.2024.129696
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1873-2119
ExternalDocumentID 10_1016_j_physa_2024_129696
S037843712400205X
GroupedDBID --K
--M
-DZ
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
7-5
71M
8P~
9JN
9JO
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAPFB
AAQFI
AAXUO
ABAOU
ABMAC
ABNEU
ABYKQ
ACAZW
ACDAQ
ACFVG
ACGFS
ACNCT
ACRLP
ADBBV
ADEZE
ADFHU
ADGUI
AEBSH
AEKER
AEYQN
AFFNX
AFKWA
AFTJW
AGHFR
AGTHC
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGVJ
AIIAU
AIKHN
AITUG
AIVDX
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
AXJTR
AXLSJ
BKOJK
BLXMC
EBS
EFJIC
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
IXIXF
J1W
K-O
KOM
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SPD
SSB
SSF
SSQ
SSW
SSZ
T5K
TN5
TWZ
WH7
XPP
YNT
ZMT
~02
~G-
29O
5VS
6TJ
9DU
AAFFL
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABJNI
ABWVN
ABXDB
ACLOT
ACNNM
ACROA
ACRPL
ADMUD
ADNMO
ADVLN
AEIPS
AFJKZ
AFODL
AGQPQ
AIIUN
AJWLA
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BBWZM
BEHZQ
BEZPJ
BGSCR
BNTGB
BPUDD
BULVW
BZJEE
CITATION
EFKBS
EFLBG
EJD
FEDTE
FGOYB
HMV
HVGLF
HZ~
M38
M41
MVM
NDZJH
R2-
SPG
VOH
WUQ
XOL
YYP
ZY4
~HD
ID FETCH-LOGICAL-c303t-ce84e6148b1d3774ce90ded43a45e5ba6ed8c3b8fa3cf8e191901dfd39b79f93
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001216158900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0378-4371
IngestDate Sat Nov 29 02:48:13 EST 2025
Tue Nov 18 21:53:35 EST 2025
Sat Apr 13 16:39:23 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Highway environment with heterogeneous traffic flow
Lane changing motivations
Lane changing trajectory prediction
Heuristic attention-based encoder-decoder model
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c303t-ce84e6148b1d3774ce90ded43a45e5ba6ed8c3b8fa3cf8e191901dfd39b79f93
ParticipantIDs crossref_primary_10_1016_j_physa_2024_129696
crossref_citationtrail_10_1016_j_physa_2024_129696
elsevier_sciencedirect_doi_10_1016_j_physa_2024_129696
PublicationCentury 2000
PublicationDate 2024-04-01
2024-04-00
PublicationDateYYYYMMDD 2024-04-01
PublicationDate_xml – month: 04
  year: 2024
  text: 2024-04-01
  day: 01
PublicationDecade 2020
PublicationTitle Physica A
PublicationYear 2024
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Khakzar, Bond, Rakotonirainy, Trespalacios, Dehkordi (bib25) 2021; 157
Peng, Guo, Fu, Yuan, Wang (bib10) 2015; 50
Kalair, Connaughton (bib28) 2021; 127
Tang, Salakhutdinov (bib22) 2019; 32
Wei, Hui, Yang, Jia, Khattak (bib19) 2022; 140
Chandra, Bhattacharya, Bera, Manocha (bib24) 2019
Insurance Information Institute, Facts + statistics: Highway safety, 2022, https://www.iii.org/fact-statistic/facts-statistics-highway-safety.
Reid, Houts, Cammarata, Mills, Agarwal, Vora, Pandey (bib43) 2019; 1906
Sutskever, Vinyals, Le (bib36) 2014; 27
I. Goodfellow, Y. Bengio, A. Courville, Deep Learning, MIT press, (2016).
Goldberger, Hinton, Roweis (bib33) 2004; 17
Hochreiter, Schmidhuber (bib37) 1997; 9
Kanayama, Hartman (bib5) 1997; 16
Choi, Curry, Elkaim (bib3) 2008; 27
Rudenko, Palmieri, Herman, Kitani, Gavrila, Arras (bib26) 2020; 39
Huang, Du, Yang, Zhou, Zhang, Chen (bib2) 2022; 7
Xie, Fang, Jia, He (bib16) 2019; 106
Ding, Wang, Wang, Baumann (bib9) 2013; 2013
Qiao, Shen, Wang, Han, Zhu (bib14) 2015; 16
Chen, Liu, Li, Wang, Lu (bib17) 2021; 2675
Zeng, Yu, Xiong, Zhao, Zhang, Li, Fu, Yao, Zhou (bib7) 2019
Qin, Song, Chen, Cheng, Jiang, Cottrell (bib13) 2017; 1704
Cho, Merrienboer, Gulcehre, Bahdanau, Bougares, Schwenk, Bengio (bib21) 2014; 1406
Bergstra, Bengio (bib41) 2012; 13
C. Olah. Understanding lstm Networks, 2015, http://colah.github.io/posts/2015-08-Understanding-LSTMs/.
Yang, Shiyu, Wen, Jin Peter, Ran (bib6) 2018; 95
Izquierdo, Parra, Muñoz-Bulnes, Fernández-Llorca, Sotelo (bib11) 2017
Domingos (bib42) 2012; 55
Chen, Zhang, Zhang (bib29) 2016; 2596
Shou, Wang, Han, Liu, Tiwari, Di (bib45) 2020
Zhang, Qi, Sun (bib15) 2019; 104
Ridel, Deo, Wolf, Trivedi (bib23) 2022; 5
Virdi, Narayan, Kumari, Mathew (bib31) 2016
Lin, Li, Bi, Qin (bib20) 2021; 14
Werling, Ziegler, Kammel, Thrun (bib4) 2010
Vaswani, Shazeer, Parmar, Uszkoreit, Jones, Aidan, Kaiser, Polosukhin (bib34) 2017; 30
Dai (bib18) 2019; 7
Wang, Zhang, Zhang, Chen, Wu (bib30) 2018; 94
González, Pérez, Milanés, Nashashibi (bib38) 2015; 17
Ghazal (bib32) 2021; 69
Yu, Tseng, Langari (bib39) 2018; 88
Ester, Kriegel, Sander, Wei (bib27) 1996
Lin, Li, Bi, Qin (bib35) 2021; 14
Elman (bib12) 1991; 7
Huang, Huang, Hang (bib8) 2021; 70
Hochreiter (10.1016/j.physa.2024.129696_bib37) 1997; 9
Shou (10.1016/j.physa.2024.129696_bib45) 2020
Kanayama (10.1016/j.physa.2024.129696_bib5) 1997; 16
Khakzar (10.1016/j.physa.2024.129696_bib25) 2021; 157
Zeng (10.1016/j.physa.2024.129696_bib7) 2019
Cho (10.1016/j.physa.2024.129696_bib21) 2014; 1406
Peng (10.1016/j.physa.2024.129696_bib10) 2015; 50
Tang (10.1016/j.physa.2024.129696_bib22) 2019; 32
Ding (10.1016/j.physa.2024.129696_bib9) 2013; 2013
Ghazal (10.1016/j.physa.2024.129696_bib32) 2021; 69
González (10.1016/j.physa.2024.129696_bib38) 2015; 17
Elman (10.1016/j.physa.2024.129696_bib12) 1991; 7
Kalair (10.1016/j.physa.2024.129696_bib28) 2021; 127
Goldberger (10.1016/j.physa.2024.129696_bib33) 2004; 17
Dai (10.1016/j.physa.2024.129696_bib18) 2019; 7
Rudenko (10.1016/j.physa.2024.129696_bib26) 2020; 39
Virdi (10.1016/j.physa.2024.129696_bib31) 2016
Werling (10.1016/j.physa.2024.129696_bib4) 2010
Lin (10.1016/j.physa.2024.129696_bib20) 2021; 14
Qin (10.1016/j.physa.2024.129696_bib13) 2017; 1704
Lin (10.1016/j.physa.2024.129696_bib35) 2021; 14
Ridel (10.1016/j.physa.2024.129696_bib23) 2022; 5
10.1016/j.physa.2024.129696_bib44
10.1016/j.physa.2024.129696_bib40
Qiao (10.1016/j.physa.2024.129696_bib14) 2015; 16
Wang (10.1016/j.physa.2024.129696_bib30) 2018; 94
Vaswani (10.1016/j.physa.2024.129696_bib34) 2017; 30
10.1016/j.physa.2024.129696_bib1
Bergstra (10.1016/j.physa.2024.129696_bib41) 2012; 13
Choi (10.1016/j.physa.2024.129696_bib3) 2008; 27
Zhang (10.1016/j.physa.2024.129696_bib15) 2019; 104
Ester (10.1016/j.physa.2024.129696_bib27) 1996
Yu (10.1016/j.physa.2024.129696_bib39) 2018; 88
Huang (10.1016/j.physa.2024.129696_bib8) 2021; 70
Domingos (10.1016/j.physa.2024.129696_bib42) 2012; 55
Reid (10.1016/j.physa.2024.129696_bib43) 2019; 1906
Huang (10.1016/j.physa.2024.129696_bib2) 2022; 7
Xie (10.1016/j.physa.2024.129696_bib16) 2019; 106
Izquierdo (10.1016/j.physa.2024.129696_bib11) 2017
Yang (10.1016/j.physa.2024.129696_bib6) 2018; 95
Chen (10.1016/j.physa.2024.129696_bib17) 2021; 2675
Wei (10.1016/j.physa.2024.129696_bib19) 2022; 140
Sutskever (10.1016/j.physa.2024.129696_bib36) 2014; 27
Chandra (10.1016/j.physa.2024.129696_bib24) 2019
Chen (10.1016/j.physa.2024.129696_bib29) 2016; 2596
References_xml – volume: 14
  start-page: 197
  year: 2021
  end-page: 208
  ident: bib35
  article-title: Vehicle trajectory prediction using LSTMs with spatial-temporal attention mechanisms
  publication-title: IEEE Intell. Transp. Syst. Mag.
– volume: 32
  start-page: 15424
  year: 2019
  end-page: 15434
  ident: bib22
  article-title: Multiple futures predictions
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 30
  start-page: 1
  year: 2017
  end-page: 11
  ident: bib34
  article-title: Attention is all you need
  publication-title: Adv. Neural Inf. Process. Syst.
– reference: Insurance Information Institute, Facts + statistics: Highway safety, 2022, https://www.iii.org/fact-statistic/facts-statistics-highway-safety.
– volume: 70
  start-page: 5511
  year: 2021
  end-page: 5523
  ident: bib8
  article-title: Personalized trajectory planning and control of lane-change maneuvers for autonomous driving
  publication-title: IEEE Trans. Veh. Technol.
– volume: 5
  start-page: 2816
  year: 2022
  end-page: 2823
  ident: bib23
  article-title: Scene compliant trajectory forecast with agent-centric spatio-temporal grids
  publication-title: IEEE Robot. Autom. Lett.
– volume: 55
  start-page: 78
  year: 2012
  end-page: 87
  ident: bib42
  article-title: A few useful things to know about machine learning
  publication-title: Commun. ACM
– start-page: 1
  year: 2016
  end-page: 5
  ident: bib31
  article-title: Discrete wavelet packet-based elbow movement classification using fine Gaussian SVM
  publication-title: Proc. 2016 IEEE 1st Int. Conf. Power Electron., Intell. Control Energy Syst.
– volume: 127
  start-page: 1
  year: 2021
  end-page: 23
  ident: bib28
  article-title: Anomaly detection and classification in traffic flow data from fluctuations in the flow-density relationship
  publication-title: Transp. Res. Part C
– volume: 88
  start-page: 140
  year: 2018
  end-page: 158
  ident: bib39
  article-title: A human-like game theory-based controller for automatic lane changing
  publication-title: Transp. Res. Part C
– volume: 69
  start-page: 191
  year: 2021
  end-page: 203
  ident: bib32
  article-title: Hep-pred: hepatitis C staging prediction using fine gaussian SVM
  publication-title: Comput. Mater. Contin.
– volume: 17
  start-page: 1135
  year: 2015
  end-page: 1145
  ident: bib38
  article-title: A review of motion planning techniques for automated vehicles
  publication-title: IEEE Trans. Intell. Transp. Syst.
– volume: 16
  start-page: 263
  year: 1997
  end-page: 284
  ident: bib5
  article-title: Smooth local path planning for autonomous vehicles
  publication-title: Ind. Robot
– volume: 2013
  start-page: 1
  year: 2013
  end-page: 8
  ident: bib9
  article-title: A neural network model for driver’s lane-changing trajectory prediction in urban traffic flow
  publication-title: Math. Probl. Eng.
– volume: 39
  start-page: 895
  year: 2020
  end-page: 935
  ident: bib26
  article-title: Human motion trajectory prediction: a survey
  publication-title: Int. J. Robot. Res.
– volume: 9
  start-page: 1735
  year: 1997
  end-page: 1780
  ident: bib37
  article-title: Long short-term memory
  publication-title: Neural Comput.
– volume: 104
  start-page: 287
  year: 2019
  end-page: 304
  ident: bib15
  article-title: Simultaneous modeling of car-following and lane-changing behavior using deep learning
  publication-title: Transp. Res. Part C
– volume: 13
  start-page: 281
  year: 2012
  end-page: 315
  ident: bib41
  article-title: Random search for hyper-parameter optimization
  publication-title: JMLR
– volume: 1906
  start-page: 01061
  year: 2019
  ident: bib43
  article-title: Localization requirements for autonomous vehicles
  publication-title: arXiv Prepr. arXiv
– start-page: 987
  year: 2010
  end-page: 993
  ident: bib4
  article-title: Optimal Trajectory Generation for Dynamic Street Scenarios in a Frenét Frame
– volume: 50
  start-page: 207
  year: 2015
  end-page: 217
  ident: bib10
  article-title: Multi-parameter prediction of drivers’ lane-changing behavior with neural network model
  publication-title: Appl. Ergon.
– start-page: 486
  year: 2019
  end-page: 493
  ident: bib7
  article-title: A novel robust lane change trajectory planning method for autonomous vehicle
  publication-title: IEEE Intell. Veh. Symp.
– start-page: 1
  year: 2017
  end-page: 6
  ident: bib11
  article-title: Vehicle Trajectory and Lane Change Prediction Using ANN and SVM Classifiers
– volume: 14
  start-page: 197
  year: 2021
  end-page: 208
  ident: bib20
  article-title: Vehicle trajectory prediction using LSTMs with spatial-temporal attention mechanisms
  publication-title: IEEE Intell. Transp. Syst. Mag.
– volume: 27
  start-page: 1
  year: 2014
  end-page: 9
  ident: bib36
  article-title: Sequence to sequence learning with neural networks
  publication-title: Proc. Annu. Conf. Neural Inf. Process. Syst.
– volume: 16
  start-page: 284
  year: 2015
  end-page: 296
  ident: bib14
  article-title: A self-adaptive parameter selection trajectory prediction approach via hidden Markov models
  publication-title: IEEE Trans. Intell. Transp. Syst.
– volume: 2675
  start-page: 186
  year: 2021
  end-page: 200
  ident: bib17
  article-title: Modeling anticipation and relaxation of lane changing behavior using deep learning
  publication-title: Transp. Res. Rec.
– volume: 17
  start-page: 1
  year: 2004
  end-page: 8
  ident: bib33
  article-title: Neighborhood components analysis
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 7
  start-page: 195
  year: 1991
  end-page: 225
  ident: bib12
  article-title: Distributed representations, simple recurrent networks, and grammatical structure
  publication-title: Mach. Learn.
– volume: 140
  start-page: 1
  year: 2022
  end-page: 24
  ident: bib19
  article-title: Fine-grained highway autonomous vehicle lane-changing trajectory prediction based on a heuristic attention-aided encoder-decoder model
  publication-title: Transp. Res. Part C
– volume: 106
  start-page: 41
  year: 2019
  end-page: 60
  ident: bib16
  article-title: A data-driven lane-changing model based on deep learning
  publication-title: Transp. Res. Part C
– volume: 1406
  start-page: 1078
  year: 2014
  ident: bib21
  article-title: Learning phrase representations using RNN encoder-decoder for statistical machine translation
  publication-title: arXiv Prepr. arXiv
– volume: 7
  start-page: 652
  year: 2022
  end-page: 674
  ident: bib2
  article-title: A survey on trajectory-prediction methods for autonomous driving
  publication-title: IEEE T. Intell. Veh.
– volume: 95
  start-page: 228
  year: 2018
  end-page: 247
  ident: bib6
  article-title: A dynamic lane-changing trajectory planning model for automated vehicles
  publication-title: Transp. Res. Part C
– volume: 157
  start-page: 1
  year: 2021
  end-page: 13
  ident: bib25
  article-title: Driver influence on vehicle trajectory prediction
  publication-title: Accid. Anal. Prev.
– reference: I. Goodfellow, Y. Bengio, A. Courville, Deep Learning, MIT press, (2016).
– volume: 2596
  start-page: 56
  year: 2016
  end-page: 64
  ident: bib29
  article-title: Density peaks clustering-based approach to identifying urban traffic congestion patterns
  publication-title: Transp. Res. Rec.
– volume: 27
  start-page: 158
  year: 2008
  end-page: 166
  ident: bib3
  article-title: Path planning based on Bézier curve for autonomous ground vehicles
  publication-title: A Adv. Electr. Electron. Eng.
– volume: 7
  start-page: 38287
  year: 2019
  end-page: 38296
  ident: bib18
  article-title: Modeling vehicle interactions via modified LSTM models for trajectory prediction
  publication-title: IEEE Access
– start-page: 246
  year: 2020
  end-page: 252
  ident: bib45
  article-title: Long-term prediction of lane change maneuver through a multilayer perceptron
  publication-title: IEEE Intell. Veh. Symp.
– volume: 1704
  start-page: 02971
  year: 2017
  ident: bib13
  article-title: A dual-stage attention-based recurrent neural network for time series prediction
  publication-title: arXiv Prepr. arXiv
– volume: 94
  start-page: 13
  year: 2018
  end-page: 30
  ident: bib30
  article-title: A clustering-based approach for large-scale urban traffic state estimation
  publication-title: Transp. Res. Part C
– reference: C. Olah. Understanding lstm Networks, 2015, http://colah.github.io/posts/2015-08-Understanding-LSTMs/.
– start-page: 8483
  year: 2019
  end-page: 8492
  ident: bib24
  article-title: Traphic: trajectory prediction in dense and heterogeneous traffic using weighted interactions
  publication-title: Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR)
– start-page: 226
  year: 1996
  end-page: 231
  ident: bib27
  article-title: A density-based algorithm for discovering clusters in large spatial databases with noise
  publication-title: Inkdd
– volume: 94
  start-page: 13
  year: 2018
  ident: 10.1016/j.physa.2024.129696_bib30
  article-title: A clustering-based approach for large-scale urban traffic state estimation
  publication-title: Transp. Res. Part C
– volume: 55
  start-page: 78
  issue: 10
  year: 2012
  ident: 10.1016/j.physa.2024.129696_bib42
  article-title: A few useful things to know about machine learning
  publication-title: Commun. ACM
  doi: 10.1145/2347736.2347755
– ident: 10.1016/j.physa.2024.129696_bib44
– volume: 32
  start-page: 15424
  year: 2019
  ident: 10.1016/j.physa.2024.129696_bib22
  article-title: Multiple futures predictions
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 2013
  start-page: 1
  year: 2013
  ident: 10.1016/j.physa.2024.129696_bib9
  article-title: A neural network model for driver’s lane-changing trajectory prediction in urban traffic flow
  publication-title: Math. Probl. Eng.
– volume: 16
  start-page: 263
  issue: 3
  year: 1997
  ident: 10.1016/j.physa.2024.129696_bib5
  article-title: Smooth local path planning for autonomous vehicles
  publication-title: Ind. Robot
– volume: 127
  start-page: 1
  issue: 103178
  year: 2021
  ident: 10.1016/j.physa.2024.129696_bib28
  article-title: Anomaly detection and classification in traffic flow data from fluctuations in the flow-density relationship
  publication-title: Transp. Res. Part C
– volume: 14
  start-page: 197
  issue: 2
  year: 2021
  ident: 10.1016/j.physa.2024.129696_bib20
  article-title: Vehicle trajectory prediction using LSTMs with spatial-temporal attention mechanisms
  publication-title: IEEE Intell. Transp. Syst. Mag.
  doi: 10.1109/MITS.2021.3049404
– volume: 27
  start-page: 1
  year: 2014
  ident: 10.1016/j.physa.2024.129696_bib36
  article-title: Sequence to sequence learning with neural networks
  publication-title: Proc. Annu. Conf. Neural Inf. Process. Syst.
– ident: 10.1016/j.physa.2024.129696_bib1
– volume: 39
  start-page: 895
  issue: 8
  year: 2020
  ident: 10.1016/j.physa.2024.129696_bib26
  article-title: Human motion trajectory prediction: a survey
  publication-title: Int. J. Robot. Res.
  doi: 10.1177/0278364920917446
– volume: 2596
  start-page: 56
  issue: 1
  year: 2016
  ident: 10.1016/j.physa.2024.129696_bib29
  article-title: Density peaks clustering-based approach to identifying urban traffic congestion patterns
  publication-title: Transp. Res. Rec.
– start-page: 1
  year: 2016
  ident: 10.1016/j.physa.2024.129696_bib31
  article-title: Discrete wavelet packet-based elbow movement classification using fine Gaussian SVM
  publication-title: Proc. 2016 IEEE 1st Int. Conf. Power Electron., Intell. Control Energy Syst.
– volume: 140
  start-page: 1
  issue: 103706
  year: 2022
  ident: 10.1016/j.physa.2024.129696_bib19
  article-title: Fine-grained highway autonomous vehicle lane-changing trajectory prediction based on a heuristic attention-aided encoder-decoder model
  publication-title: Transp. Res. Part C
– volume: 16
  start-page: 284
  issue: 1
  year: 2015
  ident: 10.1016/j.physa.2024.129696_bib14
  article-title: A self-adaptive parameter selection trajectory prediction approach via hidden Markov models
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2014.2331758
– start-page: 8483
  year: 2019
  ident: 10.1016/j.physa.2024.129696_bib24
  article-title: Traphic: trajectory prediction in dense and heterogeneous traffic using weighted interactions
– volume: 7
  start-page: 38287
  year: 2019
  ident: 10.1016/j.physa.2024.129696_bib18
  article-title: Modeling vehicle interactions via modified LSTM models for trajectory prediction
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2907000
– volume: 1906
  start-page: 01061
  year: 2019
  ident: 10.1016/j.physa.2024.129696_bib43
  article-title: Localization requirements for autonomous vehicles
  publication-title: arXiv Prepr. arXiv
– volume: 2675
  start-page: 186
  issue: 12
  year: 2021
  ident: 10.1016/j.physa.2024.129696_bib17
  article-title: Modeling anticipation and relaxation of lane changing behavior using deep learning
  publication-title: Transp. Res. Rec.
  doi: 10.1177/03611981211028624
– volume: 106
  start-page: 41
  year: 2019
  ident: 10.1016/j.physa.2024.129696_bib16
  article-title: A data-driven lane-changing model based on deep learning
  publication-title: Transp. Res. Part C
  doi: 10.1016/j.trc.2019.07.002
– volume: 14
  start-page: 197
  issue: 2
  year: 2021
  ident: 10.1016/j.physa.2024.129696_bib35
  article-title: Vehicle trajectory prediction using LSTMs with spatial-temporal attention mechanisms
  publication-title: IEEE Intell. Transp. Syst. Mag.
  doi: 10.1109/MITS.2021.3049404
– volume: 70
  start-page: 5511
  issue: 6
  year: 2021
  ident: 10.1016/j.physa.2024.129696_bib8
  article-title: Personalized trajectory planning and control of lane-change maneuvers for autonomous driving
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2021.3076473
– volume: 17
  start-page: 1
  year: 2004
  ident: 10.1016/j.physa.2024.129696_bib33
  article-title: Neighborhood components analysis
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 9
  start-page: 1735
  issue: 8
  year: 1997
  ident: 10.1016/j.physa.2024.129696_bib37
  article-title: Long short-term memory
  publication-title: Neural Comput.
  doi: 10.1162/neco.1997.9.8.1735
– volume: 95
  start-page: 228
  year: 2018
  ident: 10.1016/j.physa.2024.129696_bib6
  article-title: A dynamic lane-changing trajectory planning model for automated vehicles
  publication-title: Transp. Res. Part C
  doi: 10.1016/j.trc.2018.06.007
– volume: 1406
  start-page: 1078
  year: 2014
  ident: 10.1016/j.physa.2024.129696_bib21
  article-title: Learning phrase representations using RNN encoder-decoder for statistical machine translation
  publication-title: arXiv Prepr. arXiv
– ident: 10.1016/j.physa.2024.129696_bib40
– volume: 13
  start-page: 281
  issue: 2
  year: 2012
  ident: 10.1016/j.physa.2024.129696_bib41
  article-title: Random search for hyper-parameter optimization
  publication-title: JMLR
– start-page: 987
  year: 2010
  ident: 10.1016/j.physa.2024.129696_bib4
– volume: 1704
  start-page: 02971
  year: 2017
  ident: 10.1016/j.physa.2024.129696_bib13
  article-title: A dual-stage attention-based recurrent neural network for time series prediction
  publication-title: arXiv Prepr. arXiv
– volume: 30
  start-page: 1
  year: 2017
  ident: 10.1016/j.physa.2024.129696_bib34
  article-title: Attention is all you need
  publication-title: Adv. Neural Inf. Process. Syst.
– start-page: 486
  year: 2019
  ident: 10.1016/j.physa.2024.129696_bib7
  article-title: A novel robust lane change trajectory planning method for autonomous vehicle
  publication-title: IEEE Intell. Veh. Symp.
– volume: 5
  start-page: 2816
  issue: 2
  year: 2022
  ident: 10.1016/j.physa.2024.129696_bib23
  article-title: Scene compliant trajectory forecast with agent-centric spatio-temporal grids
  publication-title: IEEE Robot. Autom. Lett.
  doi: 10.1109/LRA.2020.2974393
– volume: 50
  start-page: 207
  year: 2015
  ident: 10.1016/j.physa.2024.129696_bib10
  article-title: Multi-parameter prediction of drivers’ lane-changing behavior with neural network model
  publication-title: Appl. Ergon.
  doi: 10.1016/j.apergo.2015.03.017
– volume: 17
  start-page: 1135
  issue: 4
  year: 2015
  ident: 10.1016/j.physa.2024.129696_bib38
  article-title: A review of motion planning techniques for automated vehicles
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2015.2498841
– volume: 104
  start-page: 287
  year: 2019
  ident: 10.1016/j.physa.2024.129696_bib15
  article-title: Simultaneous modeling of car-following and lane-changing behavior using deep learning
  publication-title: Transp. Res. Part C
  doi: 10.1016/j.trc.2019.05.021
– volume: 7
  start-page: 195
  year: 1991
  ident: 10.1016/j.physa.2024.129696_bib12
  article-title: Distributed representations, simple recurrent networks, and grammatical structure
  publication-title: Mach. Learn.
  doi: 10.1007/BF00114844
– start-page: 1
  year: 2017
  ident: 10.1016/j.physa.2024.129696_bib11
– volume: 27
  start-page: 158
  year: 2008
  ident: 10.1016/j.physa.2024.129696_bib3
  article-title: Path planning based on Bézier curve for autonomous ground vehicles
  publication-title: A Adv. Electr. Electron. Eng.
– volume: 7
  start-page: 652
  issue: 3
  year: 2022
  ident: 10.1016/j.physa.2024.129696_bib2
  article-title: A survey on trajectory-prediction methods for autonomous driving
  publication-title: IEEE T. Intell. Veh.
  doi: 10.1109/TIV.2022.3167103
– start-page: 246
  year: 2020
  ident: 10.1016/j.physa.2024.129696_bib45
  article-title: Long-term prediction of lane change maneuver through a multilayer perceptron
  publication-title: IEEE Intell. Veh. Symp.
– volume: 69
  start-page: 191
  issue: 1
  year: 2021
  ident: 10.1016/j.physa.2024.129696_bib32
  article-title: Hep-pred: hepatitis C staging prediction using fine gaussian SVM
  publication-title: Comput. Mater. Contin.
– volume: 88
  start-page: 140
  year: 2018
  ident: 10.1016/j.physa.2024.129696_bib39
  article-title: A human-like game theory-based controller for automatic lane changing
  publication-title: Transp. Res. Part C
  doi: 10.1016/j.trc.2018.01.016
– volume: 157
  start-page: 1
  issue: 106165
  year: 2021
  ident: 10.1016/j.physa.2024.129696_bib25
  article-title: Driver influence on vehicle trajectory prediction
  publication-title: Accid. Anal. Prev.
– start-page: 226
  year: 1996
  ident: 10.1016/j.physa.2024.129696_bib27
  article-title: A density-based algorithm for discovering clusters in large spatial databases with noise
  publication-title: Inkdd
SSID ssj0001732
Score 2.4459057
Snippet Accurate prediction of lane changing (LC) trajectories plays a vital role in ensuring safe and efficient traffic flow on highways. This paper proposes a LC...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 129696
SubjectTerms Heuristic attention-based encoder-decoder model
Highway environment with heterogeneous traffic flow
Lane changing motivations
Lane changing trajectory prediction
Title Enhancing lane changing trajectory prediction on highways: A heuristic attention-based encoder-decoder model
URI https://dx.doi.org/10.1016/j.physa.2024.129696
Volume 639
WOSCitedRecordID wos001216158900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection - Elsevier
  customDbUrl:
  eissn: 1873-2119
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001732
  issn: 0378-4371
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ba9swFBZbusFexq6sXTf0sLdOIbFsy9pbKBnbGKWwMLwnI-uyJgS35FLaf78jHd9IRtkGA-MEEUVG50Pn4nO-Q8g7rkBHqFSxlAvF4jLmTEmXMCd05KTOOA9dFL5_FWdnWZ7L8zqUvQ7tBERVZTc38uq_ihrGQNi-dPYvxN3-KQzAdxA63EHscP8jwU-rC8-hUf30sUiLlb11M4hFCNHfemIAM8ce4XAFxmJ1u8Yi9Qu7RfLmE8-8GXIhmVd15sRTXhq7YsaGT2yi0zduz1HmXXg0n6sQic233bv7S8wKrhVmSCzAk-8HPGQXHuhGl_N-ZCLqJ7SEcNleyQyWaYHbGnPsuzK0eOpmgjNPNdc_llMkOdo74jHasBj6yI8njoriIdgsqdwh1A4q-ptfzS_mM2WjUZLfJweRSGQ2IAeTz9P8S6u0x4LjC6f66RqCqpAKuLfU742YnmEye0Ie1x4FnSASnpJ7tnpGHqIs1s_JssUD9XigDR5ohwfa4YHC1eDhA53QFg10Bw10Bw00oOEFmX2czk4_sbrFBtNgu2yYtllsPRdsOTYcPAFt5chYE3MVJzYpVWpNpnmZOcW1yyw492A_Gme4LIV0kr8kg-qysq8IHYuR0846aaMyLnminDC2LMepSxz4HPKQRM2WFbqmn_ddUJZFk2e4KMI-F36fC9znQ_K-nXSF7Ct3_zxtZFHUBiQahgWA566JR_868TV51CH_mAw2q619Qx7o6818vXpbg-wXXWeY_w
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhancing+lane+changing+trajectory+prediction+on+highways%3A+A+heuristic+attention-based+encoder-decoder+model&rft.jtitle=Physica+A&rft.au=Xiao%2C+Xue&rft.au=Bo%2C+Peng&rft.au=Chen%2C+Yingda&rft.au=Chen%2C+Yili&rft.date=2024-04-01&rft.pub=Elsevier+B.V&rft.issn=0378-4371&rft.eissn=1873-2119&rft.volume=639&rft_id=info:doi/10.1016%2Fj.physa.2024.129696&rft.externalDocID=S037843712400205X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-4371&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-4371&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-4371&client=summon