Dirichlet-Neumann and Neumann-Neumann waveform relaxation algorithms for heterogeneous sub-diffusion and diffusion-wave equations

This paper investigates the convergence behavior of the Dirichlet-Neumann and Neumann-Neumann waveform relaxation algorithms for time-fractional sub-diffusion and diffusion-wave equations. The algorithms are applied to regular domains in 1D and 2D for multiple subdomains, and the impact of different...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Computers & mathematics with applications (1987) Ročník 150; s. 102 - 124
Hlavní autori: Sana, Soura, Mandal, Bankim C.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier Ltd 15.11.2023
Predmet:
ISSN:0898-1221, 1873-7668
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract This paper investigates the convergence behavior of the Dirichlet-Neumann and Neumann-Neumann waveform relaxation algorithms for time-fractional sub-diffusion and diffusion-wave equations. The algorithms are applied to regular domains in 1D and 2D for multiple subdomains, and the impact of different constant values of the generalized diffusion coefficient on the algorithms' convergence is analyzed. The convergence rate of the algorithms is analyzed as the fractional order of the time derivative changes. The paper demonstrates that the algorithms exhibit slow superlinear convergence when the fractional order is close to zero, almost finite step convergence (exact finite step convergence for wave case) when the order approaches two, and faster superlinear convergence as the fractional order increases in between. The transitional nature of the algorithms' behavior is effectively captured through estimates with changes in the fractional order, and the results are verified by numerical experiments.
AbstractList This paper investigates the convergence behavior of the Dirichlet-Neumann and Neumann-Neumann waveform relaxation algorithms for time-fractional sub-diffusion and diffusion-wave equations. The algorithms are applied to regular domains in 1D and 2D for multiple subdomains, and the impact of different constant values of the generalized diffusion coefficient on the algorithms' convergence is analyzed. The convergence rate of the algorithms is analyzed as the fractional order of the time derivative changes. The paper demonstrates that the algorithms exhibit slow superlinear convergence when the fractional order is close to zero, almost finite step convergence (exact finite step convergence for wave case) when the order approaches two, and faster superlinear convergence as the fractional order increases in between. The transitional nature of the algorithms' behavior is effectively captured through estimates with changes in the fractional order, and the results are verified by numerical experiments.
Author Sana, Soura
Mandal, Bankim C.
Author_xml – sequence: 1
  givenname: Soura
  orcidid: 0000-0003-1892-9486
  surname: Sana
  fullname: Sana, Soura
  email: ss87@iitbbs.ac.in
– sequence: 2
  givenname: Bankim C.
  surname: Mandal
  fullname: Mandal, Bankim C.
  email: bmandal@iitbbs.ac.in
BookMark eNqFkLtOwzAUhi1UJNrCE7DkBRzsOHWcgQGVq1TBArPl2ietqyQG22lh5M1JL-rAANO5fr_O-Udo0LoWELqkJKWE8qtVqlWzUWlGMpaSMiWUnaAhFQXDBedigIZElALTLKNnaBTCihCSs4wM0fet9VYva4j4GbpGtW2iWpMc8mNvo9ZQOd8kHmr1qaJ1_V69cN7GZROSfpQsIYJ3C2jBdSEJ3RwbW1Vd2K32kscKb8US-Oh2MuEcnVaqDnBxiGP0dn_3On3Es5eHp-nNDGtGWMTa0AnVOUxKRTI6F5Xgk5wqBobOMypAl6UpgDCVFUKJ3AilS845GMIEB5GzMSr3utq7EDxUUtu4OyF6ZWtJidx6KVdy56XceilJKXsve5b9Yt-9bZT_-oe63lPQv7W24GXQFloNxnrQURpn_-R_ALxmlSk
CitedBy_id crossref_primary_10_1007_s10444_024_10185_w
Cites_doi 10.1016/j.aej.2021.02.056
10.1016/j.camwa.2023.04.004
10.1137/17M115311X
10.1111/j.1365-246X.1967.tb02303.x
10.1103/PhysRevE.51.R848
10.1103/PhysRevE.53.4191
10.3233/FI-2017-1489
10.1016/j.jcp.2007.05.012
10.1007/s11075-018-0557-4
10.1109/TCAD.1982.1270004
10.1002/mma.7369
10.1016/0893-9659(96)00089-4
10.1098/rspa.2001.0904
10.1016/j.jmaa.2008.10.018
10.1016/j.apnum.2005.03.003
10.1007/s11075-017-0364-3
10.3390/math8060884
10.1063/1.528578
10.1002/num.22112
10.1016/j.jcp.2009.02.007
10.1098/rsta.2019.0289
10.1137/S106482759732678X
10.1115/1.4000563
10.1016/j.jcp.2004.11.025
10.1137/S1064827596305337
10.1016/j.jcp.2014.11.034
10.1137/050642137
10.1007/s10543-020-00823-2
10.1002/(SICI)1097-0363(19970830)25:4<421::AID-FLD557>3.0.CO;2-J
10.1002/zamm.200310033
10.1007/s002110100345
10.4064/sm-18-2-191-198
10.1186/s13662-021-03468-9
10.1080/00207160.2019.1673892
10.1137/16M1082329
10.1137/16M1072620
ContentType Journal Article
Copyright 2023 Elsevier Ltd
Copyright_xml – notice: 2023 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.camwa.2023.09.013
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1873-7668
EndPage 124
ExternalDocumentID 10_1016_j_camwa_2023_09_013
S089812212300398X
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABAOU
ABBOA
ABMAC
ABVKL
ABYKQ
ACAZW
ACDAQ
ACGFS
ACIWK
ACNCT
ACRLP
ACZNC
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
IHE
IXB
J1W
JJJVA
KOM
LG9
M26
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SST
SSV
SSW
T5K
TN5
XPP
ZMT
~G-
29F
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABJNI
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
AEIPS
AEUPX
AEXQZ
AFFNX
AFJKZ
AFPUW
AGHFR
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FGOYB
G-2
HZ~
R2-
SSZ
TAE
WUQ
ZY4
~HD
ID FETCH-LOGICAL-c303t-cd151c4e59a021b8f86541a3ed1b218ec99d7e03a278a84d8ac9666ed0386e843
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001088593800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0898-1221
IngestDate Tue Nov 18 21:16:30 EST 2025
Sat Nov 29 07:16:07 EST 2025
Fri Feb 23 02:35:49 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Sub-diffusion
Neumann-Neumann
Dirichlet-Neumann
Waveform relaxation
Diffusion-wave
Domain decomposition
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c303t-cd151c4e59a021b8f86541a3ed1b218ec99d7e03a278a84d8ac9666ed0386e843
ORCID 0000-0003-1892-9486
PageCount 23
ParticipantIDs crossref_citationtrail_10_1016_j_camwa_2023_09_013
crossref_primary_10_1016_j_camwa_2023_09_013
elsevier_sciencedirect_doi_10_1016_j_camwa_2023_09_013
PublicationCentury 2000
PublicationDate 2023-11-15
PublicationDateYYYYMMDD 2023-11-15
PublicationDate_xml – month: 11
  year: 2023
  text: 2023-11-15
  day: 15
PublicationDecade 2020
PublicationTitle Computers & mathematics with applications (1987)
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Schneider, Wyss (br0350) 1989; 30
Gander, Kwok, Mandal (br0120) 2016; 45
Prakash Agrawal (br0010) 2003; 83
Pipkin (br0320) 2012
Luchko (br0240) 2009; 351
Lions (br0230) 1990; vol. 6
Langlands, Henry (br0210) 2005; 205
Chen, Liu, Turner, Anh (br0040) 2007; 227
Caputo (br0030) 1967; 13
Mikusiński (br0300) 1959; 18
Rossikhin, Shitikova (br0340) 2010; 63
Stynes, O'Riordan, Gracia (br0390) 2017; 55
Giladi, Keller (br0150) 2002; 93
Cai, Sarkis (br0020) 1999; 21
Das, Rana, Ramos (br0080) 2020; 97
Povstenko, Kyrylych (br0330) 2020; 378
Wu, Wu (br0420) 2017; 151
Mainardi (br0250) 1996; 9
Gander, Stuart (br0140) 1998; 19
Mainardi, Consiglio (br0260) 2020; 8
Van Bockstal (br0410) 2021; 2021
Mandal, Sana (br0290) 2021
Xu, Hesthaven, Chen (br0440) 2015; 293
Giles (br0160) 1997; 25
Mainardi, Pagnini (br0270) 2003; 141
Shiromani, Shanthi, Das (br0380) 2023; 142
Mandal (br0280) 2017; 33
Das (br0060) 2019; 81
Sun, Wu (br0400) 2006; 56
Lelarasmee, Ruehli, Sangiovanni-Vincentelli (br0220) 1982; 1
Dryja, Widlund (br0090) 1991
Gander, Halpern (br0110) 2007; 45
Sene (br0370) 2021; 60
Compte (br0050) 1996; 53
Kwok, Ong (br0200) 2019; 41
Schwarz (br0360) 1870
Hanygad (br0170) 2002; 458
Gander, Kwok, Mandal (br0130) 2021; 61
Henshaw, Chand (br0180) 2009; 228
Das, Rana (br0070) 2021; 44
Hilfer, Anton (br0190) 1995; 51
Ong, Mandal (br0310) 2018; 78
Wu, Xu (br0430) 2017; 39
Evangelista, Lenzi (br0100) 2018
Schwarz (10.1016/j.camwa.2023.09.013_br0360) 1870
Shiromani (10.1016/j.camwa.2023.09.013_br0380) 2023; 142
Mainardi (10.1016/j.camwa.2023.09.013_br0260) 2020; 8
Mandal (10.1016/j.camwa.2023.09.013_br0290) 2021
Giladi (10.1016/j.camwa.2023.09.013_br0150) 2002; 93
Das (10.1016/j.camwa.2023.09.013_br0060) 2019; 81
Gander (10.1016/j.camwa.2023.09.013_br0140) 1998; 19
Kwok (10.1016/j.camwa.2023.09.013_br0200) 2019; 41
Caputo (10.1016/j.camwa.2023.09.013_br0030) 1967; 13
Henshaw (10.1016/j.camwa.2023.09.013_br0180) 2009; 228
Dryja (10.1016/j.camwa.2023.09.013_br0090) 1991
Van Bockstal (10.1016/j.camwa.2023.09.013_br0410) 2021; 2021
Das (10.1016/j.camwa.2023.09.013_br0070) 2021; 44
Giles (10.1016/j.camwa.2023.09.013_br0160) 1997; 25
Lions (10.1016/j.camwa.2023.09.013_br0230) 1990; vol. 6
Wu (10.1016/j.camwa.2023.09.013_br0430) 2017; 39
Hilfer (10.1016/j.camwa.2023.09.013_br0190) 1995; 51
Mandal (10.1016/j.camwa.2023.09.013_br0280) 2017; 33
Pipkin (10.1016/j.camwa.2023.09.013_br0320) 2012
Cai (10.1016/j.camwa.2023.09.013_br0020) 1999; 21
Mainardi (10.1016/j.camwa.2023.09.013_br0270) 2003; 141
Das (10.1016/j.camwa.2023.09.013_br0080) 2020; 97
Gander (10.1016/j.camwa.2023.09.013_br0130) 2021; 61
Hanygad (10.1016/j.camwa.2023.09.013_br0170) 2002; 458
Sene (10.1016/j.camwa.2023.09.013_br0370) 2021; 60
Stynes (10.1016/j.camwa.2023.09.013_br0390) 2017; 55
Rossikhin (10.1016/j.camwa.2023.09.013_br0340) 2010; 63
Mainardi (10.1016/j.camwa.2023.09.013_br0250) 1996; 9
Langlands (10.1016/j.camwa.2023.09.013_br0210) 2005; 205
Evangelista (10.1016/j.camwa.2023.09.013_br0100) 2018
Gander (10.1016/j.camwa.2023.09.013_br0110) 2007; 45
Povstenko (10.1016/j.camwa.2023.09.013_br0330) 2020; 378
Ong (10.1016/j.camwa.2023.09.013_br0310) 2018; 78
Wu (10.1016/j.camwa.2023.09.013_br0420) 2017; 151
Prakash Agrawal (10.1016/j.camwa.2023.09.013_br0010) 2003; 83
Mikusiński (10.1016/j.camwa.2023.09.013_br0300) 1959; 18
Schneider (10.1016/j.camwa.2023.09.013_br0350) 1989; 30
Xu (10.1016/j.camwa.2023.09.013_br0440) 2015; 293
Compte (10.1016/j.camwa.2023.09.013_br0050) 1996; 53
Luchko (10.1016/j.camwa.2023.09.013_br0240) 2009; 351
Gander (10.1016/j.camwa.2023.09.013_br0120) 2016; 45
Chen (10.1016/j.camwa.2023.09.013_br0040) 2007; 227
Sun (10.1016/j.camwa.2023.09.013_br0400) 2006; 56
Lelarasmee (10.1016/j.camwa.2023.09.013_br0220) 1982; 1
References_xml – volume: 83
  start-page: 265
  year: 2003
  end-page: 274
  ident: br0010
  article-title: Response of a diffusion-wave system subjected to deterministic and stochastic fields
  publication-title: J. Appl. Math. Mech./Z. Angew. Math. Mech.: Appl. Math. Mech.
– volume: 9
  start-page: 23
  year: 1996
  end-page: 28
  ident: br0250
  article-title: The fundamental solutions for the fractional diffusion-wave equation
  publication-title: Appl. Math. Lett.
– year: 2012
  ident: br0320
  article-title: Lectures on Viscoelasticity Theory, vol. 7
– start-page: 429
  year: 2021
  end-page: 440
  ident: br0290
  article-title: Substructuring waveform relaxation methods with time-dependent relaxation parameter
  publication-title: Proceedings of the Sixth International Conference on Mathematics and Computing
– volume: 61
  start-page: 173
  year: 2021
  end-page: 207
  ident: br0130
  article-title: Dirichlet–Neumann waveform relaxation methods for parabolic and hyperbolic problems in multiple subdomains
  publication-title: BIT Numer. Math.
– volume: 205
  start-page: 719
  year: 2005
  end-page: 736
  ident: br0210
  article-title: The accuracy and stability of an implicit solution method for the fractional diffusion equation
  publication-title: J. Comput. Phys.
– year: 1991
  ident: br0090
  article-title: Additive Schwarz Methods for Elliptic Finite Element Problems in Three Dimensions
– volume: 55
  start-page: 1057
  year: 2017
  end-page: 1079
  ident: br0390
  article-title: Error analysis of a finite difference method on graded meshes for a time-fractional diffusion equation
  publication-title: SIAM J. Numer. Anal.
– volume: 53
  start-page: 4191
  year: 1996
  ident: br0050
  article-title: Stochastic foundations of fractional dynamics
  publication-title: Phys. Rev. E
– volume: 458
  start-page: 933
  year: 2002
  end-page: 957
  ident: br0170
  article-title: Multidimensional solutions of time-fractional diffusion-wave equations
  publication-title: Proc. R. Soc. Lond., Ser. A, Math. Phys. Eng. Sci.
– volume: 25
  start-page: 421
  year: 1997
  end-page: 436
  ident: br0160
  article-title: Stability analysis of numerical interface conditions in fluid–structure thermal analysis
  publication-title: Int. J. Numer. Methods Fluids
– volume: 41
  start-page: A339
  year: 2019
  end-page: A364
  ident: br0200
  article-title: Schwarz waveform relaxation with adaptive pipelining
  publication-title: SIAM J. Sci. Comput.
– volume: 19
  start-page: 2014
  year: 1998
  end-page: 2031
  ident: br0140
  article-title: Space-time continuous analysis of waveform relaxation for the heat equation
  publication-title: SIAM J. Sci. Comput.
– volume: 293
  start-page: 173
  year: 2015
  end-page: 183
  ident: br0440
  article-title: A parareal method for time-fractional differential equations
  publication-title: J. Comput. Phys.
– volume: 13
  start-page: 529
  year: 1967
  end-page: 539
  ident: br0030
  article-title: Linear models of dissipation whose q is almost frequency independent—ii
  publication-title: Geophys. J. Int.
– volume: 21
  start-page: 792
  year: 1999
  end-page: 797
  ident: br0020
  article-title: A restricted additive Schwarz preconditioner for general sparse linear systems
  publication-title: SIAM J. Sci. Comput.
– volume: 44
  start-page: 9419
  year: 2021
  end-page: 9440
  ident: br0070
  article-title: Theoretical prospects of fractional order weakly singular Volterra integro differential equations and their approximations with convergence analysis
  publication-title: Math. Methods Appl. Sci.
– volume: 142
  start-page: 9
  year: 2023
  end-page: 30
  ident: br0380
  article-title: A higher order hybrid-numerical approximation for a class of singularly perturbed two-dimensional convection-diffusion elliptic problem with non-smooth convection and source terms
  publication-title: Comput. Math. Appl.
– volume: 30
  start-page: 134
  year: 1989
  end-page: 144
  ident: br0350
  article-title: Fractional diffusion and wave equations
  publication-title: J. Math. Phys.
– volume: 45
  start-page: 666
  year: 2007
  end-page: 697
  ident: br0110
  article-title: Optimized Schwarz waveform relaxation methods for advection reaction diffusion problems
  publication-title: SIAM J. Numer. Anal.
– volume: 351
  start-page: 218
  year: 2009
  end-page: 223
  ident: br0240
  article-title: Maximum principle for the generalized time-fractional diffusion equation
  publication-title: J. Math. Anal. Appl.
– volume: 56
  start-page: 193
  year: 2006
  end-page: 209
  ident: br0400
  article-title: A fully discrete difference scheme for a diffusion-wave system
  publication-title: Appl. Numer. Math.
– volume: 228
  start-page: 3708
  year: 2009
  end-page: 3741
  ident: br0180
  article-title: A composite grid solver for conjugate heat transfer in fluid–structure systems
  publication-title: J. Comput. Phys.
– volume: 141
  start-page: 51
  year: 2003
  end-page: 62
  ident: br0270
  article-title: The Wright functions as solutions of the time-fractional diffusion equation
  publication-title: Appl. Math. Comput.
– volume: 378
  year: 2020
  ident: br0330
  article-title: Fractional thermoelasticity problem for an infinite solid with a penny-shaped crack under prescribed heat flux across its surfaces
  publication-title: Philos. Trans. R. Soc. A
– year: 2018
  ident: br0100
  article-title: Fractional Diffusion Equations and Anomalous Diffusion
– volume: 93
  start-page: 279
  year: 2002
  end-page: 313
  ident: br0150
  article-title: Space-time domain decomposition for parabolic problems
  publication-title: Numer. Math.
– volume: 63
  year: 2010
  ident: br0340
  article-title: Application of fractional calculus for dynamic problems of solid mechanics: novel trends and recent results
  publication-title: Appl. Mech. Rev.
– volume: 60
  start-page: 3997
  year: 2021
  end-page: 4014
  ident: br0370
  article-title: Introduction to the fractional-order chaotic system under fractional operator in Caputo sense
  publication-title: Alex. Eng. J.
– volume: 97
  start-page: 1994
  year: 2020
  end-page: 2014
  ident: br0080
  article-title: A perturbation-based approach for solving fractional-order Volterra–Fredholm integro differential equations and its convergence analysis
  publication-title: Int. J. Comput. Math.
– volume: 8
  start-page: 884
  year: 2020
  ident: br0260
  article-title: The Wright functions of the second kind in mathematical physics
  publication-title: Mathematics
– volume: 227
  start-page: 886
  year: 2007
  end-page: 897
  ident: br0040
  article-title: A Fourier method for the fractional diffusion equation describing sub-diffusion
  publication-title: J. Comput. Phys.
– volume: 51
  start-page: R848
  year: 1995
  ident: br0190
  article-title: Fractional master equations and fractal time random walks
  publication-title: Phys. Rev. E
– volume: 151
  start-page: 231
  year: 2017
  end-page: 240
  ident: br0420
  article-title: Nonoverlapping Schwarz waveform relaxation algorithm for a class of time-fractional heat equations
  publication-title: Fundam. Inform.
– volume: vol. 6
  start-page: 202
  year: 1990
  end-page: 223
  ident: br0230
  article-title: On the Schwarz alternating method. iii: a variant for nonoverlapping subdomains
  publication-title: Third International Symposium on Domain Decomposition Methods for Partial Differential Equations
– volume: 2021
  year: 2021
  ident: br0410
  article-title: Existence of a unique weak solution to a non-autonomous time-fractional diffusion equation with space-dependent variable order
  publication-title: Adv. Differ. Equ.
– volume: 45
  start-page: 424
  year: 2016
  end-page: 456
  ident: br0120
  article-title: Dirichlet-Neumann and Neumann-Neumann waveform relaxation algorithms for parabolic problems
  publication-title: Electron. Trans. Numer. Anal.
– volume: 1
  start-page: 131
  year: 1982
  end-page: 145
  ident: br0220
  article-title: The waveform relaxation method for time-domain analysis of large scale integrated circuits
  publication-title: IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst.
– volume: 18
  start-page: 191
  year: 1959
  end-page: 198
  ident: br0300
  article-title: On the function whose Laplace-transform is
  publication-title: Stud. Math.
– volume: 33
  start-page: 514
  year: 2017
  end-page: 530
  ident: br0280
  article-title: Neumann–Neumann waveform relaxation algorithm in multiple subdomains for hyperbolic problems in 1d and 2d
  publication-title: Numer. Methods Partial Differ. Equ.
– year: 1870
  ident: br0360
  article-title: Ueber einen Grenzübergang durch alternirendes Verfahren
– volume: 78
  start-page: 1
  year: 2018
  end-page: 20
  ident: br0310
  article-title: Pipeline implementations of Neumann–Neumann and Dirichlet–Neumann waveform relaxation methods
  publication-title: Numer. Algorithms
– volume: 39
  start-page: A890
  year: 2017
  end-page: A921
  ident: br0430
  article-title: Convergence analysis of Schwarz waveform relaxation with convolution transmission conditions
  publication-title: SIAM J. Sci. Comput.
– volume: 81
  start-page: 465
  year: 2019
  end-page: 487
  ident: br0060
  article-title: An a posteriori based convergence analysis for a nonlinear singularly perturbed system of delay differential equations on an adaptive mesh
  publication-title: Numer. Algorithms
– volume: 60
  start-page: 3997
  year: 2021
  ident: 10.1016/j.camwa.2023.09.013_br0370
  article-title: Introduction to the fractional-order chaotic system under fractional operator in Caputo sense
  publication-title: Alex. Eng. J.
  doi: 10.1016/j.aej.2021.02.056
– year: 2018
  ident: 10.1016/j.camwa.2023.09.013_br0100
– volume: 142
  start-page: 9
  year: 2023
  ident: 10.1016/j.camwa.2023.09.013_br0380
  article-title: A higher order hybrid-numerical approximation for a class of singularly perturbed two-dimensional convection-diffusion elliptic problem with non-smooth convection and source terms
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2023.04.004
– volume: 41
  start-page: A339
  year: 2019
  ident: 10.1016/j.camwa.2023.09.013_br0200
  article-title: Schwarz waveform relaxation with adaptive pipelining
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/17M115311X
– volume: 13
  start-page: 529
  year: 1967
  ident: 10.1016/j.camwa.2023.09.013_br0030
  article-title: Linear models of dissipation whose q is almost frequency independent—ii
  publication-title: Geophys. J. Int.
  doi: 10.1111/j.1365-246X.1967.tb02303.x
– start-page: 429
  year: 2021
  ident: 10.1016/j.camwa.2023.09.013_br0290
  article-title: Substructuring waveform relaxation methods with time-dependent relaxation parameter
– volume: 51
  start-page: R848
  year: 1995
  ident: 10.1016/j.camwa.2023.09.013_br0190
  article-title: Fractional master equations and fractal time random walks
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.51.R848
– volume: 53
  start-page: 4191
  year: 1996
  ident: 10.1016/j.camwa.2023.09.013_br0050
  article-title: Stochastic foundations of fractional dynamics
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.53.4191
– volume: 151
  start-page: 231
  year: 2017
  ident: 10.1016/j.camwa.2023.09.013_br0420
  article-title: Nonoverlapping Schwarz waveform relaxation algorithm for a class of time-fractional heat equations
  publication-title: Fundam. Inform.
  doi: 10.3233/FI-2017-1489
– volume: 227
  start-page: 886
  year: 2007
  ident: 10.1016/j.camwa.2023.09.013_br0040
  article-title: A Fourier method for the fractional diffusion equation describing sub-diffusion
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2007.05.012
– volume: 81
  start-page: 465
  year: 2019
  ident: 10.1016/j.camwa.2023.09.013_br0060
  article-title: An a posteriori based convergence analysis for a nonlinear singularly perturbed system of delay differential equations on an adaptive mesh
  publication-title: Numer. Algorithms
  doi: 10.1007/s11075-018-0557-4
– volume: 1
  start-page: 131
  year: 1982
  ident: 10.1016/j.camwa.2023.09.013_br0220
  article-title: The waveform relaxation method for time-domain analysis of large scale integrated circuits
  publication-title: IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst.
  doi: 10.1109/TCAD.1982.1270004
– volume: 44
  start-page: 9419
  year: 2021
  ident: 10.1016/j.camwa.2023.09.013_br0070
  article-title: Theoretical prospects of fractional order weakly singular Volterra integro differential equations and their approximations with convergence analysis
  publication-title: Math. Methods Appl. Sci.
  doi: 10.1002/mma.7369
– volume: 9
  start-page: 23
  year: 1996
  ident: 10.1016/j.camwa.2023.09.013_br0250
  article-title: The fundamental solutions for the fractional diffusion-wave equation
  publication-title: Appl. Math. Lett.
  doi: 10.1016/0893-9659(96)00089-4
– volume: 458
  start-page: 933
  year: 2002
  ident: 10.1016/j.camwa.2023.09.013_br0170
  article-title: Multidimensional solutions of time-fractional diffusion-wave equations
  publication-title: Proc. R. Soc. Lond., Ser. A, Math. Phys. Eng. Sci.
  doi: 10.1098/rspa.2001.0904
– volume: 351
  start-page: 218
  year: 2009
  ident: 10.1016/j.camwa.2023.09.013_br0240
  article-title: Maximum principle for the generalized time-fractional diffusion equation
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2008.10.018
– year: 1870
  ident: 10.1016/j.camwa.2023.09.013_br0360
– volume: 56
  start-page: 193
  year: 2006
  ident: 10.1016/j.camwa.2023.09.013_br0400
  article-title: A fully discrete difference scheme for a diffusion-wave system
  publication-title: Appl. Numer. Math.
  doi: 10.1016/j.apnum.2005.03.003
– volume: 78
  start-page: 1
  year: 2018
  ident: 10.1016/j.camwa.2023.09.013_br0310
  article-title: Pipeline implementations of Neumann–Neumann and Dirichlet–Neumann waveform relaxation methods
  publication-title: Numer. Algorithms
  doi: 10.1007/s11075-017-0364-3
– year: 1991
  ident: 10.1016/j.camwa.2023.09.013_br0090
– volume: 8
  start-page: 884
  year: 2020
  ident: 10.1016/j.camwa.2023.09.013_br0260
  article-title: The Wright functions of the second kind in mathematical physics
  publication-title: Mathematics
  doi: 10.3390/math8060884
– volume: 30
  start-page: 134
  year: 1989
  ident: 10.1016/j.camwa.2023.09.013_br0350
  article-title: Fractional diffusion and wave equations
  publication-title: J. Math. Phys.
  doi: 10.1063/1.528578
– volume: vol. 6
  start-page: 202
  year: 1990
  ident: 10.1016/j.camwa.2023.09.013_br0230
  article-title: On the Schwarz alternating method. iii: a variant for nonoverlapping subdomains
– volume: 33
  start-page: 514
  year: 2017
  ident: 10.1016/j.camwa.2023.09.013_br0280
  article-title: Neumann–Neumann waveform relaxation algorithm in multiple subdomains for hyperbolic problems in 1d and 2d
  publication-title: Numer. Methods Partial Differ. Equ.
  doi: 10.1002/num.22112
– volume: 228
  start-page: 3708
  year: 2009
  ident: 10.1016/j.camwa.2023.09.013_br0180
  article-title: A composite grid solver for conjugate heat transfer in fluid–structure systems
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2009.02.007
– volume: 378
  year: 2020
  ident: 10.1016/j.camwa.2023.09.013_br0330
  article-title: Fractional thermoelasticity problem for an infinite solid with a penny-shaped crack under prescribed heat flux across its surfaces
  publication-title: Philos. Trans. R. Soc. A
  doi: 10.1098/rsta.2019.0289
– volume: 21
  start-page: 792
  year: 1999
  ident: 10.1016/j.camwa.2023.09.013_br0020
  article-title: A restricted additive Schwarz preconditioner for general sparse linear systems
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/S106482759732678X
– volume: 63
  year: 2010
  ident: 10.1016/j.camwa.2023.09.013_br0340
  article-title: Application of fractional calculus for dynamic problems of solid mechanics: novel trends and recent results
  publication-title: Appl. Mech. Rev.
  doi: 10.1115/1.4000563
– volume: 205
  start-page: 719
  year: 2005
  ident: 10.1016/j.camwa.2023.09.013_br0210
  article-title: The accuracy and stability of an implicit solution method for the fractional diffusion equation
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2004.11.025
– volume: 19
  start-page: 2014
  year: 1998
  ident: 10.1016/j.camwa.2023.09.013_br0140
  article-title: Space-time continuous analysis of waveform relaxation for the heat equation
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/S1064827596305337
– volume: 293
  start-page: 173
  year: 2015
  ident: 10.1016/j.camwa.2023.09.013_br0440
  article-title: A parareal method for time-fractional differential equations
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2014.11.034
– volume: 45
  start-page: 666
  year: 2007
  ident: 10.1016/j.camwa.2023.09.013_br0110
  article-title: Optimized Schwarz waveform relaxation methods for advection reaction diffusion problems
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/050642137
– volume: 61
  start-page: 173
  year: 2021
  ident: 10.1016/j.camwa.2023.09.013_br0130
  article-title: Dirichlet–Neumann waveform relaxation methods for parabolic and hyperbolic problems in multiple subdomains
  publication-title: BIT Numer. Math.
  doi: 10.1007/s10543-020-00823-2
– volume: 45
  start-page: 424
  year: 2016
  ident: 10.1016/j.camwa.2023.09.013_br0120
  article-title: Dirichlet-Neumann and Neumann-Neumann waveform relaxation algorithms for parabolic problems
  publication-title: Electron. Trans. Numer. Anal.
– volume: 25
  start-page: 421
  year: 1997
  ident: 10.1016/j.camwa.2023.09.013_br0160
  article-title: Stability analysis of numerical interface conditions in fluid–structure thermal analysis
  publication-title: Int. J. Numer. Methods Fluids
  doi: 10.1002/(SICI)1097-0363(19970830)25:4<421::AID-FLD557>3.0.CO;2-J
– volume: 141
  start-page: 51
  year: 2003
  ident: 10.1016/j.camwa.2023.09.013_br0270
  article-title: The Wright functions as solutions of the time-fractional diffusion equation
  publication-title: Appl. Math. Comput.
– volume: 83
  start-page: 265
  year: 2003
  ident: 10.1016/j.camwa.2023.09.013_br0010
  article-title: Response of a diffusion-wave system subjected to deterministic and stochastic fields
  publication-title: J. Appl. Math. Mech./Z. Angew. Math. Mech.: Appl. Math. Mech.
  doi: 10.1002/zamm.200310033
– volume: 93
  start-page: 279
  year: 2002
  ident: 10.1016/j.camwa.2023.09.013_br0150
  article-title: Space-time domain decomposition for parabolic problems
  publication-title: Numer. Math.
  doi: 10.1007/s002110100345
– volume: 18
  start-page: 191
  year: 1959
  ident: 10.1016/j.camwa.2023.09.013_br0300
  article-title: On the function whose Laplace-transform is e−sα
  publication-title: Stud. Math.
  doi: 10.4064/sm-18-2-191-198
– volume: 2021
  year: 2021
  ident: 10.1016/j.camwa.2023.09.013_br0410
  article-title: Existence of a unique weak solution to a non-autonomous time-fractional diffusion equation with space-dependent variable order
  publication-title: Adv. Differ. Equ.
  doi: 10.1186/s13662-021-03468-9
– year: 2012
  ident: 10.1016/j.camwa.2023.09.013_br0320
– volume: 97
  start-page: 1994
  year: 2020
  ident: 10.1016/j.camwa.2023.09.013_br0080
  article-title: A perturbation-based approach for solving fractional-order Volterra–Fredholm integro differential equations and its convergence analysis
  publication-title: Int. J. Comput. Math.
  doi: 10.1080/00207160.2019.1673892
– volume: 55
  start-page: 1057
  year: 2017
  ident: 10.1016/j.camwa.2023.09.013_br0390
  article-title: Error analysis of a finite difference method on graded meshes for a time-fractional diffusion equation
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/16M1082329
– volume: 39
  start-page: A890
  year: 2017
  ident: 10.1016/j.camwa.2023.09.013_br0430
  article-title: Convergence analysis of Schwarz waveform relaxation with convolution transmission conditions
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/16M1072620
SSID ssj0004320
Score 2.403236
Snippet This paper investigates the convergence behavior of the Dirichlet-Neumann and Neumann-Neumann waveform relaxation algorithms for time-fractional sub-diffusion...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 102
SubjectTerms Diffusion-wave
Dirichlet-Neumann
Domain decomposition
Neumann-Neumann
Sub-diffusion
Waveform relaxation
Title Dirichlet-Neumann and Neumann-Neumann waveform relaxation algorithms for heterogeneous sub-diffusion and diffusion-wave equations
URI https://dx.doi.org/10.1016/j.camwa.2023.09.013
Volume 150
WOSCitedRecordID wos001088593800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-7668
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004320
  issn: 0898-1221
  databaseCode: AIEXJ
  dateStart: 20211212
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLaqjgdeuCPGTX7gbQQlthfbj9M0BAgmpA2pb5HjuKyjTUdv6yv_gx_LcXxpsqKKPfASpW7jNDlfjj8753wHoTfwkFVSkjIZSlUlTNIykSq3kQAlIzo3WWYaEdfP_PRUDAbya6_3O-TCrMa8rsV6La_-q6mhDYxtU2dvYe7YKTTAPhgdtmB22P6T4cGJjfQFmMMKb0xU7aKN_X5su1YrY_lqk8yydihQ4-_T2Whx4TQagEPCPZ_CeYwNk50vy8RWU1nOQwBz_JTYzg7Mz2Vr9S-IH_iiEfMGYpOoERuS6lqvzxvJqO7axJlyGWtncN1x-Phi1z78u5L6x2hycPyuvXRBqM3hc8mbwcNJmMISlyId3bETovUONUtJa2zOXL71ltt3KxCXMKWfXFsxKUIb8VqX5doV2b4x-MWQxBDtdlk0nRS2kyKVRWpLIu8RfihFH-0dfTwZfNrk3VIn-xkuI6haNfGDW__l78ynxWbOH6B7fhqCjxx8HqKeqR-h-8Fa2Hv8x-jXFpow3H58A004oAlv0IQ3aMLwFe6gCXfQ1HTZRROOaHqCvr0_OT_-kPiqHYkGOrRIdAUkUjNzKBXwx1IMhS01r6ipshL4pNFSVtykVBEulGCVUBqm3LmpUipyIxh9ivr1tDbPEB4aSZnKFcxBOGMcuDTTWpfaDDXnGS33EQl3tNBe0t5WVhkXO6y5j97Gg66cosvun-fBVIUnpY5sFgC-XQc-v915XqC7m0fkJeovZkvzCt3Rq8VoPnvtkfcHr6G0lg
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dirichlet-Neumann+and+Neumann-Neumann+waveform+relaxation+algorithms+for+heterogeneous+sub-diffusion+and+diffusion-wave+equations&rft.jtitle=Computers+%26+mathematics+with+applications+%281987%29&rft.au=Sana%2C+Soura&rft.au=Mandal%2C+Bankim+C.&rft.date=2023-11-15&rft.issn=0898-1221&rft.volume=150&rft.spage=102&rft.epage=124&rft_id=info:doi/10.1016%2Fj.camwa.2023.09.013&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_camwa_2023_09_013
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0898-1221&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0898-1221&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0898-1221&client=summon